
ASIAN JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING) VOL. 11, NO. 1 (2010)
PAGES 1-24

ASSESSMENT OF LEAST-SQUARES FINITE ELEMENT MODELS 
OF BEAMS

A. Rauta and J.N. Reddyb*

aAdvanced Computational Mechanics Laboratory
bDepartment of Mechanical Engineering, Texas A & M University, College Station, Texas 

77843-3123

ABSTRACT

The purpose of this study is to investigate the effectiveness of the least-squares based finite 
element models in solving the beam bending problems to overcome shear and membrane 
locking and predict generalized forces accurately. This study is conducted using the Euler-
Bernoulli and Timoshenko beam theories applied to straight beams. The solution accuracy 
of the least-squares finite element models with conventional finite element models is also 
assessed.
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1. INTRODUCTION

There are some numerical challenges that are encountered with conventional finite element 
models based on the weak form Galerkin formulation, which is the most common in 
practice [1,2]. In these models, the secondary variables such as the bending moment and 
shear force are post-computed, typically at Gauss points and not at the nodes, and do not 
yield good accuracy. In addition, in the case of the Timoshenko beam theory, the element 
with lower-order equal interpolation of the generalized displacements suffers from shear 
locking. In both Euler-Bernoulli and Timoshenko beam theories, the elements based on the 
weak form Galerkin formulation also suffer from membrane locking [1,2] when applied to 
geometrically nonlinear problems. Both types of locking are a result of using inconsistent 
interpolation for the variables involved in the formulation.  In order to alleviate these types 
of locking, often reduced integration techniques are employed. However, such ad-hoc 
techniques have other disadvantages, such as hour-glass modes or spurious rigid body 
modes. Thus, it is desirable to develop alternative finite element models that overcome the 
locking problems and yield good accuracy for stress resultants. Least-squares finite element 
models are considered to be alternatives to the weak form Galerkin finite element model 
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and thus considered in this study for investigation. The least-squares formulation helps to 
retain the generalized displacements and forces (or stress resultants) as independent 
variables, and also allows the use of equal order interpolation functions for all variables.

The objective of this paper is to study the effectiveness of the least-squares finite element 
models compared to the weak form Galerkin finite element models of beams to overcome 
shear and membrane locking and predict generalized forces accurately. The Euler-Bernoulli 
and Timoshenko beam theories are used in this study. To achieve the objective, different 
finite element models of the two beam theories are developed and are applied to beam 
problems with different boundary conditions. Solutions obtained using the least-squares 
finite element models are compared to the solutions obtained from the conventional, weak
form Galerkin finite element models. The following discussion provides the background for 
the present study.

Depending on the kinematic assumptions, two different theories are often used to model 
the structural behavior of beams: (1) Euler- Bernoulli beam theory (EBT) and (2) 
Timoshenko beam theory (TBT). In the Euler Bernoulli beam theory, one neglects the effect 
of the transverse shear strain whereas in the Timoshenko beam theory it is taken into 
account.

Both shear and membrane locking in beams are primarily due to the use of inconsistent
interpolation of the variables. When equal and lower order interpolation of the displacement 
and rotation are used in the Timoshenko beam finite element, the element exhibits locking 
as it is unable to cope with the constraint that the slope should be compatible with the 
derivative of the deflection in the thin beam limit. The problem of shear locking is often 
overcome by numerically mimicking different variation (i.e., constant and linear) of the 
rotation function in shear energy and bending energy through numerical integration [2]. 
There are several other approaches that have been adopted to eliminate locking [1, 2, 3-9]. 
The concept of locking was first discussed by Kikuchi and Aizawa [3], and Zienkiewicz and 
Owen [10] advocated that the reduced integration technique is a means of obtaining 
accurate solutions. However, such ad-hoc approaches have other disadvantages, such as 
appearance of hour-glass modes or spurious rigid body modes. Hence, it is desirable to 
develop alternative finite element models that overcome the locking problems.  

In the past few years finite element models based on least-squares variational principles 
have drawn considerable attention. Given a set of differential equations, the least-squares 
method allows one to define a convex, unconstrained minimization principle so that the 
finite element model can be developed in Ritz or weak form Galerkin setting [2, 11]. This 
model has proved to result in a positive-definite system of equations and significant savings 
in the computational cost [11].

The least-square approach has been implemented in the finite element context to solve 
the problems of plate bending, shear-deformable shells, incompressible and compressible 
fluid flows, fracture mechanics, and so on (see [11-22], among others). However, there has 
been no systematic study involving the development of least-squares finite element models 
of beam theories and their assessment in comparison to the conventional beam finite 
elements. The present study was undertaken to fill this gap in the literature. The present 
study also accounts for geometric nonlinearity in the von Karaman sense.
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2. GOVERNING EQUATIONS OF EBT AND TBT

In the Euler Bernoulli beam theory is based on the assumption of that the plane cross 
sections perpendicular to the  beam axis  before deformation remain (a) plane  (b) 
inextensible, and  (c) rotate such that they remain perpendicular to the beam axis after 
deformation. These assumptions amount to the neglect of the Poisson effect and the 
transverse shear strain. In the Timoshenko beam theory, the last assumption, namely, the 
normality condition is not used and therefore transverse shear strain is accounted in a 
rudimentary way.

The displacement fields in the two theories are taken, consistent with the assumptions 
made, as [2]

EBT:  1 ( )
dw

u u x z
dx

  ,   2 0u  ,   3 ( )u w x (1)

TBT:   1 ( )u u x z x  , 2 0u  ,  3 ( )u w x (2)

where 1 2 3( , , )u u u  are the displacement along (x, y, z) axes and u  is the axial displacement 

of a point on the neutral axis, w  is the transverse displacement of the point on the neutral 
axis of the beam, and  is the rotation of transverse normal to the beam axis. The the von 
Karman nonlinear strains for the two theories and the equilibrium equations (the same for 
both theories) are presented below (see [2] for details).

Euler-Bernoulli Beam Theory
2 2

0 1 0 1
2

1
, ,

2xx xx xx xx xx

du dw d w
z

dx dx dx
           

 
(3)

Timoshenko Beam Theory
2

0 1 0 11
, ,

2xx xx xx xx xx

du dw d
z

dx dx dx

          
 

(4)

Equilibrium Equations

 

 

                  

               

0

dN
f x

dx
d dw dV

N q x
dx dx dx

dM
V

dx

 

    
 

 

(5)

where N  is the axial force, M  is the bending moment, and Q  is the transverse shear force

, ,
e exx xx s xzA A A

N dA M zdA Q K dA       (6)
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sK being the shear correction coefficient. The beam constitutive equations 

( and 2 )xx xx xx xzE G     in the two theories are given as follows.

Euler-Bernoulli Beam Theory
2 2

2 2
, ,

du d w d d w
N EA M EI V EI

dx dx dx dx

 
      

 
(7)

Timoshenko Beam Theory

, , s

du d dw
N EA M EI V GAK

dx dx dx

      
 

(8)

Here A denotes area of cross section, I the second moment of area, E the modulus of 
elasticity, and G is the shear modulus.

3. LEAST-SQUARES FINITE ELEMENT MODELS OF EBT AND TBT

3.1 Introduction
The displacement finite element models of EBT and TBT can be found in the book by 
Reddy [2]. Shear locking (occurs only in TBT) and membrane locking (occurs in both 
theories) are also discussed there. In order to avoid the two types of locking, different 
methods such as reduced integration method have been implemented in the past. But this 
approach also has its disadvantages of bringing hour-glass modes or spurious rigid body 
modes into the models. Thus, it is desirable to develop alternative finite element models that 
overcome the locking problems. An effort has been made to develop models that can use 
higher-order approximation functions, and finite element models were developed using the 
least-squares method. These models are discussed in the next section.

3.2 The Basic Idea of the Least-Squares Method
The basic idea behind least-squares models is to compute the residuals due to the 
approximation of the variables of each equation being modeled, construct integral statement 
of the sum of the squares of the residuals (called least-squares functional), and minimize the 
integral with respect to the unknown parameters of the approximations. To be more explicit, 
consider an operator equation of the form

         in     and    B     in  A u f u g    (9)

We seek suitable approximation of u as
1

n

h j j
j

u c 


  . In the least squares method, we 

seek the minimum of the sum of squares of the residuals in the approximation of equations 
as follows
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                                                          2 x, 0j
i

R c dx
c 




 
where

                                      2 2 2
1 2 1 2( ) ( ), ,h hR R R R A u f R B u g     

The necessary condition for the minimum is

      2 2
0 hI u A u f dx B u g ds 

 
           � (10)

Thus the variational problem is to seek hu  such that  , ( )h h hB u u l u   holds for 

all hu . where 

         

   

, x

( ) x

h h h h h h

h h h

B u u A u A u d B u B u ds

l u A u fd B u gds

  

 
 

 

       

       

 
 

�

�

Using the above concept, the two least-squares finite element models of both the Euler-
Bernoulli beam theory (EBT) and the Timoshenko beam theory (TBT) are developed.

3.3 Least-Squares Finite Element Model of the EBT (EBT-1)
Consider the following governing equations

dN
f

dx
 

2

2

d M d dw
N q

dx dx dx
    
 

(11)

2

2
0

d w
M EI

dx
                                                               

where N is known in terms of u and as 
2

1

2

du dw
N EA

dx dx

     
   

(12)

The linearization of the above equations that are used here are

                                                  
2 2

2 2

d u dw d w
EA f

dx dx dx

 
   

 
2 2 2 2

2 2 2 2

d M d u dw d w dw d w
EA N q

dx dx dx dx dx dx

 
     

 
(13)



A. Raut and J.N. Reddy6

2

2
0

d w
M EI

dx

 
  

 

where

22

2

1
.

2

du d w
N EA

dx dx

  
       

The least-squares functional associated with the above 

set of linearized equations over a typical element occupying the domain ( , )a bx x is 

2
2 2 2 2

1 2 2 2 2

2 22 2 2

22 2 2

( , , )

                                        

a

b

x

h h h h h h
L h h h

x

h h h h
h

d M d u dw d w dw d w
J u w M p EA N q

dx dx dx dx dx dx

d u dw d w d w
EA f p M EI

dx dx dx dx

          
   

            
     


(14)

where 1p  and 2p  are scaling factors to make the entire residual to have the same physical 

dimensions, and quantities with bar are assumed to be known from the previous iteration 
and hence their variations are zero.

The necessary condition for the minimum of LJ   is LJ =0

2 2 2 2

1 2 2 2 2

2 2 2 2

2 2 2 2

2 2 2

2 2 2

0

        

         

a

b

x

h h h h h h

x

h h h h h h

h h h h h

d M d u dw d w dw d w
p EA N q

dx dx dx dx dx dx

d M d u dw d w dw d w
EA N

dx dx dx dx dx dx

d u dw d w d u dw
EA EA f

dx dx dx dx

   



   
       

   
  

      
  

  
    

  



2

2

2 2

2 2 2
           (15)

h

h h
h h

d w

dx dx

d w d w
p M EI M EI dx

dx dx






 
 

 

  
    

  

(15)

The above statement is equivalent to the following three integral statements:
   

     

 

22 2 2 2 2 2
2 2 2

12 2 2 2 2 2

2 2 2 2 2
2

1 1 12 2 2 2 2

0

ˆ      

a

b

x

x

d u d u dw d u d u dw d u d w
EA p EA EA

dx dx dx dx dx dx dx dx

dw d u d w dw d u d M d u dw
p EA N p EA EA f p q dx

dx dx dx dx dx dx dx dx

  

  

       
 

    
 


(16)
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2 2 2 2 2 2
2 2 2

1 22 2 2 2 2 2

2 2 2 2 2 2
2 2 2

1 22 2 2 2 2

ˆ0

ˆ                

                                           

a

b

x

x

dw d w d u dw d w d u d w d w
EA EA p N p EI

dx dx dx dx dx dx dx dx

dw d w d w d w d w d w
EA EA p N p EI M

dx dx dx dx dx dx

EAp

  

  


   



     
 



2 2 2

1 12 2 2
ˆ ˆd w d M dw d w

N EA f EAp Nq dx
dx dx dx dx

      
  

(17)

2 2 2 2 2

1 2 1 22 2 2 2 2

2 2 2

1 12 2 2

ˆ0

                          +

a

b

x

x

dw d M d u d w d M d w
EAp p MEI p EAN p M M

dx dx dx dx dx dx

d M d M d M
p p q dx

dx dx dx

  

 


   




 




(18)

where  
2

1
,

2

du dw
N

dx dx

     
   

2 2
3ˆ
2

dw du dw
N N

dx dx dx

           
     

(19)

Since the physics of the Euler Bernoulli’s Beam theory requires the specification of 

, , , , and
dw dM

u w N M V
dx dx

     we seek Hermite cubic approximations of hu , hw and hM

4
1

1

( )h j j
j

u x


  ,  
4

2

1

( )h j j
j

w x


   and 
4

3

1

( )h j j
j

M x


  (20)

where 1 2 3, andj j j    denote the nodal values of , h
h

du
u

dx
  
 

, , h
h

dw
w

dx
  
 

 and 

, h
h

dM
M

dx
  
 

 respectively at the jth node and ( )j x  are the Hermite cubic interpolation 

functions. Substituting the above equations into the statements (16)-(18), we obtain the 
finite element equations

 
 
 

 
 
 

1 111 12 13

21 22 23 2 2

31 32 33 3 3

FK K K

K K K F

K K K F

                                                                 

(21)

where            

   
22 22 2

2 211
12 2 2 2

a a

b b

x x
j ji i

ij

x x

d dd ddw
K EA dx p EA dx

dx dx dx dx dx
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22

212
1 2 2

ˆ1
a

b

x
ji

ij

x

dddw
K EA p N dx

dx dx dx


 

22
13

1 2 2

a

b

x
ji

ij

x

dddw
K p EA dx

dx dx dx


 

   
22

221
1 2 2

ˆ1
a

b

x
ji

ij

x

dddw
K EA p N dx

dx dx dx


 

   
2 2 22 2

2 222 2
1 22 2 2 2

ˆ
a a

b b

x x
j ji i

ij

x x

d dd ddw
K EA p N dx p EI dx

dx dx dx dx dx

        
   

 
22 2

23
1 22 2 2

ˆ
a a

b b

x x
ji i

ij j

x x

dd d
K p EAN dx p EI dx

dx dx dx

 
  

22
31

1 2 2

a

b

x
ji

ij

x

dddw
K p EA dx

dx dx dx


 

 
22 2

232
1 22 2 2

ˆ
a a

b b

x x
ji i

ij j

x x

dd d
K p EA N dx p EI dx

dx dx dx

 
  

22
33

1 22 2

a a

b b

x x
ji

ij i j

x x

dd
K p dx p dx

dx dx

   
2 2

1
12 2

a

b

x

i i
i

x

d ddw
F EA f qp dx

dx dx dx

  
   

 


2
2

1 2
ˆ

a

b

x

i
i

x

ddw
F EAf qp EAN dx

dx dx

     

                                       
2

3
1 2

a

b

x

i
i

x

d
F p q dx

dx


   (22)

From the terms of 33
ijK  it is clear that the terms 1p  and 2p should be taken such 

that 2
2 1 /p p h , where h is the element length.

3.4 Least-Squares Finite Element of the TBT (TBT-1)
The least-squares finite element model of the following set of nonlinear equations of TBT, 
assuming EA , EI, GAKs as constant, was developed:

                                                                     
dN

f
dx

 

S

d dw d dw
GAK N q

dx dx dx dx


               
(23)
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0S

d d dw
EI GAK

dx dx dx

          
   

The following linearization of the above equations is used:

                                                 
2 2

2 2

d u dw d w
EA f

dx dx dx

 
   

 
2 2 2

2 2 2S

d d w d u dw d w
GAK EA N q

dx dx dx dx dx

 
     

 
(24)

0S

d
d EI

dwdx
GAK

dx dx





 
        

 
                                     

where
22

2

1
,

2

du d w
N EA

dx dx

  
       

22

2

3ˆ
2

du d w
N EA

dx dx

  
       

(25)

The least-squares functional associated with the above set of linearized equations over a 
typical element is 

2
2 2 2

1 2 2 2

222 2 2

2 2 2 2

ˆ( , , )
a

b

x

h h h h h
L h h h S

x

h h h h h
S h

d d w d u dw d w
J u w p GAK EA N q

dx dx dx dx dx

d dw d u d w dw
p EI GAK EA f dx

dx dx dx dx dx







            
  

                
      



(26)

where 1p  and 2p  are scaling factors to make the entire residual to have the same physical 

dimensions, and quantities with bar are assumed to be known from the previous iteration 
and their variations are zero.

The necessary condition for the minimum of LJ   is LJ =0, which is equivalent to the 

following three statements       

2 2 2

2 2 2

2 2 22

1 2 2 2 2

0

ˆ             (27)

a

b

x

h

x

h h h h h
S

d u d u dw d w
EA EA EA f

dx dx dx dx

d d w dw d u d wdw d u
p EA GAK EA N q dx

dx dx dx dx dx dx dx





  
     

 

  
          


(27)
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2 2

2 2 2

2 2 2 2 2

12 2 2 2 2

2

2

0

ˆ              

                  

a

b

x

h h h
S S h

x

h h h h h h h
S

h h
S

d w d dw
p GAK EI GAK

dx dx dx

dw d w d u dw d w d w d w
EA EA f p GAK N

dx dx dx dx dx dx dx

d d w
GAK

dx dx

  

  



          
  

    
       

    

 
  

 



2 2

2 2
ˆ (28)h h hdw d u d w

EA N q dx
dx dx dx

 
     

2 2 2

1 2 2 2

2 2

2 2 2

ˆ0

              (29)

a

b

x

h h h h h h
S S

x

h h h
S h S h

d d d w dw d u d w
p GAK GAK EA N q

dx dx dx dx dx dx

d dw d
p EI GAK GAK EI dx

dx dx dx

 

  

   
              

          
   


(29)

where
2

1
,

2

du dw
N

dx dx

     
   

  
2 2

3ˆ
2

dw du dw
N N

dx dx dx

           
     

(30)

Since the physics of the Euler Bernoulli’s Beam theory requires the specification of

, , , , and
dw dM

u w N M V
dx dx

    we seek Hermite cubic approximations of hu . hw and hM

                          
4

1

1

( )h j j
j

u x


  ,   
4

2

1

( )h j j
j

w x


   and 
4

3

1

( )h j j
j

M x


  (31)

where 1 2 3, andj j j    denote the nodal values of , h
h

du
u

dx
  
 

, , h
h

dw
w

dx
  
 

 and 

, h
h

dM
M

dx
  
 

, respectively at the jth node and ( )j x  are the Hermite cubic interpolation 

functions. Substituting the approximations (31) into the integral statements (27)-(29), we 
obtain the finite element model:

 
 
 

 
 
 

1 111 12 13

21 22 23 2 2

31 32 33 3 3

FK K K

K K K F

K K K F

                                                                 

(32)

where            
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22 22 2

2 211
12 2 2 2

a a

b b

x x
j ji h i

ij

x x

d dd dw d
K EA dx p EA dx

dx dx dx dx dx

      
  

  
22

12
1 1 2 2

ˆ
a

b

x
jh i

ij S

x

ddw d
K EA EA p N p GAK dx

dx dx dx


  

22
13

1 2 2

a

b

x
jh i

ij S

x

ddw d
K p GAK EA dx

dx dx dx


 

  
22

21
1 1 2 2

ˆ
a

b

x
jh i

ij S

x

ddw d
K EA EA p N p GAK dx

dx dx dx


  

     
22 22 22 2 222

1 22 2 2 2
ˆ

a

b

x
j j ji i h i

ij S S

x

d d dd d dw d
K p GAK N dx p GAK EA dx

dx dx dx dx dx dx dx

           
   



 
22

23
1 22 2

ˆ
a

b

x
j j ji

ij S S S S j

x

d d dd
K p GAK GAK N dx p GAK EI GAK dx

dx dx dx dx

   
  

          


  
22

31
1 2 2

a

b

x
jh i

ij S

x

ddw d
K p EA GAK dx

dx dx dx


 

 
2 2

32
1 22 2

ˆ
a

b

x
j i J i

ij S S S S i

x

d d d d
K p GAK GAK N dx p GAK EI GAK dx

dx dx dx dx

    
  

      
   



 
22

233
1 2 2 2

a a

b b

x x
j ji i

ij S S i S j

x x

d dd d
K p GAK p EI GAK EI GAK dx

dx dx dx dx

    
   

             
 

2 2
1

12 2

a

b

x

i h i
i

x

d dw d
F EA f qp dx

dx dx dx

  
   

 


 
2

2
1 2

ˆ
a

b

x

i
i S

x

ddw
F EAf qp GAK N dx

dx dx

      

3
1

a

b

x

i
i S

x

d
F p GAK q dx

dx


   (33)

From the terms of 33
ijK  it is clear that the terms 1p  and 2p should be taken such that

2
2 1 /p p h , where h is the element length.

3.5 Least-Squares Finite Element of the EBT (EBT-2)
Here consider the first-order equations 
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2

0,               0

0, 0

0, 0

dN N du dw
f

dx EA dx dx

dV d dw
N q

dx dx dx
M d dM

V
EI dx dx

 



         
   

     

    

(34)

The least-squares functional associated with the above six equations over a typical element is 

 
2

2 2 2

2

2 2 2

( , ,...)

(35)

b

a

x

h h h h h
h h

x

h h h h
h h

dN N du dw dV d
J u w f N q

dx EA dx dx dx dx

dw M d dM
V dx

dx EI dx dx





                                  
                

      



The minimum of 2J  is equivalent to the following 6 statements:

2

2

1
0

2

1
0

2

0

b

a

b

a

x

h h h h

x

x

h h h h h h h
h

x

h h h h
h h

d u N du dw
dx

dx EA dx dx

d w dw N du dw d w dw
dx

dx dx EA dx dx dx dx

dw d M d d

dx dx EI dx



  

  

                  
                          

          
   





*

(36)

b

a

x

h h
h h

x

h h h
h

dN
N

dx dx

dV d dN
N q dx

dx dx dx

 




     

      



2
1

0
2

0

b

a

a

x

h h h h h h

x

h h h
h h h

h h h h h
h

x

d N dN N N du dw
f

dx dx EA EA dx dx

d d dNd N dV
N N q dx

dx dx dx dx dx

M M d d M dM
V

EI EI dx dx dx

 

   

  

                               
          

                    



0

b

b

a

x

x

h h h h h h
h h h

x

dx

d V dV d V dV d dN
kw q N q dx

dx dx dx dx dx dx
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In this model, all physical variables that enter the specification of physical boundary 
conditions appear as unknowns. Hence, they are all approximated by Lagrange interpolation 
functions:

     

     

1 1 1

1 1 1

,     ,        ,

,    ,      

m m m

h j j h j j h j j
j j j

m m m

h j j h j j h j j
j j j

u u x w w x x

N N x M M x V V x

    

  

  

  

  

  

  

  
(37)

where , , , ,  and j j j j j ju w N M V  denote the nodal values of , , , ,  and ,h h h h h hu w N M V
respectively at the jth node. Thus we obtain the following finite element model:
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3.6 Least-Squares Finite Element of TBT (TBT-2)
Here we consider the first-order equations 
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(40)

The least-squares functional associated with the above six equations over a typical 
element is 
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The necessary condition for minimum of 2J  yields the following six statements:
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Once again, the model admits Lagrange type interpolation of all variables:
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where , , , ,  and j j j j j ju w N M V  denote the nodal values of , , , ,  and ,h h h h h hu w N M V
respectively at the jth node. Thus we obtain the following finite element model:
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(45)

This completes the development of least squares finite element models of Euler-
Bernoulli and Timoshenko beam theories.

The nonlinear finite element equations in models  EBE-1, EBE-2, TBT-1, and TBT-2 are 
solved using the Newton-Raphson iterative method, in which the incremental solution 
vector U  is computed from 

          ( )
.

r r
T U U R U   (46)

where the tangent stiffness coefficients ijT  are computed using the definition,
 r

i
ij

j

R
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and the superscript r refers to the previous iteration number, and the total 

solution at (r+1)st iteration is given by       1r r
U U U

  .
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4. NUMERICAL RESULTS

The following example is considered for EBT and TBT model for conventional weak form 
and least-squares models. We consider a beam of length L, subjected to a uniformly 
distributed load q = 10 lb/in which is applied in 10 load steps in the nonlinear analysis. The 
following data is used in obtaining numerical results: 

   E = 30 × 106 psi, L = 100 in,  A = 1×1 in2,  tolerance = 0.001,  max. iterations = 30
Boundary conditions used are (1) both ends hinged, (2) both ends clamped, and (3) both 
ends pinned (see Reddy [2]). Only selective results are discussed here.

Table 1 contains a comparison of linear solutions obtained by various models using 4 
elements in the half beam. Plot of x vs. deflection (w) of a beam clamped at both ends for 
different models are shown in Figures.1 and 2, using a mesh of 4 and 32 elements, 
respectively (results of the 8 element mesh are now shown here).

Table 1. Comparison of displacements and forces for hinged-hinged beam

EBT                                    TBT

Model x w dw/dx w 

Conven. 50.00 0.521 0.000 0.508 0.000

x du/dx w M V=dM/dx

EBT-1 50.00 0.0000 0.4756 0.0000 0.0005

x w   or  M V

EBT-2 50.00 0.5208 0.0000 1250.00 0.0000

TBT-2 50.00 0.5208 0.0000 1250.00 0.0000

EBT- 4 elements
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Figure 1. Plots of x vs. deflection in different models of EBT and TBT for a clamped beam.
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Figure 2. Plots of x vs. deflection in different models of EBT and TBT 
for a clamped beam (32 elements)
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A comparison of q vs. maximum deflection obtained with the EBT and TBT models for 
the nonlinear beams are shown in Figures 3 and 4 for clamped and pinned beams, 
respectively. A comparison of x vs. shear force for LSFEM MODEL2 and conventional 
model are shown in Figure 5 for the pinned beam. The shear forces obtained with LSFEM 
MODEL2 follow a smooth curve whereas they are discontinuous at the internal nodes for 
the conventional model.
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Figure 3.  Comparison of q vs. maximum transverse deflection for EBT and TBT for clamped-
clamped boundary conditions
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x vs shear force
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Figure 5. Comparison of x vs. shear force for LSFEM MODEL2 and conventional model

5. CONCLUSIONS

From the results presented in Section 4, the following observations and conclusions can be 
made.

1) The plots of x vs. deflection for EBE-1, TBT-1, and conventional models closely 
fit the exact solution curve. A good solution accuracy for deflection of TBT-1 can 
be observed even for small number of elements for various boundary conditions. 
As the number of elements is increased, the solutions match closely with the exact 
solutions for different boundary conditions.

2) The least-squares models contain forces and moments as primary variables and 
therefore yield increased accuracy for the variables when compared to the 
conventional displacement finite element models.

3) Another salient feature of least-squares models is that they always lead to a 
positive-definite system of equations, which allow the use of fast iterative methods 
for solution.
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