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ABSTRACT 
 

The dynamic stability is studied for thin-walled structural elements with variable stiffness 
subjected to periodically alternating axial force in this paper. Here, the variation stiffness 
means that it changes with periodically alternating axial force as for nonlinear geometry 
stiffness matrix of thin-walled member. Damping is considered and the governing equations 
are expressed in terms of a system of two second-order differential equations of the Mathieu 
type, with periodic coefficients. MATLAB package is used to determine the stability 
boundary. Numerical example is presented for the dynamic stability boundary of a simply 
supported beam with I-shaped cross section. Comparison is made with finite element 
analysis. Considered damping, some conclusions are drawn out: Excited zone of thin-walled 
member is continuous, the dynamic instability is highly dominant in the first region while 
the second and third instability regions are of much less practical importance; The larger the 
ratio of damp, the less the dynamic instability region; The larger the ratio of damp, the more 
time dependent components of the load wanted, absorption of damping is commonly of no 
effect to prevent parametrically excited vibration from dynamic instability; Parametrically 
excited vibration considering damping is much more different from damped forced vibration 
in nature. 

 
Keywords: Dynamic stability; variation stiffness; thin-walled member; finite element 
method; parametrically excited vibration 

 
 

1. INTRODUCTION 
 

From viewpoints of engineering, all thin-walled members should keep steady first, that 
is, keep balance and stability under disturbing forces, based on it, vibration 
characteristics can be carried out later. Dynamic stability is one of the three criteria to 
dynamic design of structures [1]. Therefore, researches on dynamic stability of thin-
walled member is becoming more prevalent nowadays. Although history of research on 
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dynamic stability of thin-walled member, e.g., on parametrically excited vibration is not 
long, many researchers devote themselves to the area [2-4]. But a few papers dealt to the 
parametrically excited vibration with damping. Damp ratio value ties up dynamic 
stability zone. Only if damp ratio is less than a certain point (about 0.25), i.e., time 
dependent components of the load (excited parameter) is larger than a certain value, it is 
possible that the variation stiffness thin-walled member loses its stability. In fact, as for steel 
structure, damp ratio is about 0.005~0.05 (less than 0.25), and for concrete structure, damp 
ratio is about 0.05 (less than 0.25). Therefore, dynamic instability of thin-walled member is 
general, popular and universal, damping should be considered here.  

MATLAB programs are written to work out graph of dynamic instability regions. 
Two non-dimensional parameters are introduced: one is the proportion of dynamic load 
to what fundamental static buckling load minus static load leaves and another is the 
proportion of load frequency to fundamental natural frequency. Therefore, the length, 
size of thin-walled members as well as boundary conditions have no influence upon 
boundary of dynamic instability regions. The programs are also valid for variable cross 
section thin-walled members, even if it is not revised and enlarged. What is more, 
fundamental static buckling load, fundamental natural frequency and frequency under 
axial force are obtained once done and for all. If different model of static buckling and 
vibrating are to be considered, changing finite element is not a tough issue. Finite 
element method (FEM) has not been noted in any works on dynamic stability of variation 
stiffness thin-walled member yet. The paper intends to be of some help for engineers in 
those areas of dynamic analysis and design.  

 
 

2. BASIC ASSUMPTIONS 
 

The usual assumptions in the field of strength of materials are made, i.e., Hooke’s law holds 
and plane sections remain plane. As in the case of the applied theory of vibrations, the 
influences of longitudinal inertia forces and the inertia forces associated with the rotation of 
the cross sections of the member with respect to its own principal axes are not included.  

 
 

3. PHYSICAL SYSTEMS 
 

If a thin-walled member is subjected to a periodical longitudinal load, and if the amplitude 
of the load is less than that of the static buckling value，in general, the member experiences 
only longitudinal vibrations. However, it can be shown that for certain relationships between 
the disturbing frequency θ and the natural frequency of transverse vibration ω , a thin-
walled member becomes dynamically unstable and transverse vibrations occur, the 
amplitude of these vibrations rapidly increases to large values． 

A thin-walled member subjected to periodically alternating axial force is essentially 
variation stiffness. Linear stiffness matrix of thin-walled member remains constant, while 
nonlinear geometry stiffness matrix changes with periodically alternating axial force. So, 
problem discussed is essentially dynamic stability of variation stiffness thin-walled member. 
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 4. MATHEMATICAL MODEL 
 

With damping regarded，thin-walled member with variation stiffness can be represented by 
an assembly of finite elements connected together at the nodes．The matrix equation for 
discrete system axially loaded is 

 
 0Mx Cx Kx′′ ′+ + =  (1) 

 
where M is global mass matrix , C  is damping matrix and K is global stiffness matrix． 

For thin-walled member subjected to a periodic longitudinal force P=Po+Pt cosθ t, where 
θ is the disturbing frequency, the static and time dependent components of the load Po  and 
Pt can be represented as a fraction of the fundamental static buckling load *P . 
Hence，putting * *P P P cos tα β θ= + , with α and β  as percentages of the static buckling 
load *P .  

A periodic longitudinal force P is used to modify nonlinear geometry stiffness matrix of 
thin-walled member in Equation (1)，thus oscillation equation of thin-walled member with 
variation stiffness is obtained: 
 
 ( ){ }* * 0e GMx Cx K P P cos t K xα β θ′′ ′+ + − + =  (2) 

 
Equation (2) is essentially a second-order differential equation with periodic coefficients, 

where eK  is linear stiffness matrix which reflects strain energy and GK  is nonlinear 
geometry stiffness matrix which reflects the influence of oP  and tP . 

I  representing the unit matrix，equation (2) may be written again as: 
 

 ( ){ }1 1 * * 0e Gx M Cx M K P P cos t K xα β θ− −′′ ′+ + − + =  

 { } { }{ }11 1 * * * 0e G e G Gx M Cx M K P K I K P K P cos tK xα α β θ
−− −′′ ′+ + − − − =  (3) 

 
where ( ) ( ) εβαβα 2111 =+=+= −−− KMIKMMCM  (4) 
 
 { } 2*1 Ω=−−

Ge KPKM α  (5) 
 

 { } { } µβαβα =−=−×
−−

GGeGGe KPKPKKPKPK *1**1* 22
2
1  (6) 

 
The above equation (3) becomes a second-order differential equation with periodic 

coefficients of the Mathieu type. 
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 ( )22 2 0x x I cos t xε µ θ′′ ′+ + Ω − =  (7) 
 
It can be written as another form of Mathieu type: 
 

 ( )
2

2 2
2 22 0x I cos t xµε θ

ε
⎛ ⎞Ω′′ + Ω − − =⎜ ⎟Ω −⎝ ⎠

 (8) 

 
Mathieu equation is called to be periodic in the sense that it satisfies equation (8) for 

every positive 
θ
π2

=T ; 
θ
π42 =T . 

The periodic solution with a period 2T in the form is sough 
 

 ( ) ∑
∞

=
⎟
⎠
⎞

⎜
⎝
⎛ +=

5,3,1 2
cos

2
sin

k
kki

tkbtkatx θθ
 (9) 

 

Letting the coefficients in the congeneric terms of 
2

sin tkθ  and 
2

cos tkθ are equal 

respectively, and substituting the series (9) into Eq.(8) leads to the following system of 
linear homogeneous algebraic equation in terms of ka  and kb  
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             (k=3, 5, 7, ……) 

 
The necessary condition for the existence of the periodic solution of Eq. (9) is that the 

determinants of the homogeneous systems obtained be equal to zero．Considering the two 
conditions under the ± sign, we obtain 
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This equation relating the frequencies of external loading with the natural frequency of 

the member and the magnitude of the external force makes it possible to find regions of 
instability that are bounded by the periodic solutions with a period 2T. 

To determine the regions of instability bounded by the periodic solutions with a period T, 
we proceed in an analogous manner. By substituting the series 
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into Eq. (9), the following systems of algebraic equations are given: 
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Let the determinants of the homogeneous system to zero，we arrive at the following 

equations for the critical frequencies: 
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and 
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for determining the regions of instability bounded by the periodic solutions with a period T 
of the thin-walled member. 

 
 

5. DYNAMIC STABILITY OF THE MEMBER WITH DAMPING 
 

5.1 Numerical Examples 
An open I-shaped cross-section of thin-walled member with both ends simply supported is 
shown in Figure 1.  

 

Figure 1. An I-shaped cross section 
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The following properties were taken for numerical computations: length mL 2= , cross-
sectional dimension: 

mmt 05.111 = , mmb 2031 = , mmt 24.72 = ， mmb 2032 = ， mmh 95.191= . 
Young’s modulus: 22.0 11 /E e N m= ; Shear modulus: 2/118.0 mmNeG = ; 
Poission’s ratio: 25.0=γ ；Rayleigh damping: [ ] [ ] [ ]KMC βα += . 

 Assuming damping ratio ξξξ == ji ，then there is ξα
ji

ji

ww
ww

+
=

2
，

ji ww +
=

ξβ 2 . 

Dynamic stability of open-section thin-walled member in the conditions of 01.0=ξ  and 
05.0=ξ , while 0=α  is calculated ,respectively. 

We are much obliged to S. Kiipornchai and S. L Chan for their nonlinear thin-walled 
open section finite element [5]. The MATLAB program developed here adopts their element 
but eliminates axial deformation, that is, we take into account of bending coupled with twist 
and warping deformation of thin-walled member. The results are shown in Table.1. 

 

Table 1. Boundary of dynamic stability of variation stiffness thin-walled member 

  β    Serial number of 
dynamic instability 

regions Ω2
θ

 ξ 
0.0 0.2 0.4 0.6 0.8 1.0 

Ref．[2] —— 1.0477 1.0949 1.1398 1.1829 1.2245 

This paper 
0.01 

—— 1.0430 1.0863 1.1275 1.1669 1.2045 

Ref．[2] —— —— 1.0808 1.1304 1.1757 1.2186 
The First Upper 

Boundary 

This paper 
0.05 

—— —— 1.0785 1.1211 1.1617 1.2007 

Ref．[2] —— 0.9496 0.8949 0.8369 0.7748 0.7072 

This paper 
0.01 

—— 0.9489 0.8973 0.8418 0.7815 0.7154 

Ref．[2] —— —— 0.9065 0.8439 0.7795 0.7107 

The First Lower 
Boundary 

This paper 
0.05 

—— —— 0.8741 0.8210 0.7629 0.6986 

This paper 0.01 —— —— 0.4987 0.4995 0.4997 0.4998 The Second Upper 
Boundary This paper 0.05 —— —— —— —— 0.4927 0.4961 

This paper 0.01 —— —— 0.4809 0.4533 0.4126 0.3538 The Second Lower 
Boundary This paper 0.05 —— —— —— —— 0.4210 0.3590 

This paper 0.01 —— —— —— 0.3084 0.2741 0.1997 The Third Upper 
Boundary This paper 0.05 —— —— —— —— —— 0.2921 

This paper 0.01 —— —— —— 0.3190 0.3113 0.3015 The Third Lower 
Boundary This paper 0.05 —— —— —— —— —— 0.2133 
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5.2 Discussions 
Instability of thin-walled member is a parametric excitation problem．A boundary of the 
instability regions for variation stiffness thin-walled member is shown in Table 1. Compared 
to results of Ref. [2], the results of MATLAB program developed in this paper are with 
more precision and efficiency. And, it reveals some interesting features. First, regions of 
stability are larger than regions of instability. Second, judging from the magnitude of the 
relative width parameter，the first region of instability is large and reduces rapidly for the 
second and third regions, which indicates that the instability is highly dominant in the first 
region. Therefore, the first region is always called the principal region and is generally most 
important while the second and third instability regions are of much less practical 
importance.  

Using FEM, the static and time dependent components of the load for thin-walled 
member of arbitrary section can be determined out when dynamic instability of thin-walled 
member occurs. It can be seen that the results of Table 1 will not change with the size, 
length and restriction of variation stiffness thin-walled member due to adoption of ratio 
method, which shows the commonness of dynamic stability of variation stiffness thin-walled 
member.  

Only if damp ratio is less than a certain point, i.e., time dependent component of the load 
(excited parameter) is larger than a certain value, variation stiffness thin-walled member 
loses its stability. Compared to the results between 01.0=ξ  and 05.0=ξ  in Table 1 
indicates that the larger the damp ratio is, the more time dependent components of the load 
wanted. Therefore, the effect of damping on dynamic instability of thin-walled member with 
varying stiffness is general and should not be neglected. So dynamic instability of variation 
stiffness thin-walled member is general、popular and universal.  

From Table 1 it can be seen that, as dynamic load factor β  increases beyond the limit 
point, the eigenvalue solution of the instability region boundary becomes imaginary which 
implies that the periodic solution of the Mathieu equation does not exist in that region. The 
stability behavior in that region is definitely unstable, and this may be due to the large lateral 
displacement of the thin-walled member due to increasing values of dynamic load factors. 
Indeed, the thin-walled member loses its stability because nonlinear geometry stiffness 
matrix decreases to a lowest point with dynamic load on it. At 0.0=β , the dynamic load 
takes no action on the thin-walled member which should be understood as a critical state. 

From Table 1 it also can be seen that both damp ratio value and parametrically excited 
vibration coefficient are small. And, parametrically excited vibration coefficient seems to 
increase in proportion to damp ratio. The first dynamic instability region takes up most of 
parametric plan, occurring in all probability and causing a lot of harm. So it’s more difficult 
to inspire the first dynamic instability than the third dynamic instability where damp exists. 
The larger the damp ratio value, the less dynamic instability region.  

Both parametrically excited vibrations and forced vibrations could lead to instability 
phenomena, and they are similar in appearance. But they are not the same dynamic response. 
Forced vibration occurs when disturbing frequency is close to the natural frequency of thin-
walled member while parametrically excited vibrations take place at many cases. It is 
pointed out that to avoid dynamic instability of thin-walled member is more difficult than 
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prevent it from sympathetic vibration． 
 
 

6. SUMMARY AND CONCLUSIONS 
 

The dynamic stability of variation stiffness thin-walled member subjected to periodically 
alternating axial force is analyzed considering damping in this paper．Here, the variation 
stiffness means that it changes with periodically alternating axial force as for nonlinear 
geometry stiffness matrix of thin-walled member．Dynamic stability of variation stiffness 
thin-walled member with damping can be transformed into a system of second-order 
differential equation of Mathieu type with periodic coefficients．Using MATLAB 
package，a computer program is developed to calculate regions of dynamic instability 
corresponding to bending vibration，torsion and warping coupling vibration. It is the same 
as neglecting damping, as for the same dynamic instability mode, the larger the load swing, 
the wider the dynamic instability zone. Considered damping, some conclusions are drawn 
out: Excited zone of thin-walled member is continuous, the dynamic instability is highly 
dominant in the first region while the second and third instability regions are of much less 
practical importance ; The larger the damp ratio value, the less the dynamic instability 
region; The larger the damp ratio, the more time dependent components of the load wanted, 
absorption of damping is commonly of no effect to prevent parametrically excited vibration 
from dynamic instability; Parametrically excited vibration considering damping is much 
more different from damped forced vibration in nature . 

MATLAB programs are written to work out the boundary of dynamic instability regions. 
Two non-dimensional parameters are introduced: one is the proportion of dynamic load to 
what fundamental static buckling load minus static load leaves and another is the proportion 
of load frequency to fundamental natural frequency．Therefore，the length，size of thin-
walled members as well as boundary conditions have no influence upon graph of dynamic 
instability regions．Need not revised and enlarged, the programs are also valid for variable 
cross section thin-walled members. What’s more, fundamental static buckling load, 
fundamental natural frequency and frequency under axial force are obtained once done and 
for all. The finite element method has not been noted in works on dynamic stability of 
variation stiffness thin-walled member yet.  

The paper intends to be of some help for engineers in the areas of dynamic analysis and 
design. 
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