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ABSTRACT

An efficient methodology is proposed to design optimization of structures subjected to 
earthquake time history loading considering nonlinear structural response. It is clear that the 
structural optimization for transient time history loading is a computationally intensive task, 
especially when the nonlinear response is concerned. In the proposed hybrid methodology 
particle swarm optimization (PSO), genetic algorithm (GA), probabilistic neural network 
(PNN), radial basis function neural network (RBFNN) and wavelet transforms (WT) 
techniques are combined to achieve the optimization task. In order to investigate the 
efficiency of the proposed methodology, a 72-bar space steel tower is designed for optimal 
weight for El Centro earthquake. The numerical results demonstrate the efficiency and 
computational advantages of the proposed methodology. 

Keywords: Optimization; earthquake; genetic algorithm; particle swarm optimization;
neural network

1. INTRODUCTION

Seismic design codes suggest that, under severe earthquake events, the structures should be 
designed to deform inelastically due to the large intensity inertia loads imposed. Therefore, 
achieving the structural optimization for transient time history loading, considering 
nonlinear response is an expensive process in terms of computational costs. In order to deal 
with this problem an efficient methodology is proposed. In the proposed methodology two 
main computational strategies have been adopted. In the first strategy, particle swarm 
optimization (PSO) algorithm [1] and genetic algorithm (GA) [2] are employed to achieve 
the optimization task. In the field of structural optimization, many successful application of 
the GA, PSO and their modified versions have been reported in literature [3-8]. As the 
optimization process requires a great number of nonlinear time history analyses thus the 
overall time of the optimization process is very long. In the second strategy, in order to 
reduce the computational burden, a surrogate model based on radial basis function (RBF) 
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[9] neural network and wavelet transforms (WT) [10] is employed to predict the necessary 
responses during the optimization process. One of the most important phases in the 
surrogate modeling is sampling (data generation). In this paper, the optimal Latin hypercube 
(OLH) [11] sampling technique is employed to select efficient data set. For prediction of the 
responses, a wavelet radial basis function neural network (WRBFNN) is employed. There 
are two alternatives for the input vectors of the WRBFNN: design variables and natural 
frequencies. In [12] it has been demonstrated that employing the natural frequencies as the 
inputs of surrogates results in better performance generality. As the natural frequencies are 
required during the optimization process, evaluating of these by analytic methods can 
impose additional computational burden to the process. In order to prevent from this 
difficulty, the WRBFNN proposed in [13] is employed to effectively predict the frequencies. 
During the optimization process of a structure many designs are examined and due to 
considering nonlinear response analysis it is probable that some of them lose their stability. 
It is evident that such designs should be rejected. As during the optimization process, we 
have employed a surrogate model instead of the exact nonlinear time history analysis, it is 
necessary to somehow distinguish such instable structures. For this purpose, a probabilistic 
neural network (PNN) [14] has been trained. As a test example, a 72-bar space steel tower 
subjected to the El Centro earthquake is optimized. The numerical results indicate that the 
hybrid methodology is a powerful and efficient tool for optimal design of structures.      

2. FORMULATION OF THE OPTIMAL DESIGN PROBLEM FOR 
EARTHQUAKE LOADING

Optimal design of structures subjected to earthquake time history loading can be formulated 
as follows:  

Find   X;  d
i RX  ;  ni ,,1 (1)

To Minimize   )(XW (2)

Subject to  0)),(),(),(,( ttttg j ZZZX  ;  mj ,,1 (3)

0)()()()(  tuttt g
 MIKZZCZM (4)

where W, g, I, X, )(tZ , )(tZ , )(tZ , M, C, K, )(tug ,m, n, and t are objective function, 

behavioral constraint, unit vector, design variables vector, acceleration vector, velocity 
vector, displacement vector, mass matrix, damping matrix, stiffness matrix, ground 
acceleration, the number of constraints, the number of design variables, and time, 
respectively. Rd is a given set of discrete values.

In order to perform dynamic analysis considering inelastic behavior, ANSYS [15] is 
employed. A simple full plastic stress-strain relationship is adopted in order to take into 
account the transient nature of earthquake loading. Studies have shown that this law is 
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adequate and gives accurate results for many practical applications [16]. The full plastic 
stress-strain relationship is shown in Figure 1.

Figure 1. Full plastic stress-strain relationship

The stress and displacement constraints in time-dependent optimization problems are
usually taken as:
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where ne, ns, 
jd ,

aif , 
byif  and 

zibf  are the number of the elements, the number of the nodes, 

drift of the jth storey, compressive axial stress, bending stress for y-axis, bending stress for 
z-axis of ith element, respectively; 

allj,d ,
aF , 

byF and
bzF  are allowable values of the mentioned 

parameters, respectively;
yF is the yield stress. Also Cmx and Cmy are bending coefficients, 

and eyF  and ezF   are the Euler stresses.

As all the constraints are time-dependent the consideration of all the constraints requires 
an enormous amount of computational effort. In the present study, the conventional method 
[17] is employed to deal with time-dependent constraints. In this method the time interval is 
divided into ngp subintervals and the time-dependent constraints are imposed at each time 
grid point. Let the jth time-dependent constraint be written as:

0)),(),(),(,( ttttg j ZZZX  , tit 0 (8)

where ti is time interval over which the constraints need to be imposed. 
Because the total time interval is divided into ngp subintervals, the constraint (8) is 

replaced by the constraints at the ngp+1 time grid points as:
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0)),(),(),(,( ααααj ttttg ZZZX  ; 
gpnα ,,0  (9)

The above constraint function can be evaluated at each time grid point after the structure 
has been analyzed.

The objective function of constrained structural optimization problems is defined as 
follows:
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where )( Xpf , Δ~ , and rp are the penalty function, the feasible search space, and an adjusting 

factor, respectively.  

3. EVOLUTIONARY ALGORITHMS

In the present study, the GA and PSO are employed for performing optimization process. 
During the last years, the GA has been widely employed to solve the engineering 
optimization problems and its theoretical background has been described in the literature. 
Thus in this paper, only the theoretical background of the PSO is briefly described.    

3.1 PSO Algorithm  
The PSO has been proposed by Kennedy [1] to simulate the graceful motion of bird swarms 
as a part of a socio-cognitive study. The PSO involves a number of particles, which are 
randomly initialized in the search space. These particles are referred to as swarm. Each 
particle of the swarm represents a potential solution of the optimization problem. The 
particles fly through the search space and their positions are updated based on the best 
positions of individual particles and the best of the swarm in each iteration. The objective 
function is evaluated for each particle at each grid point and the fitness values of particles 
are obtained to determine the best position in the search space [18]. In iteration k, the swarm 
is updated using the following equations:
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where
iX and 

iV represent the current position and the velocity of the ith particle, 

respectively;
iP is the best previous position of the ith particle (called pbest) and 

gP is the best 

global position among all the particles in the swarm (called  gbest); 
1r  and 

2r  are two 

uniform random sequences generated from interval [0, 1]; c1 and c2 are the cognitive and 
social scaling parameters, respectively. Each component of 

iV  is constrained to a maximum 

value defined as max
iV and a minimum value defined as min

iV . The inertia weight used to 
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discount the previous velocity of particle preserved is expressed byω . 
Due to the importance of ω  in achieving efficient search behavior the optimal updating 

criterion is taken as:

k.
k

ωω
ωω

max

minmax
max

 (13)

where 
maxω and 

inmω are the maximum and minimum values of ω , respectively. Also, 
maxk , 

and k are the numbers of maximum iterations and present iteration, respectively.
It was demonstrated that c1 = c2 =2.0 [19] therefore in the present paper it is assumed that 

c1 = c2 =2.0 and proper results have been observed. The particle size is a problem dependent 
parameter. However, in [20] it is mentioned that the typical range for the number of 
particles is 20–40. In this work, a particle size of 30 is chosen and proper results are found. 

The flowchart of the typical PSO is shown in Figure 2.

START

Initialize swarms:
a. Random position

b. Random velocities

Update particle velocities

Update particle positions

Score solution represented by 
new particle position

Is this particle
the best found by this

particle so far?

Yes
Update local best

Is this particle
the best found by any 

particle so far?

No

Yes
Update global best

No

Is terminate?
No

When an iteration finish

Solution is final global best

Figure 2. The flowchart of the typical PSO 
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Despite the efficiency of the PSO, the computational burden of the optimization process 
due to implementing nonlinear time history analyses is very high. Incorporating of surrogate 
models in the optimization process to predict the desired structural response can 
substantially reduce the computing effort.

4. SURROGATE MODELING FOR PREDICTION OF THE NONLINEAR TIME 
HISTORY RESPONSES

In this study a hybrid surrogate model (HSM) is proposed to efficiently and accurately 
predict the nonlinear time history responses of the structures. In this model, OLH, 
WRBFNNs and PNN are combined. In the next sub-sections, a brief description of 
theoretical background of the mentioned techniques is presented and then the fundamentals 
of the HSM are explained.

4.1 OLH Sampling Method  
Design of computer experiments [21] is often used for response database construction, by 
generating a set of representative input vectors that should cover the entire design space and 
be spread as evenly as possible. Design of the experiments is usually time-consuming and 
only a limited number of them can be performed. Therefore, a careful selection of the data 
set is of primary importance. Latin hypercube design [11] of experiments and the so-called 
optimal Latin hypercube (OLH) provide good alternative to this purpose. However, OLHs 
are rather expensive to employ for high dimensional problems.

A Latin hypercube is represented by an NS×p matrix L in which each column consists of 
a permutation of the integers 1 to NS. Each row of L is considered as a sample point in p
dimensions. 
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where Xi, 1 ≤ i ≤ NS, is the ith sample point.
In the OLH approach, the objective is an optimized Latin hypercube design so that the 

neighboring data points are kept at a minimal distance apart. The criterion that is used in the 
present paper to optimize LH design was proposed by Audze and Eglais [22]. It is based on 
the function G given below:

 
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S SN
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XX
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The optimization problem consists of finding an LH (represented by L) which minimizes 
G(L). For this purpose the columnwise-pairwise (CP) algorithm [23] is employed.
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4.2 WRBFNN   
Researchers have proven that the wavelet type of neural networks possess better 
performance generality in comparison with their conventional versions [24, 25]. A wavelet 
neural network logically connects neural network architecture with the wavelet transform. A 
wavelet family associated with mother wavelet )(zψ is generated by dilation (a > 0) and 
translation (b) factors:

)(
1

)(, a

bz
ψ

a
zψ ba


 (16)

The wavelet neural networks use wavelets as activation functions of hidden layer 
neurons. In this paper, the dilation and translation factors of the wavelet functions are taken 
to be fixed and only the weights of the network are determined. Activation function of the 
conventional RBF neurons is Gaussian function. To design the WRBFNN the activation 
function of hidden layer of RBFNN is substituted with Morlet [26] wavelet function: 
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In order to find the optimal values of a and b a simple approach is adopted. In this 
approach, the values of a and b are iteratively changed and the performance generality of the 
FWRBFNN is investigated. The values associated with the best performance generality are 
taken as optimal. Due to the high training speed of the RBF type networks, the approach is 
very fast [13]. 

4.3 PNN   
The probabilistic neural network (PNN) proposed by Specht (1990) is mainly used for 
classification problems. To train the PNN a supervised training is accomplished. Typically, a 
PNN consists of an input layer, a radial basis function (RBF) layer, and a competitive (C) layer. 

During the training stage, a training set of NS data samples (design variable vectors) is 
used. 

],...,,...,,[ 21PNN SNj FFFFI   , T
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j fffF , 
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where q is the number of the elements of each sample. 
The number of the neurons in the RBF layer is identical to NS. Also, the weight matrix of 

this layer is set to the transpose of the
PNNI matrix [27]. 

The number of the neurons in the competitive layer, which is identical to the count of the 
classes, is denoted by NC. The weight of the kth neuron in the competitive layer to the jth 
neuron in the RBF layer is assigned as
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where Ck denotes the sample set of the kth class.
Based on these assignments, the PNN is created with zero error on training samples.
After training, a testing set of NT new data samples are used to test the performance 

generality of the PNN. When a new input vector T
21 },...,,{ *

q
**

* fffF is presented, the RBF 

layer first computes the distances between
*F  and the training samples. Then RBF 

activation function is used to produce a vector whose elements indicate how close the input 
vector is to the training sample. The output of the jth activation function in the RBF layer is
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where 
jσ  is the radius of receptive field of the jth RBF neuron [27].

Thus, the RBF layer neurons with weight vectors quite far from the input vector F*

output values near zero, while neurons with weight vectors quite close to F* output values 
near one. Typically, several neurons may be active to varying degrees. The competitive 
layer sums these contributions for each class of inputs to produce a vector of probabilities. 
Each neuron in the competitive layer represents the active status of one class as follows:
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Finally, the second layer, produces a 1 corresponding to the largest element of
kξ , 

(
CN,...,,k 21 ), and 0’s elsewhere. Thus, the network classifies the input vector into a specific 

k (
CN,...,,k 21 ) class because that class has the maximum probability of being correct.

The key advantage of PNN over the other networks is its rapid training. Since the number 
of layers in the PNN architecture is fixed and all the synaptic weights are directly assigned 
using training samples, this procedure can be finished in only one epoch and no error 
correction procedure is necessary. It has been proved that with enough training data a PNN 
is guaranteed to converge to a Bayesian classifier, which usually owns the optimal 
classification capability [27].

4.4 Fundamentals of HSM 
Predicting the linear time history responses of the structures have been already achieved in a 
number of papers [28-30]. In this paper, a HSM is proposed to predict the nonlinear time 
history responses of structures. 

As the first step, the OLH sampling method is employed to carefully select a data set. In 
the sampling process, NS structures based on their design variable vectors are selected. This 
means that in Eq.(14), Xi is the design variables of the ith selected structure. In this case, the 
natural frequencies (Fi) and nonlinear time history responses (Ri) of all the selected 
structures are computed by the conventional finite elements (FE) analysis. 
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In [12] it has been demonstrated that the best candidates for the inputs of surrogates are 
natural frequencies. In the present paper, the natural frequencies are also employed as the 
inputs. During the optimization process evaluating of the frequencies by employing the 
analytic methods increases the computational effort of the process. In order to prevent from 
this, the WRBFNN [13] is used to predict the frequencies. The inputs and outputs of the 
WRBFNN are design variables (Xi) and natural frequencies (Fi) of the selected structures, 
respectively. 

During the nonlinear time history analysis of a structure due to updating the structural 
matrices, it is probable that the structure loses its overall stability and the analysis procedure 
can not converge. Thus, before training a surrogate model to predict the nonlinear 
responses, it is crucial to recognize stable and instable structures. In order to attain this 
purpose, classifier neural networks can be employed. In the present work, a PNN is trained 
to achieve this important task. All of the selected structures, NS, are considered in the 
classification phase. Naturally, considering stable and instable structures the number of 
classes, NC, is equal to 2. In this paper we examined two alternatives for the inputs of PNN: 
design variables (Xi) and natural frequencies (Fi). It is observed that employing Fi as the 
inputs results in appropriate results. Therefore, in the training process of the PNN, the inputs 
are Fi and the output is 1 for stability and 2 for instability of the corresponding structure. 
Employing NS1 stable and NS2 instable structures, the PNN is trained to recognize stable and 
instable structures during the optimization process. 

The last stage in training the HSM is to train a network to predict the nonlinear time 
history responses of the NS1 stable structures. For this purpose, another WRBFNN is 
considered. The inputs and outputs of the WRBFF are Fi and Ri of the NS1 stable structures. 
As well as the frequency predictor WRBFNN, in this network the mentioned simple 
procedure is also employed to find optimal values of a and b.   

4.5 Evaluation Metrics 
In order to evaluate the accuracy of the approximate nonlinear time history responses 
(predicted by HSM) against their corresponding actual ones (obtained by conventional FE 
analysis), two evaluation metrics are used as:
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where zi and 
iz~ are the ith component of the exact and approximate responses, respectively. 

The mean value of exact vectors component and the vectors dimension are expressed by z
and r, respectively. 

5. OPTIMIZATION BY THE PSO INCORPORATING THE HSM

The outline of the proposed methodology in this paper is displayed in Figure 3.
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Selecting a number of sample structures by OLH sampling 
method

Evaluating the natural frequencies and nonlinear time history 
responses of the structures by conventional FE analysis

Recognizing the stable and instable structures among the 
data set and training the PNN

Training WRBFNN to predict the values of the natural 
frequencies

Training WRBFNN to predict the nonlinear structural 
time history responses

Distributing a swarm of particles (structures) on the 
design space

Yes

No

Terminating the optimization process

Is the convergence achieved?

Generating new particles (structures) using the position 
and velocity updating equations

Predicting the natural frequencies of the new generated 
structures by the trained WRBFNN

Is the new particle stable?

Yes

Predicting the nonlinear time history responses of the 
new generated structures by the trained WRBFNN and 

computing the objective function value by Eq.(10)

Is the new design
better than the previous one?

Yes

Replacing the previous design by the new one

No

No

Rejecting the new design

Figure 3. Outline of the proposed methodology

6. NUMERICAL RESULTS

A 72-bar truss, shown in Figure 4, subjected to 10 seconds of the El Centro (S-E 1940) 
earthquake record is designed for optimal weight. The earthquake records are applied in x
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direction. Young’s modulus is 2.1×1010 kg/m2 and mass density is 7850 kg/m3. The mass of 
10000kg is lumped at nodes of 1 to 4. The truss members are divided into 9 groups based on 
cross-sectional areas, given in Table 1. The cross-sectional areas of the elements can be 
chosen from the values given in Table 2. Because of the insignificant internal stresses of
elements of group 9 under the earthquake excitation, a minimum cross-sectional area of 
2.54 cm2 is assigned to them. This structure has been optimized considering linear elastic 
structural behavior in [28]. As in this paper, nonlinear structural behavior is considered the 
stress limitation is neglected and as well as the [28] the displacement of top node of the 
structure is limited to 2cm. The constraints are checked at 500 grid points with time step of 
0.02 seconds. The computational time is measured in terms of CPU time required by a PC 
Pentium IV 3000 MHz.

       Figure 4. 72-Bar space steel truss
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Table 1. Element groups of the 72-bar truss                                            

Group No. Elements

1 1-4

2 5-12

3 13-16

4 17-24

5 25-28

6 29-36

7 37-40

8 41-48

9 49-72

Table 2. Available cross-sectional areas

No. Area (cm2)

1 2.54

2 11.20

3 12.30

4 13.90

5 15.20

6 17.20

7 18.90

8 21.40

9 25.70
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6.1 Data selection
To train and test the HSM a training set including 165 samples are selected by OLH sampling 
technique, NS=150. The time spent to achieve OLH sampling process is about 5.0min.

Natural frequencies and nonlinear time history responses of the selected structures are 
evaluated by the conventional FE analysis. During this process it is revealed that among all 
the structures, 15 ones lose their stability and their analysis procedure can not converge. 
Therefore, in the data set we have NS1=150 stable and NS2=15 instable structures. The time 
spent to FE analysis of 165 structures is 235 min.  

6.2 Training WRBFNN to Predict the Natural Frequencies
A WRBFNN is trained to predict the natural frequencies of the structures during the 
optimization process. The inputs and outputs of the WRBFNN are design variables (Xi, 
i=1,2,…, 165) and frequencies (Fi, i=1,2,…,165) of the selected structures, respectively. 
Due to symmetry of the structure, its 1st, 3rd and 5th natural frequencies are selected as 
inputs. From the 165 selected structures, 110 and 55 ones are randomly selected to train and 
test the WRBFNN, respectively. In this case, the size of the WRBFNN is 9-110-3. In this 
example, the optimal values of a and b are obtained as 0.8 and 0.0, respectively. The results 
of testing the performance generality of the WRBFNN are given in Table 3. The time spent 
to train and test the WRBFNN is 1.5min.

Table 3. Testing errors of the WRBFNN

Natural frequencies Mean error (%) Maximum error (%)

f1 0.3814 1.3133

f3 0.2100 1.0008

f5 0.2926 1.4548

Average 0.2947 1.2563

6.3 Training PNN to Recognize Stable and Instable Structures
In the provided data set, there are NS1=150 stable and NS2=15 instable structures. In order to 
train the PNN, 110 samples including 100 stable and 10 instable structures are considered. 
Also to test the PNN, 55 samples including 50 and 5 stable and instable ones are considered, 
respectively. The testing results of PNN are shown in Figure 5. It can be observed that there 
is excellent conformance between exact results and predicted ones by PNN. The time spent 
to train and test the PNN is 1.0min. 
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Figure 5. Testing results of PNN 

6.4 Training WRBFNN to Predict the Nonlinear Time history Responses of the Stable 
Structures
A WRBFNN is trained to predict the displacement of the top node of the structure. As the 
instable structures will be rejected during the optimization process, therefore the WRBFNN 
is only trained to predict the nonlinear responses of the stable structures. In this case, the 
training set includes the NS1=150 stable structures including their corresponding natural 
frequencies as the inputs and nonlinear time history displacements of the top node as the 
outputs. To train and test the WRBFNN 100 and 50 samples are considered, respectively. 
The size of the WRBFNN is 3-100-500. In this example, the optimal values of a and b are 
obtained as 0.90 and 0.0, respectively. The results of testing the performance generality of 
the WRBFNN are shown in Figure 6. The time spent to train and test the WRBFNN is 3.0 
min. The results imply that the generality of the WRBFNN is appropriate.
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Figure 6. RRMSE and R2 of the predicted responses by WRBFNN

6.5 Optimization Results
The optimization is carried out by the standard GA, with 30 individuals, and the PSO, with 
30 particles, using the Exact Analysis (EA) and Approximate Analysis by HSM (HSM). The 
maximum number of generations is limited to 100. In each optimization case, ten 
independent optimal design processes (ten independent runs) are achieved and the best 
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solution found, the average number of generations and the average time of optimization are 
considered as the final results. In the optimization process based on approximate analysis, to 
distinguish feasible and infeasible solutions, the criterion proposed by Vanderplaats [31] is 
involved: if the sum of the violated constraints is less than 0.005, the corresponding solution 
is feasible, otherwise the solution is infeasible. It is important to note that, in the 
optimization by GA and PSO using the HSM, the necessary responses during the 
optimization are predicted by the HSM. But, to assess the feasibility of the final optimal 
solution its responses are evaluated by the conventional FE time history analysis. The final 
results of optimization are given in Table 4. 

  

Table 4. Optimum designs obtained by GA and PSO using EA and HSM

GA PSO
Element Groups No.

EA HSM EA HSM

1 1 1 1 1

2 1 1 1 1

3 2 4 2 1

4 3 2 2 2

5 7 5 2 2

6 2 3 2 2

7 9 9 2 4

8 2 2 2 2

9 1 1 1 1

Weight (kg) 1242.1 1237.3 1112.3 1083.8

The average number of 
generations

86 92 60 68

The sum of the violated 
constraints

0.0000 0.0000 0.0000 0.0050

The average time of 
Optimization (min)

3678.0 0.90 2566.0 0.60

Data generating time (min) - 240.0 - 240.0

Training time (min) - 5.50 - 5.50

Overall time (min) 3678.0 246.4 2566.0 246.1

RRMSE, R2 -
0.0987, 
0.9901

-
0.0923, 
0.9912
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It is demonstrated that the PSO is superior to the standard GA. It can be also observed 
that the best solution is obtained by PSO using HSM in terms of weight, time, and accuracy. 
The response of the best solution (PSO+HSM) is compared with its corresponding actual 
one in Figure 7.  
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Figure 7. Comparison of best solution (PSO+HSM) response with its actual one

7. CONCLUDING REMARKS

In this paper a hybrid surrogate modeling based optimization algorithm is proposed to find 
optimum design of structures subjected to earthquake time history loading with nonlinear 
responses. Design optimization is performed by two well-known optimization algorithms: 
GA and PSO. In order to mitigate the computational rigors of the nonlinear time history 
analysis, an efficient hybrid surrogate model (HSA) is proposed to accurately predict the 
necessary nonlinear time history responses of the structures during the optimization process. 
In the HSM the main aspects of OLH, WT, RBF, and PNN are combined. The numerical 
results imply that the PSO possesses better computational performance comparing with the 
standard GA. Also it is observed that by employing PSO+HSM the overall time of 
optimization is 0.1 times of  the time required by exact optimization (the PSO+EA 
procedure) while the errors due to all the approximations is small. Therefore, it can be 
finally concluded that the proposed methodology is a powerful tool to design optimization 
of structures subject to earthquake loading considering nonlinear behavior. 
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