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ABSTRACT 
 

Natural frequencies are relatively easy parameters to obtain and they represent useful 
information about the dynamic behavior of structures. Controlling these parameters can help 
the designer to minimize destructive effect of dynamic loading on the structure. 

Apart from the aforementioned practical application, weight optimization of the 
structures with frequency constraints is a notorious problem because of its highly non-linear 
behavior. Thus form a challenging field to apply the optimization techniques. 

In this paper, the charged system search algorithm and its enhanced version are utilized to 
optimize various truss structures with multiple frequency constraints. The examples 
investigated here, are well-known benchmark problems. The results show that the presented 
algorithms perform better than other optimization techniques for most of the benchmark 
examples. 

 
Keywords: Enhanced charged system search; shape and size optimization; truss structures; 
frequency constraint 

 
 

1. INTRODUCTION 
 

It is well known that the natural frequencies are fundamental parameters affecting the 
dynamic behavior of the structures. Therefore, some limitations should be imposed on the 
natural frequency range to reduce the domain of vibration and also to prevent the resonance 
phenomenon in dynamic response of structures [1]. On the other hand, engineering 
structures are often supposed to be as light as possible. Thus a frequency constraint weight 
optimization process should be performed to obtain these two aims simultaneously. 

Frequency constraints are highly non-linear, non-convex and implicit with respect to the 
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design variables [2]. Therefore mathematical programming approaches would be hard to 
apply and time-consuming in these optimization problems. Furthermore, a good starting 
point is vital for these methods to be executed successfully [3] and they may converge to the 
local optima. Simultaneous consideration of sizing and shape variables together with the 
vibration mode switching phenomenon which usually occurs while minimizing the weight 
may cause some convergence difficulties. Hence, utilizing a global search optimization 
technique which obviates these difficulties seems to be inevitable. 

As a newly developed type of meta-heuristic algorithm, the charged system search (CSS) 
is introduced by Kaveh and Talatahari for design of structural problems [3]. This method 
utilizes the governing laws of Coulomb and Gauss from electrostatics and the Newtonian 
laws of mechanics. Inspired by these laws, a model is created to formulate the structural 
optimization method. The CSS algorithm contains a number of agents which are called 
charged particles (CPs). Each CP is considered as a charged sphere which exerts an electric 
force on other CPs according to the Coulomb and Gauss laws. The resultant forces and the 
laws of motion determine the new location of the CPs [4]. Charged system search is proved 
to be competent in structural optimization problems considering stresses and displacements 
as the constraints. This algorithm and its enhanced form proposed by Kaveh and Talatahari 
[5] will be used here to optimize truss structures for shape and size with frequency 
constraints. 

The remainder of this paper is organized as follows: In section 2, truss optimization 
problem with frequency constraints is stated. A brief introduction to CSS and its enhanced 
form is presented in section 3. Some numerical examples are studied in section 4. Finally 
some concluding remarks are provided in section 5. 

 
 

2. PROBLEM STATEMENT 
 

In a truss optimization problem with frequency constraints, the goal is to minimize the 
weight of the structure while satisfying multiple constraints on natural frequencies. Cross-
sectional areas of the members along with the coordinates of some nodes are considered to 
be the design variables and assumed to change continuously. The connectivity information 
of the structure is predefined and kept unchanged during the optimization process. A lower 
and upper bound may also be prescribed for each variable. The optimization problem can be 
stated mathematically as follows: 

 

 

Find X=[x1,x2,x3,..,xn] 
to minimizes Mer (X) = f(X) × fpenalty(X)

subjected to 
ωj ≤ ωj

*    for some natural frequencies j
ωk ≥ ωk

*   for some natural frequencies k
ximin ≤ xi ≤ ximax 

 (1) 

 
where X is the vector containing the design variables, including both nodal coordinates and 
cross-sectional areas. Here n is the number of variables which is usually chosen with respect 
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to the symmetry and practice requirements. Mer(X) is the merit function; f(X) is the cost 
function, which is taken as the weight of the structure; fpenalty(X) is the penalty function 
which results from the violations of the constraints corresponding to the response of the 
structure [8]; ωj is the ith natural frequency of the structure and ωj

* is its upper bound. ωk is 
the kth natural frequency of the structure and ωk

* is its lower bound. ximin and ximax are the 
lower and upper bounds of the design variable xi, respectively. 

The cost function is expressed as 
 

 f(X) = ii

nm

1i
i AL


  (2) 

 
where ρi  is the material density of member i; Li is the length of member i; and Ai is the 
cross-sectional area of member i. 

The penalty function is defined as [3]: 
 

 fpenalty(X) =   2v.1 1
 , v =



q

1i
iv  (3) 

 
where q is the number of frequency constraints. If the ith constraint is satisfied vi will be 
taken as zero, if not it will be taken as 
 

 vi = | 1− 









i
*
i | (4) 

 
The parameters ε1 and ε2 are selected considering the exploration and the exploitation rate 

of the search space. 
 
 

3. THE CHARGED SYSTEM SEARCH 
 

3.1 The standard CSS 
Recently an efficient optimization algorithm, known as the charged system search, has been 
proposed by Kaveh and Talatahari [3]. This algorithm is based on electrostatics and 
Newtonian mechanics laws. 

The Coulomb and Gauss laws provide the magnitude of the electric field at a point inside 
and outside a charged insulating solid sphere, respectively, as follows [6]: 

 

 Eij =














arif
r

qk

arifr
a
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ij2
ij

ie

ijij3
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 (5) 

 
where ke is a constant known as the Coulomb constant; rij is the separation of the centre of 
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sphere and the selected point; qi is the magnitude of the charge; and "a" is the radius of the 
charged sphere. Using the principle of superposition, the resulting electric force due to N 
charged spheres is equal to [3]: 

 

 Fj = 
ji

ji
N
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22
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 (6) 

 
Also, according to Newtonian mechanics, we have [6]: 
 

 Δr = rnew – rold (7) 
 

 v =
t

rnew


 oldr

 (8) 

 

 a = 
t

vv oldnew




 (9) 

 
where rold and rnew are the initial and final positions of the particle, respectively; v is the 
velocity of the particle; and a is the acceleration of the particle . Combining the above 
equations and using Newton's second law, the displacement of any object as a function of 
time is obtained as [6]: 

  rnewൌ oldrt
M

F
 old

2 v.
2

1
 (10) 

 
Inspired by the above electrostatic and Newtonian mechanics laws, the pseudo-code of 

the CSS algorithm is presented as follows [7]: 
 

Level 1: Initialization 
Step 1. Initialization. Initialize the parameters of the CSS algorithm. Initialize an array of 
charged particles (CPs) with random positions. The initial velocities of the CPs are taken as 
zero. Each CP has a charge of magnitude (q) defined considering the quality of its solution as: 

 

 qi = 
 

N.,2,1i
fitfit

fitifit

worstbest

worst 



 (11) 

 
where fitbest and fitworst are the best and the worst fitness of all the particles; fit(i) represents 
the fitness of agent i. The separation distance rij between two charged particles is defined as: 
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 rij =  
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best
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XX

XX
 (12) 

 
where Xi and Xj are the positions of the ith and jth CPs, respectively; Xbest is the position of 
the best current CP; and ε is a small positive to avoid singularities. 

Step 2. CP ranking. Evaluate the values of the fitness function for the CPs, compare with 
each other and sort them in increasing order. 

Step 3. CM creation. Store the number of the first CPs equal to charged memory size 
(CMS) and their related values of the fitness functions in the charged memory (CM). 

 
Level 2: Search 
Step 1. Attracting force determination. Determine the probability of moving each CP toward 
the others considering the following probability function: 

 

 Pij = 

 
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and calculate the attracting force vector for each CP as follows: 
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where Fj is the resultant force affecting the jth CP. 

Step 2. Solution construction. Move each CP to the new position and find its velocity 
using the following equations: 

 

 Xj,new=randj1 . ka .
j

j

m

F
 . Δt2 + randj2 .kv . Vj,old . Δt + Xj,old  (15)  

 

 Vj,new=
t

XX old,jnew,j




 (16) 

 
where randj1 and randj2 are two random numbers uniformly distributed in the range (1,0); mj 
is the mass of the CPs, which is equal to qj in this paper. The mass concept may be useful for 
developing a multi-objective CSS. Δt is the time step, and it is set to 1. ka is the acceleration 
coefficient; kv is the velocity coefficient to control the influence of the previous velocity. In 
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this paper kv and ka are taken as: 
 

 ka=c1(1+iter/itermax),   kv= c2(1iter/itermax) (17) 
 

where c1 and c2 are two constants to control the exploitation and exploration of the 
algorithm; iter is the iteration number and itermax is the maximum number of iterations. 

Step 3. CP position correction. If each CP exits from the allowable search space, correct 
its position using the HS-based handling as described by Kaveh and Talatahari [3,8]. 

Step 4. CP ranking. Evaluate and compare the values of the fitness function for the new 
CPs; and sort them in an increasing order. 

Step 5. CM updating. If some new CP vectors are better than the worst ones in the CM, 
in terms of their objective function values, include the better vectors in the CM and exclude 
the worst ones from the CM. 

 
Level 3: Controlling the terminating criterion 
Repeat the search level steps until a terminating criterion is satisfied. 

 
3.2 An enhanced CSS 
In addition to the standard CSS, an enhanced CSS which is recently proposed by Kaveh and 
Talatahari [5] is used. In the standard CSS algorithm, when the calculations of the amount of 
forces are completed for all CPs, the new locations of agents are determined. Also CM 
updating is fulfilled after moving all CPs to their new locations. All these conform to 
discrete time concept. In the optimization problems, this is known as iteration. On the 
contrary, in the enhanced CSS, time changes continuously and after creating just one 
solution, all updating processes are performed. Using this enhanced CSS, the new position 
of each agent can affect the moving process of the subsequent CPs while in the standard 
CSS unless an iteration is completed, the new positions are not utilized. All other aspects of 
the enhanced CSS are similar to the original one. 

 
 

4. NUMERICAL EXAMPLES 
 

4.1 A ten-bar truss 
A ten-bar planar truss, as depicted in Figure 1, is a well-known benchmark problem in the 
field of weight optimization of the structures with frequency constraints. This is merely a 
size optimization problem and the predefined shape of the structure is kept unchanged 
during the optimization process. The cross-sectional area of each of the members is 
considered to be an independent variable. A non-structural mass of 454.0 kg is attached to 
the free nodes. Table 1 shows the material properties, variable bounds, and frequency 
constraints for this example. This problem has been investigated by Grandhi and Venkayya 
[9] using the optimality algorithm. Sedaghati, et al. [10] have solved it by sequential 
quadratic programming and the finite element force method. Wang et al. [11] have used an 
evolutionary node shift method, and Lingyun et al. [12] have used a niche hybrid genetic 
algorithm to optimize this structure. Gomes [13] has analyzed this problem using the particle 
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swarm algorithm. 
 

 

Figure 1. A ten-bar planar truss 
 

Table 1: Material properties, variable bounds and frequency constraints  
for the 10-bar truss structure 

Property/unit Value 

E (Modulus of elasticity)/ N/m2 6.98 × 1010 

ρ (Material density)/ kg/m3 2770.0 

Added mass/kg 454.0 

Design variable lower bound/m2 0.645 ×10-4 

L (Main bar’s dimension)/m 9.144 

Constraints on first three 
frequencies/Hz 

ω1≥7, ω2≥15, ω 3≥20 

 
Table 2 represents the design vectors and the mass of the corresponding structures 

obtained by different researchers. It can be seen that both standard CSS and its enhanced 
version have outperformed their rivals. 

Table 3 represents the natural frequencies of the optimized structures obtained by 
different researchers. It can be seen that all of the constraints are satisfied with an exception 
of the structure obtaized by Sedaghati et al. [10]. 
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Table 2: Optimal design cross sections (cm2) for several methods for the ten bar planar truss 
(weight does not include added masses) 

Present work Element 
number 

Grandhi & 
Venkayya 

[9] 

Sedaghati 

et al. [10] 

Wang 

et al. [11] 

Lingyun 
et al. [12] 

Gomes 
[13] 

Standard 
CSS 

Enhanced 
CSS 

1 36.584 38.245 32.456 42.23 37.712 38.811 39.569 

2 24.658 9.916 16.577 18.555 9.959 9.0307 16.740 

3 36.584 38.619 32.456 38.851 40.265 37.099 34.361 

4 24.658 18.232 16.577 11.222 16.788 18.479 12.994 

5 4.167 4.419 2.115 4.783 11.576 4.479 0.645 

6 2.070 4.419 4.467 4.451 3.955 4.205 4.802 

7 27.032 20.097 22.810 21.049 25.308 20.842 26.182 

8 27.032 24.097 22.810 20.949 21.613 23.023 21.260 

9 10.346 13.890 17.490 10.257 11.576 13.763 11.766 

10 10.346 11.452 17.490 14.342 11.186 11.414 11.392 

Weight(kg
) 

594.0 537.01 553.8 542.75 537.98 531.95 529.25 

 
Table 3: Natural frequencies (Hz) of the optimized structures (the ten-bar planar truss) 

Present work 
Frequency 

number 

Grandhi & 
Venkayya 

[9] 

Sedaghati 
et al. [10] 

Wang  
et al. [11] 

Lingyun 
et al. [12] 

Gomes 
[13] Standard 

CSS 
Enhanced 

CSS 

1 7.059 6.992 7.011 7.008 7.000 7.000 7.000 

2 15.895 17.599 17.302 18.148 17.786 17.442 16.238 

3 20.425 19.973 20.001 20.000 20.000 20.031 20.000 

4 21.528 19.977 20.100 20.508 20.063 20.208 20.361 

5 28.978 28. 173 30.869 27.797 27.776 28.261 28.121 

6 30.189 31.029 32.666 31.281 30.939 31.139 28.610 

7 54.286 47.628 48.282 48.304 47.297 47.704 48.390 

8 56.546 52.292 52.306 53.306 52.286 52.420 52.291 
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Table 4 summarizes the statistical results of ten independent runs together with the 
parameters used, for both original and enhanced CSS in order to optimize the ten bar  
planar truss. 

 
Table 4: Statistical results of ten independent runs together with the parameters  

(the ten-bar truss) 

 
Mean weight 

(kg) 
Standard 
deviation 

Number of 
particles 

c1 c2 

Standard CSS 536.39 3.32 20 1 5 

Enhanced 
CSS 

538.53 5.97 20 1 5 

 
Figure 2 shows the convergence curves for both original and enhanced CSS for the ten-

bar planar truss. 

 

Figure 2. The convergence curves for the standard CSS and the enhanced CSS  
(the ten-bar planar truss) 

 
4.2 A 72-bar space truss 
Topology and element numbering of a 72-bar space truss is depicted in Figure 3. The 
elements are classified in 16 design groups according to Table 6. Four non-structural masses 
of 2270 kg are attached to the nodes 1 through 4. The predefined shape of the structure 
remains unchanged during the optimization process, so this is a sizing optimization problem 
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with 16 variables. This example has been solved by Konzelman [14] using a dual method 
(DM) and by Sedaghati et al. [15] employing the force method (FM). Gomes [13] has 
investigated the problem using the particle swarm optimization. 

Material properties, variable bounds, frequency constrains and added masses are listed in 
Table 5. 

 
Table 5: Material properties and frequency constraints for the 72-bar space truss 

Property/unit Value 

E (Modulus of elasticity)/ N/m2 6.98 × 1010 

ρ (Material density)/ kg/m3 2770.0 

Added mass/kg 2270 

Design variable lower bound/m2 0.645 ×10-4 

Constraints on first three 
frequencies/Hz 

ω1=4.0 , ω3 ≥ 6 

 
Table 6 shows the final cross-sectional areas for the 72-bar space truss obtained by 

different researchers together with the results gained by the CSS and its enhanced version. 
 

 

Figure 3. A 72-bar space truss 
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Table 6: Final cross-sectional areas for the 72-bar space truss (cm2) 

Present work Element 
group 

Konzelman 
[14] 

Sedaghati 
[15] 

Gomes [13] 

Standard 
CSS 

Enhanced 
CSS 

1–4 3.499 3.499 2.987 2.528 2.252 

5–12 7.932 7.932 7.849 8.704 9.109 

13–16 0.645 0.645 0.645 0.645 0.648 

17–18 0.645 0.645 0.645 0.645 0.645 

19–22 8.056 8.056 8.765 8.283 7.946 

23–30 8.011 8.011 8.153 7.888 7.703 

31–34 0.645 0.645 0.645 0.645 0.647 

35–36 0.645 0.645 0.645 0.645 0.646 

37–40 12.812 12.812 13.450 14.666 13.465 

41–48 8.061 8.061 8.073 6.793 8.250 

49–52 0.645 0.645 0.645 0.645 0.645 

53-54 0.645 0.645 0.645 0.645 0.646 

55–58 17.279 17.279 16.684 16.464 18.368 

59–66 8.088 8.088 8.159 8.809 7.053 

67-70 0.645 0.645 0.645 0.645 0.645 

71-72 0.645 0.645 0.645 0.645 0.646 

Weight (kg) 327.605 327.605 328.823 328.814 328.393 

 
The structures resulted here are slightly lighter than that of Gomes [13] and slightly 

heavier than the solutions gained by Konzelman [14] and Sedaghati [15]. However, they 
seem to satisfy the first constraint better than their rivals; The first natural frequency is 
supposed to be equal to 4 while our analysis program evaluates it as 4.021, 4021 and 4.026 
for the structures obtained by Konzelman[14], Sedaghati [15] and Gomes [13], respectively. 

Table 7 represents the natural frequencies obtained by various methods for the 72-bar 
space truss. None of the constraints are violated according to Table 7. 

 
Table 7: Natural frequencies (Hz) obtained by various methods for the 72-bar space truss 

Present work Element 
group 

Konzelman 
[14] 

Sedaghati 
[15] 

Gomes 
[13] 

Standard 
CSS 

Enhanced 
CSS 

1 4.000 4.000 4.000 4.000 4.000 

2 4.000 4.000 4.000 4.000 4.000 

3 6.000 6.000 6.000 6.006 6.004 

4 6.247 6.247 6.219 6.210 6.155 

5 9.074 9.074 8.976 8.684 8.390 
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Figure 4 shows the convergence curves for both original and enhanced CSS for the 72-
bar space truss. 

Table 8 represents the statistical results of ten independent runs together with the parameters 
used, for both original and enhanced CSS in order to optimize the 72-bar space truss. 

 
Table 8: Statistical results of ten independent runs together with the parameters  

(the 72-bar space truss) 

 
Mean weight 

(kg) 
Standard 
deviation 

Number of 
particles 

c1 c2 

Standard CSS 337.70 5.42 20 1 16 

Enhanced CSS 335.77 7.20 20 1 16 

 

 

Figure 4. The convergence curves for both original and enhanced CSS (the 72-bar space truss) 

 
4.3 A Simply supported 37-bar planar truss 
A simply supported 37-bar Pratt type truss, as depicted in Figure 5, is considered as the third 
example. The elements of the lower chord are modeled as bar elements with constant 
rectangular cross-sectional areas of 4×10-3 m2. The other bars are modeled as bar elements 
with initial cross-sectional areas of 1×10-4 m2. These members are grouped in a symmetrical 
manner to form the sizing variables. The y-coordinate of all the nodes on the upper chord 
can vary with respect to symmetry. A non-structural mass of 10 kg is attached at each of the 
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free nodes of the lower chord. The first three natural frequencies of the structure are 
considered as the constraints. Thus this is an optimization on shape and size with nineteen 
design variables (fourteen sizing variables plus five shape variables) and three frequency 
constraints. This example has been investigated by Wang et al. [11] using an evolutionary 
node shift method and Lingyun et al. [12] employing a niche hybrid genetic algorithm. 
Gomes has analyzed this problem using the particle swarm algorithm [13]. 

Material properties, frequency constrains and added masses are listed in Table 9. 
 

 

Figure 5. A simply supported 37-bar planar truss 
 

Table 9: Material properties and frequency constraints for the 37-bar  
simply supported planar truss 

Property/unit Value 

E (Modulus of elasticity)/ N/m2 2.1× 1011 

ρ (Material density)/ kg/m3 7800 

Added mass/kg 10 

Constraints on first three frequencies/Hz ω1≥20, ω2≥40, ω 3≥60 

 
Table 10 represents a comparison between the cross-sectional areas and node coordinates 

obtained by different researchers together with the corresponding weight. It can be seen that 
both standard CSS and its enhanced form performed better than other optimization 
techniques and found lighter structures while satisfying all the constraints. 
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Table 10: Final cross-sectional areas and node coordinates for the 37-bar simply supported 
planar truss 

Present work 
Variable initial 

Wang et 
al. [11] 

Lingyun 
et al. [12] 

Gomes 
[13] Standard 

CSS 
Enhanced 

CSS 

Y3 , Y19 (m) 1.0 1.2086 1.1998 0.9637 0.8726 1.0289 

Y5 , Y17 (m) 1.0 1.5788 1.6553 1.3978 1.2129 1.3868 

Y7 , Y15 (m) 1.0 1.6719 1.9652 1.5929 1.3826 1.5893 

Y9 , Y13 (m) 1.0 1.7703 2.0737 1.8812 1.4706 1.6405 

Y11 (m) 1.0 1.8502 2.3050 2.0856 1.5683 1.6835 

A1, A27 (cm2) 1.0 3.2508 2.8932 2.6797 2.9082 3.4484 

A2, A26 (cm2) 1.0 1.2364 1.1201 1.1568 1.0212 1.5045 

A3, A24 (cm2) 1.0 1.0000 1.0000 2.3476 1.0363 1.0039 

A4, A25 (cm2) 1.0 2.5386 1.8655 1.7182 3.9147 2.5533 

A5, A23 (cm2) 1.0 1.3714 1.5962 1.2751 1.0025 1.0868 

A6, A21 (cm2) 1.0 1.3681 1.2642 1.4819 1.2167 1.3382 

A7, A22 (cm2) 1.0 2.4290 1.8254 4.6850 2.7146 3.1626 

A8, A20 (cm2) 1.0 1.6522 2.0009 1.1246 1.2663 2.2664 

A9, A18 (cm2) 1.0 1.8257 1.9526 2.1214 1.8006 1.2668 

A10, A19 (cm2) 1.0 2.3022 1.9705 3.8600 4.0274 1.7518 

A11, A17 (cm2) 1.0 1.3103 1.8294 2.9817 1.3364 2.7789 

A12, A15 (cm2) 1.0 1.4067 1.2358 1.2021 1.0548 1.4209 

A13, A16 (cm2) 1.0 2.1896 1.4049 1.2563 2.8116 1.0100 

A14 (cm2) 1.0 1.0000 1.0000 3.3276 1.1702 2.2919 

Weight (kg) 336.3 366.50 368.84 377.20 362.84 362.38 

 
Table 11 shows the natural frequencies obtained by various methods for the 37-bar 

simply supported planar truss. None of the constraints are violated according to Table 11. 
 

Table 11: Natural frequencies (Hz) obtained by various methods for the 37-bar  
simply supported planar truss 

Present work 
Frequency 

number 
initial 

Wang et 
al. [11] 

Lingyun et 
al. [12] 

Gomes [13] Standard 
CSS 

Enhance
d CSS 

1 8.89 20.0850 20.0013 20.0001 20.0000 20.0028 

2 28.82 42.0743 40.0305 40.0003 40.0693 40.0155 

3 46.92 62.9383 60.0000 60.0001 60.6982 61.2798 

4 63.62 74.4539 73.0444 73.0440 75.7339 78.1100 

5 76.87 90.0576 89.8244 89.8240 97.6137 98.4100 
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Table 12 summarizes the statistical results of ten independent runs together with the 
parameters used, for both original and enhanced CSS in order to optimize the 37-bar simply 
supported planar truss.  

 
Table 12: Statistical results of ten independent runs together with  

the parameters (the 37-bar truss) 

 
Mean weight 

(kg) 
Standard 
deviation 

Number of 
particles 

c1 c2 

Standard CSS 366.77 3.742 20 1 7 

Enhanced CSS 365.75 3.461 20 1 7 

 
Figures 6 through 10 represent final shapes of the optimized structures obtained by 

different methods. 

 

Figure 6. A 37-bar structure optimized by Wang [11]. 

 

Figure 7. The 37-bar structure optimized by Lingyun et al. [12]. 

 

Figure 8. The 37-bar structure optimized by Gomes [13] 
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Figure 9. The 37-bar structure optimized by CSS 

 

Figure 10. The 37-bar structure optimized by enhanced CSS 
 
Figure 11 shows the convergence curves for both the original and the enhanced CSS for 

the 37-bar simply supported truss. 
 

 

Figure 11. The convergence curves for both standard and enhanced CSS (the 37-bar simply 
supported truss) 

 
4.4 A 52-bar space truss 
A 52-bar dome-like space truss, as depicted in Figure 12, is considered as the last example. 
Non-structural masses of 50 kg are attached to all free nodes. Material properties, frequency 
constraints and variable bounds for this example are summarized in Table 13. All of the 
elements of the structure are categorized in 8 groups according to Table 14. 



SHAPE AND SIZE OPTIMIZATION OF TRUSS STRUCTURES… 
 

 

503

All free nodes are permitted to move in a symmetrical manner, they can move ±2m in 
each allowable direction from their initial position. Constraints are imposed on the first two 
natural frequencies. 

So this is an optimization on shape and size with thirteen variables (eight sizing variables 
+ five shape variables) and two frequency constraints. This example has been investigated 
by Lin et al. using a mathematical programming technique [16] and Lingyun et al. using a 
niche hybrid genetic algorithm [12]. Gomes has analyzed this problem using the particle 
swarm algorithm [13]. 

 
Table 13: Material properties and frequency constraints and variable bounds for  

the 52-bar space truss 

Property/unit Value 

E (Modulus of elasticity)/ N/m2 2.1× 1011 

ρ (Material density)/ kg/m3 7800 

Added mass/kg 50 

Allowable range for cross-sections/ m2 0.0001≤ A≤ 0.001 

Constraints on first three frequencies/Hz ω1≤ 15.916 ω2≥28.648 
 

 

Figure 12. A 52-bar dome-like space truss (initial shape) a) top view 
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Table 14: Element grouping 

Group number Elements 

1 

2 

3 

4 

5 

6 

7 

8 

1-4 

5-8 

9-16 

17-20 

21-28 

29-36 

37-44 

45-52 

 

 

Figure 12. a) A 52-bar dome-like space truss (initial shape) b) side view 

 
Table 15 represents a comparison between the cross-sectional areas and node coordinates 

obtained by different researchers together with the corresponding weight for the 52 bar 
space truss. 
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Table 15: Cross-sectional areas and node coordinates obtained by different researchers (the 52-
bar space truss) 

Present work 
Variable Initial 

Liuet al. 
[16] 

Lingyun 
et al. [12] 

Gomes 
[13] Standard 

CSS 
Enhanced 

CSS 

ZA (m) 6.000 4.3201 5.8851 5.5344 5.2716 6.1590 

XB (m) 2.000 1.3153 1.7623 2.0885 1.5909 2.2609 

ZB (m) 5.700 4.1740 4.4091 3.9283 3.7093 3.9154 

XF (m) 4.000 2.9169 3.4406 4.0255 3.5595 4.0836 

ZF (m) 4.500 3.2676 3.1874 2.4575 2.5757 2.5106 

A1 (cm2) 2.0 1.00 1.0000 0.3696 1.0464 1.0335 

A2 (cm2) 2.0 1.33 2.1417 4.1912 1.7295 1.0960 

A3 (cm2) 2.0 1.58 1.4858 1.5123 1.6507 1.2449 

A4 (cm2) 2.0 1.00 1.4018 1.5620 1.5059 1.2358 

A5 (cm2) 2.0 1.71 1.911 1.9154 1.7210 1.4078 

A6 (cm2) 2.0 1.54 1.0109 1.1315 1.0020 1.0022 

A7 (cm2) 2.0 2.65 1.4693 1.8233 1.7415 1.6024 

A8 (cm2) 2.0 2.87 2.1411 1.0904 1.2555 1.4596 

Weight (kg) 338.69 298.0 236.046 228.381 205.237 197.337 

 
Table 16 shows the natural frequencies obtained by various methods for the 52-bar 

dome-like space truss. 
 
Table 16: Natural frequencies (Hz) obtained by various methods (the 52-bar space truss) 

Present work 
Frequency 

number 
Initial 

Liu et al. 
[16] 

Lingyun et al. 
[12] 

Gomes 
[13] Standard 

CSS 
Enhanced 

CSS 

1 22.69 15.22 12.81 12.751 9.246 11.849 

2 25.17 29.28 28.65 28.649 28.648 28.649 

3 25.17 29.28 28.65 28.649 28.699 28.659 

4 31.52 31.68 29.54 28.803 28.735 28.718 

5 33.80 33.15 30.24 29.230 29.223 29.192 

 



A. Kaveh and A. Zolghadr 
 

506 

Table 17 represents the statistical results of ten independent runs together with the 
parameters used, for both original and enhanced CSS in order to optimize the 52-bar dome-
like space truss. 

 
Table 17: Statistical results of ten independent runs together with the parameters (the 52-bar 

truss) 

 
Mean weight 

(kg) 
Standard 
deviation 

Number of 
particles 

c1 c2 

Standard CSS 213.101 7.391 20 1 7 

Enhanced CSS 205.617 6.924 20 1 7 

 
Figure 13 shows the convergence curves for both original and enhanced CSS for the 52-

bar space truss. 

 

Figure 13. The convergence curves for both original and enhanced CSS  
for the 52-bar space truss 

 
Figures 14 and 15 represent the optimized shape of the 52-bar dome-like truss obtained 

by the standard CSS and its enhanced form. 
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Figures 14. The optimized shape of the 52-bar dome-like space truss (the standard CSS) 
 

 

Figures 15. The optimized shape of the 52-bar dome-like space truss (the enhanced CSS) 

 
 

5. CONCLUDING REMARKS 
 

In this paper frequency constraint optimization of truss structures on shape and size is 
studied. This kind of problem has a highly non-linear behavior because of the different 
nature of the variables involved, their different order and the sensitivity of the natural 
frequencies to shape modifications. Here, the newly developed the CSS algorithm and its 
enhanced form are utilized to find the optimum design of the structures. The frequency 
constraints are handled using the well-known penalty approach.  

CSS is a multi-agent metaheuristic algorithm which utilizes the Coulomb and Gauss laws 
of electrostatics and some laws of Newtonian mechanics to improve the solutions iteratively. 
Apart from the well-known advantages of metaheuristic algorithms compared to classical 
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optimization techniques, CSS has an important feature which increases the probability of 
finding better results; it can distinguish finishing the global phase and change the movement 
updating equation for the local phase to have a better balance between the exploration and 
exploitation [4]. 

Form the results of this study it can be seen that both standard CSS and its enhanced form 
have performed better than the other methods available in the literature in three of the four 
examples considered, and in the other example the structure is only slightly heavier than the 
best one found. 

 
Acknowledgment: The first author is grateful to the Iranian Academy of Sciences for the 
support.  
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