INVESTIGATION OF MODE II IN FOUR POINT BENDING BEAM TEST

S.J. Jung\(^1\) and Ahmad M. Abu Abdo\(^2\)
\(^1\)Department of Civil Engineering, University of Idaho, P.O. Box 441022, Moscow, ID 83844-1022, USA
\(^2\)Department of Civil \& Infrastructure Engineering, American University of Ras Al Khaimah, PO Box 10021, Ras Al Khaimah, UAE

Received: 25 September 2016; Accepted: 27 November 2016

ABSTRACT

A Finite Element Analysis has been applied to a type of four-point bending specimen with \(S/W=3\) to determine which condition a pure mode II can be constructed. The ANSYS simulation results have demonstrated that conditions \(l_1 = l_4\) and \(l_2 = l_3\) could not guarantee a pure mode II case to be generated. The ratio \(W/D\) and ratio \(a/W\) have a remarkable contribution to the formation of pure mode II. At \(W/D = 3.75\) and \(a/W\) from 0.25 to 0.35, an almost perfect shear mode II can be achieved at the single crack tip region. When \(a/W\) varies 0.2 to 0.6, the specimen can also be treated as in pure shear mode II case if a 6 percent of the ratio \(K_I/K_{II}\) is acceptable. A \(K_{II}\) expression in fifth-degree polynomials has been calibrated.

Keywords: Fracture mechanics; four-point bending; stress intensity factor; mode II fracture; finite element analysis.

1. INTRODUCTION

One of the most commonly used specimens in the study of mode II is the four-point bending specimen. This specimen testing setup has investigated in many studies [1-8]. Different researchers may take different specimen configuration, but all the specimens meet the conditions which are that \(l_1 = l_4\) and \(l_2 = l_3\), shown in Fig. 1. The reason to do so is that meeting this condition will lead a zero bending moment \(M\) but a non-zero shear force \(Q\) along the crack surface direction. And on these specific conditions, some researchers believe that a pure shear mode II will be produced in the crack tip region [9]. Some researchers, however, have variously mentioned that the stress intensity factor mode II is much greater than mode I (\(K_{II} >> K_I\)) but have not given reason to be so. Also, none of these researchers have provided the magnitude of \(K_I\), \(K_{II}\) and the ratio of \(K_I/K_{II}\) to give us a clear vision how is \(K_{II} >> K_I\).
The purpose of this investigation has been to develop a finite element analysis to study the four-point bending specimen to verify whether or not a pure mode II will always be generated in the crack tip when the above conditions \(l_1 = l_4 \) and \(l_2 = l_3 \) are met. If not, is it possible to induce a pure mode II in this four-point bending specimen and what are the conditions to produce a pure mode II. This research is also going to calibrate \(K_{II} \) expression form with crack length since so far none of such studies have been done.

2. FINITE ELEMENT ANALYSIS

Many studies have been conducted different test setups using numerical techniques (e.g. Finite Element Method) [10-18] Blandford et al. [18] had investigated four-point bending specimen by using boundary element method. However, he only analyzed Mode I case produced by the bending moment \(M \) and compared his results with those of Brown and Srawley [19] by boundary collocation \(K \) calibrations. In this paper, a finite element method; ANSYS has been used to investigate mainly the Mode II case.

The specimen size and loading configuration are shown in Fig. 1. The specimen length is 44 cm. During ANSYS simulation, we take the specimen with \(l_1 = l_4 = D \) and \(l_3 = l_2 = L \) so above conditions are met. And also let \(S = 36 \) cm; specimen width \(W = 12 \) cm; \(S/W = 3 \); \(L = 18 \) cm; and \(d_1 = d_2 = 4 \) cm. Crack length \(a \) and distance \(D \) were variable in different simulation. A typical finite element model is shown in Fig. 2 which consists of 3935 PLANE82 elements and 11604 nodes for the specimen that \(D = 2.0 \) cm and \(a = 3.5 \) cm.

![Figure 1. Four-point Bending Specimen and Simplified Stress State](image-url)
Generally, the specimen can be treated as in a mixed case of mode I and mode II. Therefore the crack tip stresses could be expressed as the following equations:

\[
\sigma_x = \frac{K_I}{\sqrt{2\pi r}} \cos \left(1 - \sin^2 \frac{\theta}{2} \right) \sigma_0 - \frac{K_{II}}{\sqrt{2\pi r}} \sin \left(1 + \sin^2 \frac{\theta}{2} \right) \cos \left(1 - \sin^2 \frac{\theta}{2} \right) \frac{3\theta}{2} \cos \theta \frac{3\theta}{2}
\]

\[
\sigma_y = \frac{K_I}{\sqrt{2\pi r}} \cos \left(1 + \sin^2 \frac{\theta}{2} \right) \cos \theta \frac{3\theta}{2}
+ \frac{K_{II}}{\sqrt{2\pi r}} \sin \left(1 - \sin^2 \frac{\theta}{2} \right) \sin \theta \frac{3\theta}{2}
\]

\[
\tau_{xy} = \frac{K_I}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \cos \frac{3\theta}{2}
+ \frac{K_{II}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \sin \frac{\theta}{2} \frac{3\theta}{2}
\]

Figure 2. Mesh layout of the four-point bending model

The stress intensity factor K_I is obtained, as discussed by Chan et al. [20], from the stress method by an extrapolation of K_I from Eq. 2 and K_{II} is obtained by an extrapolation of K_{II} from Eq. 3.

3. RESULTS AND DISCUSSIONS

3.1 The effect of D
A set of simulations has been performed for six different D which varies from 2.0 cm to 4.8 cm while crack length a keeps being a constant 3.5 cm. The results are shown in Fig. 3 in terms of K_I/P, K_{II}/P and the ratio of K_I/K_{II}. P is the overall load.

From Fig. 3, it has been observed that at D=4.8 cm, $K_I/P = 27.48 \ m^{-3/2}$, $K_{II}/P = 151.10 \ m^{-3/2}$ and the ratio K_I/K_{II} is about 18.19 percent, then, as D decreases K_I/P will also decrease while K_{II}/P will increase. At D = 3.2 cm, $K_I/P = -0.80 \ m^{-3/2}$, $K_{II}/P = 197.31 \ m^{-3/2}$ and the ratio K_I/K_{II} we get is as small as -0.41 percent. In this specimen loading configuration, we believe that a pure mode II specimen has been produced. As D continuously decrease, K_{II}/P
keeps increasing while K_I/P keeps decreasing and takes negative values. But the absolute value of K_I/P is increasing, so is the ratio of K_I/K_{II}. Therefore, the specimen is also away from the pure mode II. It is not surprising that K_I can be negative. In fact, Swartz [7] had also got negative K_I in the four-point bending specimen.

![Graph of K_I/P, K_{II}/P, and K_I/K_{II} variation with D](image1.png)

Figure 1. K_I/P, K_{II}/P, and K_I/K_{II} variation with D

![Graph of Linear relationship between K_I/K_{II} and D](image2.png)

Figure 2. Linear relationship between K_I/K_{II} and D
Therefore, ANSYS simulation results demonstrate that on the conditions \(l_1 = l_4, l_2 = l_3 \), \(K_I \) (\(K_I/P \)) is not always zero. In fact, only at one point \(D \) equal about 3.2 cm, the \(K_I \) value is zero which is strictly pure shear mode II for \(a/W = 0.292 \). Other than that, both modes I and mode II exist theoretically.

Further analysis demonstrates that it seems a linear relationship between the ratio \(K_I/K_{II} \) and the \(D(L_1-D) \), here \(L_1 = L - D \), shown in Fig. 4. A regression line is obtained as below:

\[
\frac{K_I}{K_{II}} = 1.20 \times 10^4 D(L_1-D) - 57.14
\]

(4)

Where, the unit of \(D \) and \(L_1 \) are in meters.

For experimental convenience, if the crack tip with 6 percent of \(K_I/K_{II} \) is acceptable to be treated as pure mode II, the \(D \) range is from 3.0 cm to 3.6 cm. Or maybe more importantly, \(W/D \) range is from 4 down to 10/3.

3.2 Crack length (a)

Since at \(D = 3.2 \) cm (\(W/D = 3.75 \)), the smallest ratio \(K_I/K_{II} \) is provoked. We have more interesting on this loading configuration. At \(D = 3.2 \) cm, let crack length vary from 0.6 cm to 7.2 cm (\(a/W \) ranges from 0.2 to 0.6), another set of ANSYS simulations with 12 different \(a \) has been done. Table 1 shows the simulation results.

<table>
<thead>
<tr>
<th>(a) (m)</th>
<th>(a/W)</th>
<th>(K_I/P) from ANSYS</th>
<th>(K_{II}/P) from ANSYS</th>
<th>(K_I/K_{II}) (%)</th>
<th>(K_{II}/P) From Eq. 5</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.006</td>
<td>0.05</td>
<td>52.03</td>
<td>12.14</td>
<td>428.58</td>
<td>-</td>
<td>0.06</td>
</tr>
<tr>
<td>0.012</td>
<td>0.10</td>
<td>38.60</td>
<td>41.48</td>
<td>93.06</td>
<td>-</td>
<td>0.06</td>
</tr>
<tr>
<td>0.018</td>
<td>0.15</td>
<td>20.35</td>
<td>81.46</td>
<td>24.98</td>
<td>-</td>
<td>0.06</td>
</tr>
<tr>
<td>0.024</td>
<td>0.20</td>
<td>7.19</td>
<td>132.00</td>
<td>5.45</td>
<td>132.08</td>
<td>0.06</td>
</tr>
<tr>
<td>0.030</td>
<td>0.25</td>
<td>0.58</td>
<td>166.82</td>
<td>0.35</td>
<td>166.70</td>
<td>0.07</td>
</tr>
<tr>
<td>0.035</td>
<td>0.292</td>
<td>-0.80</td>
<td>197.31</td>
<td>-0.41</td>
<td>197.31</td>
<td>0</td>
</tr>
<tr>
<td>0.042</td>
<td>0.35</td>
<td>1.09</td>
<td>239.39</td>
<td>0.46</td>
<td>239.14</td>
<td>0.10</td>
</tr>
<tr>
<td>0.048</td>
<td>0.40</td>
<td>4.95</td>
<td>273.43</td>
<td>1.81</td>
<td>272.65</td>
<td>0.29</td>
</tr>
<tr>
<td>0.054</td>
<td>0.45</td>
<td>9.79</td>
<td>304.31</td>
<td>3.22</td>
<td>304.61</td>
<td>0.10</td>
</tr>
<tr>
<td>0.060</td>
<td>0.50</td>
<td>14.80</td>
<td>338.38</td>
<td>4.37</td>
<td>337.51</td>
<td>0.26</td>
</tr>
<tr>
<td>0.066</td>
<td>0.55</td>
<td>19.95</td>
<td>374.15</td>
<td>5.33</td>
<td>374.37</td>
<td>0.06</td>
</tr>
<tr>
<td>0.072</td>
<td>0.60</td>
<td>24.35</td>
<td>415.34</td>
<td>5.86</td>
<td>415.97</td>
<td>0.15</td>
</tr>
</tbody>
</table>

It has been observed that at \(a/W = 0.1 \), \(K_I/P \) equals to 38.60 m\(^{3/2}\) while \(K_{II}/P \) equals to 41.48 m\(^{3/2}\), both of them are about as same. At \(a/W = 0.05 \), \(K_I/P \) equals to 52.03 m\(^{3/2}\) which is much bigger than \(K_{II}/P \) with 12.14 m\(^{3/2}\). Obviously, the specimen crack tip absolutely cannot be treated as pure mode II in these cases. However, if a 6 percent of \(K_I/K_{II} \) is acceptable, the specimen with \(a/W \) bigger than 0.2 can be treated as in mode II case, see in
Fig. 5. When a/W varies from 0.25 to 0.35, an almost perfect pure mode II case can be accomplished and the ratio K_I/K_{II} is less than 0.5 percent according to ANSYS results. These specimen geometries a/W from 0.25 to 0.35 are highly recommended for the four-point bending specimen.

Furthermore, while a/W varies from 0.2 to 0.6, K_{II} can be represented by the following fifth-degree polynomials form:

$$K_{II} = \frac{Y}{\pi \frac{P}{a} \sqrt{a/W}} L_1 \frac{S}{(W-a)B}$$ \hspace{1cm} (5)

while

$$Y = 1.12 - 9.25 \frac{a}{W} + 61.37 \left(\frac{a}{W}\right)^2 - 172.35 \left(\frac{a}{W}\right)^3 + 217.94 \left(\frac{a}{W}\right)^4 - 103.90 \left(\frac{a}{W}\right)^5$$ \hspace{1cm} (6)

where B is the specimen width; all length unit is in meters; P in pounds, and K_{II} in lb.m$^{3/2}$.

The calculated K_{II} data based on Eq. 5 are also listed in Table 1 to compare with those from ANSYS. Those two sets of data are in excellent agreement with each other. Y (Eq. 6) curve is shown in Fig. 6. Unlike three-point bending specimen for Mode I in which Y curve is up parabola according to Brown and Srawley [19], Y curve in four-point bending specimen for Mode II is down parabola.

Figure 5. The ratio K_I/K_{II} with different a/W
4. CONCLUSIONS

Based on the results presented in this study, the following conclusions are made:

Meeting the conditions $l_1 = l_4$ and $l_2 = l_3$ does not guarantee a pure shear Mode II case will be achieved. The values of ratio W/D and ratio a/W have a remarkable contribution to the formation of pure Mode II.

For a type of four-point bending specimen with $S/W = 3$, at $W/D = 3.75$ and a/W from 0.25 to 0.35, an almost perfect Mode II can be achieved at the single crack tip region. This specimen geometry is highly recommended.

When a/W varies 0.2 to 0.6, the specimen can also be treated as in pure Mode II case and the ratio K_I/K_{II} is less than 6 percent. And K_{II} can be expressed in the following form:

$$K_{II} = Y \frac{L_1}{S} \frac{P \sqrt{a}}{L_1(W-a)B}$$

and

$$Y = 1.12 - 9.25 \frac{a}{W} + 61.37 \left(\frac{a}{W} \right)^2 - 172.35 \left(\frac{a}{W} \right)^3 + 217.94 \left(\frac{a}{W} \right)^4 - 103.90 \left(\frac{a}{W} \right)^5$$

REFERENCES

1. Ingraffea AR. Mixed mode fracture initiation in Indiana limestone and Westerly granite,

9. Li Y, Qiao L, Sui ZL, Li QW. Strength analysis of rock material under the brittle shear failure mode, *Jour. of Central South University of Technology*, No. 4, 16(2009) 663-8.

