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ABSTRACT 
 

This paper reports a comparative study on design weight efficiency of single span steel truss 
bridge topologies subjected to gravity loads. The bridges configured according to nine 
distinct topological forms (namely, Pratt, Parker, Baltimore, Petit, K-Truss, Warren, 
Subdivided Warren, Quadrangular Warren and Whipple) are designed for minimum weight 
under various span length requirements of single span truss bridges, and the results obtained 
with these topological forms are compared. The optimization process for each bridge 
topological form requires achieving optimal sizing of members as well as determining 
coordinates of the top chord nodes such that the least design weight is attained for the 
bridge. The design constraints and limitations are imposed according to serviceability and 
strength provisions of ASD-AISC (Allowable Stress Design Code of American Institute of 
Steel Institution) specification. The optimization algorithm employed is based on simulated 
annealing method. 
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1. INTRODUCTION 
 

Over the years steel truss bridges have kept their popularity amongst bridge engineers, not 
only because these systems offer certain advantages from structural and constructional 
standpoints, but also they enable an opportunity to build up large span bridges with 
relatively less amount of material. Single span steel truss bridges refer to a subset of these 
systems where the entire opening is crossed with a single bridge span with generally simply 
supported end conditions. Especially, they are preferable in cases where the disturbance to 
the stream bed needs to be avoided.  

The single span truss bridges can be designed in a variety of different topological forms, 
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such as Pratt, Parker, Baltimore, Petit, K-Truss, Warren, Subdivided Warren, Quadrangular 
Warren, Whipple, etc. The Pratt truss has a topological feature such that the diagonals are all 
sloped in the same direction on each side of the truss around the mid-span. In this form of 
truss bridge, the upper chord and vertical members are subjected to compression whereas the 
diagonals and lower chord members are under tension. The Baltimore truss has additional 
bracing members in the lower section to prevent buckling in the compression members as well 
as to control deflection. Both Pratt and Baltimore trusses have a constant height throughout the 
span length of the bridge. The Parker and Petit trusses have identical topological forms with 
Pratt and Baltimore trusses, respectively, except that the formers have a polygonal shape with 
the bridge height increasing from the ends towards the mid-span. In the Warren truss alternate 
diagonals sloped in different directions frame into each others at lower chord nodes. The 
Subdivided Warren truss has the topological form of Warren truss with vertical members 
having sub-diagonals and sub-verticals. The Quadrangular Warren is a double intersection 
truss form with alternating tension and compression diagonals. The K-truss is configured in 
the form of letter “K” by the orientation of the vertical member and two oblique members in 
each panel. Finally, the Whipple truss is the one having elongated and usually thin tension 
members which cross two or more members.  

This study is concerned with evaluation and comparison of weight efficiency of these 
nine topological forms under different span length requirements (100, 200, 400 and 600 ft) 
of single span steel truss bridges. The bridges that are subjected to gravity loads are first 
configured according to these topological forms, and the resulting structures are optimized 
for minimum design weight subject to strength, stability and displacements provisions of 
ASD-AISC  [1]. In the optimum design process, both size (discrete) and shape (continuous) 
design variables are employed together and simultaneously. In this context, size variables 
are used to choose appropriate sizes for the bridge members, whereas the optimal height 
and/or shape of the bridge’ upper chord are searched with shape variables [2]. The 
optimization routine used in the study is based on simulated annealing algorithm developed 
in Bennage and Dhingra [3]. This algorithm employs a numerical optimization procedure 
that mimics annealing process in thermodynamics applied for bringing the physical systems 
to their minimum energy levels. 

 
 

2. OPTIMUM DESIGN PROBLEM FORMULATION 
 

Optimum design of a single-span truss bridge requires the selection of structural members 
from a standard steel section table and determining the height or shape of the upper chord of 
the bridge such that the bridge satisfies the strength and serviceability requirements imposed 
by a code of practice, while the minimum weight of the bridge is attained. Accordingly, the 
objective function (W) can mathematically be defined as follows:  
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The problem constraints can be formulated as follows: 
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In Eqs. (1-3), mA , mL and m  represent the cross-sectional area, length and unit weight of 

the m-th member of the bridge, respectively; mN  and jN  are the total number of members 

and joints in the bridge, respectively; mg , ms  and kj,  are referred to as constraints being 

bounds on stresses, slenderness ratios and displacements, respectively; m  and allm )(  are 

the computed and allowable axial stresses for the m-the truss member, respectively; m  and 

allm )(  are the slenderness ratio and its upper limit for m-th member, respectively; finally 

kjd ,  and allkjd )( ,  are the displacements computed in the k-th direction of joint j and its 

permissible value, respectively.  
In the present study, all the strength and serviceability limitations are imposed as to ASD-

AISC [1] specification, and the integration of these constraints with the objective function is 
implemented using a penalty function approach, which is discussed in detail in Hasançebi et 
al. [4].   

 
 

3. SIMULATED ANNEALING  
 

Simulated annealing (SA) searches for minimum energy states using an analogy based upon 
the physical annealing process. In this process, a solid initially at a high energy level is 
cooled down gradually to reach its minimum energy and thus to regain proper crystal 
structure with perfect lattices. The idea that this process can be simulated to solve 
optimization problems is made possible by establishing a direct analogy between 
minimizing energy level of a physical system and lowering cost of an objective function [5]. 
The successful applications of the method in the fields of structural optimization and 
computational structural mechanics have been reported in a number of publications in the 
literature, such as Refs. [6-9]. In Hasançebi et al. [10], a reformulation of SA algorithm is 
presented, resulting in significant performance improvement of the technique for large-scale 
optimization problems. The basic computational steps of a standard SA algorithm are 
outlined in the following. 

Step 1: The first step is the setting of an appropriate cooling schedule. After choosing 
suitable values for starting acceptance probability ( sP ), final acceptance probability ( fP ), 

and the number of cooling cycles ( cN ), the cooling schedule parameters are calculated as 
follows: 

 

 
)ln(

1

s
s P

T  ,  
)ln(

1

f
f P

T  , 

1/1

)ln(

)ln(















cN

f

s

P

P
  (4) 



434 O. Hasançebi and E. Doğan 

 

 

In Eq. (4), sT , fT  and   are referred to as starting temperature, final temperature, and the 

cooling factor, respectively. The starting temperature is assigned as the current temperature, 
i.e., sTT  .   

Step 2: The next step is to originate an initial design via random initialization. This 
design is assigned as the current solution of the optimization process and its objective 
function ( c ) is calculated. 

Step 3: A number of candidate designs are generated in the close vicinity of the current 
design. This is performed as follows: (i) a design variable (Ii ) is selected, (ii) this variable is 
given a small perturbation (zi) in a predefined neighborhood (Eq. 5) and (iii) finally, a 
candidate design is generated by assuming the perturbed value ( iI   ) of the variable, while 
keeping all others same as in the current design. Each design variable is selected only once 
in a random order to yield a candidate design.  

 
 iii zII '  (5) 

 
Step 4: Each time when a candidate design is generated, its objective function value (Øa) 

is first computed and then it is set to compete with the current one. If the candidate provides 
a better solution, it is accepted automatically and it replaces the current design. If not, the so-
called Metropolis test is applied to determine the winner, in which case the probability of 
accepting a poor candidate (P) is assigned as follows: 

 
 )/exp( KTP   (6)  

 
where T  is the current temperature of the process and K  is the Boltzman parameter which 
is manipulated as the working average of   values. 

Step 5: A single iteration of a cooling cycle is referred to the case where all design 
variables are selected once and perturbed to generate candidate designs. A cooling cycle is 
iterated a certain number of times in the same manner to ensure that objective function is 
reduced to a reasonably low value within the cycle. 

Step 6: After the cooling cycle is iterated a number of times, the temperature is reduced 
by the ratio of the cooling factor η, and the temperature of the next cooling cycle is set as in 
Eq. (7), where Tk and Tk+1 denote the temperature at the k and (k+1)-th cooling cycles, 
respectively. 

 kk TT 1  (7) 
 
 

4. DESIGN EXAMPLES 
 

The design examples are carried out to numerically investigate economical span lengths of 
the truss bridge topologies. Taking into account the fact that the majority of single span 
bridges built in practice are amongst 100-600 ft (30.5-183.0 m) long, four different span 
lengths (L), namely 100, 200, 400 and 600 ft are considered as separate case studies, Figure 
1. For each of these span lengths, nine bridge models are generated by configuring the 
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structural system according to the nine aforementioned topological forms adopted for single-
span steel truss bridges. For each model, the panel points are spaced equally through the 
span and are set to a constant value of 25 ft (7.62 m). The design loads are determined 
according to the provisions of ASCE 7-05[11]. Live loads that result from traffic are 
combined together with dead loads of the deck and floor systems, which are later on 
transmitted to the lower chord, resulting in equivalent panel point loads of 60kips (267kN) at 
each node in any model. 

 

 

Figure 1. Truss bridge design problem. 

 
In the optimum design process both size and shape design variables are employed 

together. Size variables are used to determine the required steel sections for bridge members 
and are grouped considering the symmetry of the structures. They are selected from a total 
of 83 wide-flange sections ranging between W10x12 and W14x730. The shape variables are 
chosen to determine the height and/or shape of the upper chord of a bridge model, again 
considering a desired symmetry of the structure about mid-span. The number of shape 
variables used in a model depends on the bridge topological form. For example, a single 
shape variable is used to define the height in bridge models with Pratt, Baltimore, Warren, 
Subdivided Warren, Quadrangular Warren, Whipple and K-truss forms, since they have a 
straight upper chord. In Parker and Petit forms, however, the y-coordinates of all upper 
chord nodes are allowed to vary. The ranges of shape variables are chosen between zero and 
half of the span length (L/2). In all the bridge models, the strength and stability requirements 
of the designs are specified in accordance with ASD-AISC [11] provisions. Besides, the 
maximum displacements of panel points in any direction are restricted to 1/600 of the total 
span length. The following material properties of the steel are used: Fy (yield stress) = 36 ksi 
(2531 kg/cm2) and E (modulus of elasticity) = 29,000 ksi (2,038,936 kg/cm2). 

The optimum design for each model is sought by running the solution algorithm five 
times independently due to stochastic nature of the SA technique. The maximum computing 
time for a single run of a test problem is recorded as 12 min on a serial computer with  Intel 
Quad Core Q9300 2.5GHZ LGA775 processor.  

 
4.1 Case 1: 100ft long span bridge 
In the first case study, the span length is set to 100ft. The lower chord of the bridge consists of 
four equal panels, and it has three panel point loads acting on each node. It is intended to 
generate nine bridge models for this span length by choosing bridge topologies according to 
Pratt, Parker, Baltimore, Petit, K-Truss, Warren, Subdivided Warren, Quadrangular Warren 
and Whipple forms. However, as shown in Figure 2, it is found that only four of them namely, 
Parker, K-Truss, Quadrangular Warren and Warren are applicable to this case; the other 
topological forms cannot be generated due to presence of inadequate number of panels. The 
bridge models employed have 7, 9, 8 and 7 size variables, respectively. Parker truss, whose 
upper chord nodes are allowed to vary, has two and the others have only one shape variable. 
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The best (optimum) designs obtained for the bridge under four different topological 
forms are tabulated in Table 1 with section designations attained for each member group and 
the resulting values of shape variables in conjunction with design variable numbering shown 
in Figure 2 for each model.  

 
Table 1: Optimum designs obtained for 100ft long span bridge under various topological forms.  

Bridge topological forms 
Variable 

Pratt   Parker Baltimore Petit K_truss Warren Q_Warren S_Warren Whipple

Size variables, ready sections  

A1 N/A W10x22 N/A N/A W10x22 W10x22 W10x22 N/A N/A 

A2 N/A W10x22 N/A N/A W10x22 W10x22 W10x22 N/A N/A 

A3 N/A W12x65 N/A N/A W10x12 W12x65 W12x65 N/A N/A 

A4 N/A W10x12 N/A N/A W10x22 W10x12 W10x12 N/A N/A 

A5 N/A W10x22 N/A N/A W12x65 W10x22 W10x22 N/A N/A 

A6 N/A W10x49 N/A N/A W10x15 W10x54 W10x22 N/A N/A 

A7 N/A W10x17 N/A N/A W10x33 W10x12 W10x54 N/A N/A 

A8 N/A N/A N/A N/A W10x49 N/A W10x22 N/A N/A 

A9 N/A N/A N/A N/A W10x12 N/A N/A N/A N/A 

Shape variables (in.) 

y1 N/A 195 N/A N/A 209 217 221 N/A N/A 

y2 N/A 246 N/A N/A N/A N/A N/A N/A N/A 

Weight,lb 
(kg) 

- 
10611.83 

(4814.80) 
- - 

12202.24 

(5536.41) 
10919.70 
(4954.49)

12516.32 

(5678.91) 
- - 

 

 

Figure 2. The topological forms used to configure 100 ft long span bridge: a) Parker, b) K-truss, 
c) Quadrangular Warren, d) Warren 
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The minimum weight design for the bridge is produced by Parker truss with a design 
weight of 10,611.83 lb (4,813.52 kg). This design is followed by Warren truss with the 
corresponding design weight of 10919.70  lb (4,953.17 kg). Quadrangular Warren truss 
produces the heaviest bridge with a design weight of 12,516.32 lb (5,677.39 kg). The design 
history curve representing the variation of the best feasible obtained thus far in the optimum 
design process is plotted in Figure 3 for each bridge model. 

 

 

Figure 3. The design history curve of the best solution recorded under each topological form for 
100ft long span bridge 

 

 

Figure 4. The topological forms used to configure 200 ft long span bridge: a) Parker, b) 
Baltimore, c) K-truss, d) Pratt, e) Warren, f) Quadrangular Warren 



438 O. Hasançebi and E. Doğan 

 

 

4.2 Case 2: 200ft long span bridge 
In this case study, the span length has increased to 200 ft. Eight panels are equally spaced in the 
lower chord of the bridge, which has seven panel point loads acting on each node. Again some 
topological forms, namely Baltimore, Petit and Whipple are not applicable to this case due to 
small number of panels. Hence, six bridge forms (Pratt, Parker, K- truss, Warren, Quadrangular 
Warren and Subdivided Warren) are employed with  15, 15, 21, 15, 18 and 15 size design 
variables, respectively. The geometry and member grouping of the bridge models are displayed 
in Figure 4. Except for Parker truss, which has four shape variables, all other bridge forms 
incorporate a single shape variable. The best (optimum) designs obtained for the bridge under 
six different topological forms are tabulated in Table 2. It is again noticed that with a design 
weight of 40,777.72 lb (18,493.29 kg), Parker truss form yields the best design for 200ft long 
span bridge. This design is followed by K-truss, having a weight of 47,158.78 lb (21,386.85 kg). 
The most uneconomical solutions are produced by Pratt and Quadrangular Warren trusses with 
design weights of 54,052.20 lb (24,513.47 kg) and 58,215.70 lb (26,401.68 kg), respectively. 
Figure 5 shows the design history curves for the best solution of each model. 

 

Table 2: Optimum designs obtained for 200ft long span bridge under various topological forms.  

Bridge topological forms Variable 
Pratt    Parker Baltimore Petit K_truss Warren Q_Warren S_Warren Whipple

Size variables, ready sections  
A1 W10x39 W14x38 N/A N/A W14x30 W14x38 W10x33 W14x38 N/A 
A2 W12x35 W14x38 N/A N/A W14x34 W10x26 W12x40 W10x39 N/A 
A3 W14x82 W10x45 N/A N/A W12x65 W14x82 W12x79 W14x38 N/A 
A4 W12x87 W14x48 N/A N/A W10x68 W10x68 W10x68 W14x38 N/A 
A5 W14x109 W14x99 N/A N/A W10x12 W14x109 W14x109 W14x99 N/A 
A6 W10x22 W10x19 N/A N/A W10x30 W10x22 W12x26 W10x19 N/A 
A7 W12x53 W10x22 N/A N/A W10x22 W10x49 W10x33 W10x45 N/A 
A8 W12x53 W10x22 N/A N/A W10x22 W10x22 W10x49 W10x45 N/A 
A9 W12x40 W10x33 N/A N/A W10x12 W12x72 W10x22 W10x19 N/A 
A10 W10x39 W12x26 N/A N/A W10x22 W10x22 W10x54 W10x22 N/A 
A11 W10x33 W10x33 N/A N/A W14x34 W10x33 W10x33 W14x90 N/A 
A12 W12x79 W12x87 N/A N/A W10x60 W12x72 W10x22 W10x22 N/A 
A13 W14x99 W12x87 N/A N/A W14x109 W12x87 W10x49 W10x33 N/A 
A14 W14x109 W12x79 N/A N/A W10x12 W12x106 W10x33 W14x145 N/A 
A15 W10x22 W10x33 N/A N/A W10x49 W12x26 W12x65 W10x33 N/A 
A16 N/A N/A N/A N/A W10x12 N/A W12x79 N/A N/A 
A17 N/A N/A N/A N/A W10x33 N/A W12x96 N/A N/A 
A18 N/A N/A N/A N/A W12x53 N/A W10x22 N/A N/A 
A19 N/A N/A N/A N/A W12x72 N/A N/A N/A N/A 
A20 N/A N/A N/A N/A W12x87 N/A N/A N/A N/A 
A21 N/A N/A N/A N/A W12x30 N/A N/A N/A N/A 

Shape variables (in.) 
y1 393 261 N/A N/A 405 396 397 521 N/A 
y2 N/A 382 N/A N/A N/A N/A N/A N/A N/A 
y3 N/A 453 N/A N/A N/A N/A N/A N/A N/A 
y4 N/A 483 N/A N/A N/A N/A N/A N/A N/A 

Weight,lb 
(kg) 

54052.20 
(24524.59) 

40777.72 
(18501.69) 

- - 
47158.78 
(21396.91)

50940.65 
(23112.82)

58215.70 
(26413.66)

49486.94 
(22453.24) 

- 
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Figure 5. The design history curve of the best solution recorded under each topological form for 
200ft long span bridge 

 
4.3 Case 3: 400 ft long span bridge 
In the third case study, the span length has further been increased to 400 ft. The lower chord 
has sixteen equal panels and it is subjected to fifteen equivalent point loads acting on each 
node. All the bridge topologies described formerly are applicable to this case, resulting in a 
total of nine candidate bridge models, seven of which have straight upper chord and the two 
varying height.  

 As the span length and accordingly the number of members increase, bridge models have 
nearly twice size variables compared to the previous case study: 31 size variables for Pratt, 
Parker, Baltimore, Petit, Warren and Subdivided Warren; 45 size variables for K- truss; 38 
size variables for Quadrangular Warren; and finally 36 size variables for Whipple truss. The 
optimum shape of Parker and Petit forms are sought using 8 and 4 shape design variables, 
respectively and a single variable is used for other models. The member grouping for each 
model is displayed in Figure 6. 
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Figure 6. The topological forms used to configure 400 ft long span bridge: a) Parker, b) Petit, c) Pratt, 
d) Baltimore, e) Whipple, f) K-truss, g) Subdivided Warren, h) Quadrangular Warren, i) Warren 
 
The solution algorithm is run five times independently for each bridge model and the best 

design yielding the least design weight is recorded. The results are tabulated in Table 3. It is 
clear from this table that amongst all bridge topological forms, the ones whose upper chord 
nodes have varying height, produce the most economical designs. The lightest bridge for 
400ft long span is obtained by Petit form with a weight of 222,933.84 lb (101,149.66 kg). 
This design is followed by Parker form with a design weight of 225,461.20 lb  (102,296.37 
kg). The most uneconomical solution is 398,001.69 lb (180,581.53 kg) obtained with Pratt 
model. The weight difference between  the lightest and heaviest designs appear to be 175,067.85 
lb (79,431.87 kg), implying that a 44% saving in material is achieved with the lightest design. 
The design history curve is plotted in Figure 7 for each bridge model.  
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Table 3: Optimum designs obtained for 400ft long span bridge under various topological forms 

Bridge topological forms 
Variable 

Pratt    Parker Baltimore Petit K-truss Warren Q-Warren S-Warren Whipple 

Size variables, ready sections  

A1 W12x106 W14x132 W14x61 W12x87 W10x45 W14x82 W14x82 W10x68 W12x72 

A2 W12x87 W12x152 W12x96 W12x87 W14x48 W12x87 W14x99 W14x176 W12x79 

A3 W14x120 W14x176 W12x79 W10x88 W14x82 W12x279 W12x190 W12x79 W14x120 

A4 W12x230 W14x193 W10x77 W10x88 W14x132 W12x230 W14x257 W14x61 W14x233 

A5 W14x311 W12x210 W14x145 W12x96 W14x159 W12x279 W14x283 W12x210 W14x342 

A6 W14x342 W14x176 W14x145 W12x96 W14x193 W12x305 W14x370 W14x176 W14x283 

A7 W14x370 W14x211 W14x176 W10x112 W14x233 W14x398 W14x398 W12x136 W14x283 

A8 W14x398 W12x230 W12x210 W12x106 W12x252 W12x305 W14x455 W14x193 W14x370 

A9 W14x283 W14x193 W14x193 W14x193 W10x22 W14x283 W14x257 W14x193 W14x257 

A10 W10x33 W10x12 W10x22 W10x19 W10x68 W10x33 W12x58 W10x22 W10x33 

A11 W14x159 W10x33 W10x49 W10x45 W12x65 W12x120 W14x82 W10x68 W12x106 

A12 W14x159 W10x33 W10x49 W10x60 W10x60 W12x72 W14x90 W10x49 W14x90 

A13 W14x176 W10x33 W10x22 W10x22 W10x49 W14x233 W10x33 W12x26 W12x65 

A14 W14x145 W10x33 W10x88 W10x33 W12x58 W10x39 W14x145 W12x79 W14x99 

A15 W14x145 W10x33 W10x49 W10x60 W10x49 W12x120 W10x49 W14x109 W12x65 

A16 W14x120 W10x33 W10x22 W12x26 W14x48 W12x58 W10x33 W14x34 W12x65 

A17 W14x99 W10x49 W10x49 W10x33 W10x39 W14x145 W14x74 W12x53 W12x65 

A18 W14x99 W10x49 W10x49 W12x65 W12x40 W10x39 W14x90 W12x87 W12x65 

A19 W12x87 W10x49 W10x26 W12x26 W10x33 W12x65 W10x33 W10x22 W10x33 

A20 W12x79 W10x49 W12x40 W10x33 W10x33 W12x65 W14x90 W12x53 W12x96 

A21 W14x74 W10x49 W10x49 W10x33 W10x22 W14x90 W10x49 W10x54 W10x33 

A22 W12x65 W10x49 W14x145 W10x49 W10x33 W12x45 W10x33 W12x53 W12x65 

A23 W10x49 W12x65 W14x90 W12x65 W14x370 W10x49 W12x53 W10x54 W12x65 

A24 W12x152 W14x176 W14x193 W14x176 W10x112 W12x210 W12x72 W14x176 W12x65 

A25 W12x210 W14x176 W12x87 W10x22 W14x99 W14x193 W10x33 W12x120 W12x65 

A26 W12x305 W14x193 W10x88 W10x33 W12x53 W14x283 W12x72 W14x90 W12x65 

A27 W12x336 W12x230 W10x33 W10x33 W14x90 W14x233 W10x49 W12x45 W14x159 

A28 W14x370 W14x211 W14x283 W14x342 W10x45 W14x342 W10x33 W14x311 W12x230 

A29 W14x455 W12x279 W14x342 W14x311 W14x90 W14x283 W10x49 W14x311 W14x257 

A30 W14x455 W12x230 W14x370 W14x311 W10x45 W14x283 W12x72 W14x370 W12x252 

A31 W10x33 W10x33 W10x49 W12x65 W12x79 W12x40 W14x120 W12x53 W14x398 

A32 N/A N/A N/A N/A W10x39 N/A W14x176 N/A W14x500 

A33 N/A N/A N/A N/A W12x65 N/A W14x257 N/A W14x398 

A34 N/A N/A N/A N/A W14x30 N/A W14x283 N/A W14x145 
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Bridge topological forms 
Variable 

Pratt    Parker Baltimore Petit K-truss Warren Q-Warren S-Warren Whipple 

A35 N/A N/A N/A N/A W10x49 N/A W12x336 N/A W14x145 

A36 N/A N/A N/A N/A W10x22 N/A W14x398 N/A W12x65 

A37 N/A N/A N/A N/A W10x49 N/A W14x398 N/A N/A 

A38 N/A N/A N/A N/A W10x60 N/A W10x33 N/A N/A 

A39 N/A N/A N/A N/A W14x90 N/A N/A N/A N/A 

A40 N/A N/A N/A N/A W14x145 N/A N/A N/A N/A 

A41 N/A N/A N/A N/A W14x176 N/A N/A N/A N/A 

A42 N/A N/A N/A N/A W12x190 N/A N/A N/A N/A 

A43 N/A N/A N/A N/A W14x233 N/A N/A N/A N/A 

A44 N/A N/A N/A N/A W12x230 N/A N/A N/A N/A 

A45 N/A N/A N/A N/A W10x49 N/A N/A N/A N/A 

Shape variables (in.)  

y1 579 233 724 490 720 572 528 720 523 

y2 N/A 373 N/A 752 N/A N/A N/A N/A N/A 

y3 N/A 488 N/A 856 N/A N/A N/A N/A N/A 

y4 N/A 578 N/A 878 N/A N/A N/A N/A N/A 

y5 N/A 643 N/A N/A N/A N/A N/A N/A N/A 

y6 N/A 697 N/A N/A N/A N/A N/A N/A N/A 

y7 N/A 730 N/A N/A N/A N/A N/A N/A N/A 

y8 N/A 733 N/A N/A N/A N/A N/A N/A N/A 

Weight, 
lb (kg) 

398001.69 

(180581.53) 
225461.20 
(102296.37) 

267499.35

(121369.94)
222933.84 
(101149.66)

269186.25 
(122135.32)

343921.52 
(156044.25)

359947.95 
(163315.77)

270521.00 

(122740.93) 

396280.51

(179800.59)

 

 

Figure 7. The design history curve of the best solution recorded under each topological form for 
400ft long span bridge 
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4.4 Case 4: 600 ft long span bridge 
Finally, the span length has been increased to 600 ft in the last case study. The lower chord 
of the bridge consists of twenty four equal panels and it is subjected to twenty three equivalent 
point loads acting on each panel point. The bridge is configured according to all topological 
forms to generate nine competing models. Each model is then optimized for minimum 
weight with the cross-sectional areas of the members being the size design variables and the 
height of upper chord nodes being the shape design variables. The truss members are 
grouped considering the symmetry of the bridge around mid-span, resulting in 47 size 
variables for Pratt, Parker, Baltimore, Petit, Warren and Subdivided Warren, 69 for K-truss, 
58 for Quadrangular Warren and 55 for Whipple truss (Figure 8). In order to determine the 
optimum shape of the bridge, 12 and 6 shape variables are employed for  Parker and Petit 
trusses, respectively, whereas a single shape variable is used for other models. 

Each model is separately designed five times with the SA solution algorithm 
implemented. The best designs obtained in these runs are tabulated in Table 4 with section 
designations attained for each member group and the resulting values of shape variables. 
The results indicate that the lightest bridge is designed with Petit form with a design weight 
of 624,277.4 lb (283,247.46 kg). This design is followed by Parker form, which is 722,558.3 lb 
(327,839.52 kg). The heaviest designs are produced by Pratt and Whipple trusses with design 
weights of 1,379,721.2 lb (625,841.5 kg) and 1,384,147.8 lb (627,849.4 kg), respectively. 
Figure 9 shows the design history curve of the best solution recorded under each topological 
form for 600ft long span bridge. 

 
 

5. CONCLUSIONS 
 

This study investigated economical design of single span truss bridge topologies under 
gravity loads in relation to various span length requirements. The bridges having span 
lengths of 100, 200, 400 and 600 ft long are first configured according to the nine 
topological forms (namely, Pratt, Parker, Baltimore, Petit, K-Truss, Warren, Subdivided 
Warren, Quadrangular Warren and Whipple), and the resulting bridge models are optimized 
for minimum weights using size and shape design variables together. The provisions 
stipulated by ASD-AISC are enforced for all the bridge models generated to ensure that the 
resulting structures satisfy basic strength and serviceability requirements. The minimum 
weight design of such structures is investigated in conjunction with the simulated annealing 
algorithm.  

In conclusion, it is observed that the topological form chosen to generate the structural 
system of a bridge has a great influence on its final design weight, and consequently on its 
cost. The differences in design weights between the best (lightest) and worst (heaviest) 
models appear to be %15, 30, 43 and 55 for the span lengths of 100, 200, 400, and 600, 
respectively. Consequently, the selection of economical topological form becomes more 
pronounced and crucial as the span length of the bridge increases. This can also be observed 
from Figure 10, where the variation of the best design weight against the corresponding span 
length is plotted in Fig. 10 for each bridge topological form.  
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Figure 8. The topological forms used to configure 100 ft long span bridge: a) Parker, b) Petit, c) 
Pratt, d) Baltimore, e) K-truss, f) Warren, g) Quadrangular Warren, h) Subdivided Warren, i) 

Whipple 
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Table 4: Optimum designs obtained for 600ft long span bridge under various topological forms. 

Bridge topological forms Variable 
Pratt    Parker Baltimore Petit K-truss Warren Q-Warren S-Warren Whipple 

Size variables, ready sections  

A1 W12x136 W14x176 W12x152 W12x152 W10x68 W14x145 W14x74 W12x190 W14x109 

A2 W12x79 W12x279 W12x210 W14x193 W10x77 W12x79 W12x96 W12x170 W12x152 

A3 W12x279 W12x230 W14x120 W14x159 W12x136 W14x455 W14x211 W12x190 W12x305 

A4 W14x342 W14x398 W14x145 W14x159 W12x210 W12x252 W14x311 W14x132 W14x370 

A5 W14x426 W12x336 W14x257 W12x170 W12x252 W14x370 W14x370 W12x336 W14x730 

A6 W14x605 W14x426 W12x279 W12x170 W14x342 W14x665 W14x455 W12x305 W14x730 

A7 W14x550 W14x455 W14x342 W12x190 W14x398 W12x279 W14x426 W12x336 W14x665 

A8 W14x730 W14x605 W14x370 W12x190 W14x455 W14x605 W14x605 W14x257 W14x283 

A9 W14x730 W14x426 W14x500 W14x211 W14x455 W14x730 W14x500 W14x426 W14x730 

A10 W14x730 W14x500 W14x730 W12x190 W14x550 W14x730 W14x730 W14x550 W14x730 

A11 W14x730 W14x500 W14x730 W14x193 W14x550 W14x605 W14x730 W14x398 W14x730 

A12 W14x730 W14x605 W14x500 W12x190 W14x550 W14x730 W14x730 W14x730 W14x730 

A13 W14x550 W14x342 W14x311 W14x311 W12x26 W14x550 W14x550 W14x342 W14x455 

A14 W12x53 W14x74 W10x26 W14x43 W12x136 W12x79 W12x53 W14x34 W10x49 

A15 W14x257 W14x132 W10x49 W10x60 W14x99 W14x233 W14x211 W10x100 W14x176 

A16 W14x426 W12x79 W10x49 W10x88 W14x120 W14x132 W14x145 W12x170 W14x176 

A17 W12x336 W12x120 W12x26 W12x35 W14x90 W14x500 W14x90 W12x65 W12x152 

A18 W14x398 W12x87 W12x210 W12x65 W10x112 W14x74 W14x342 W14x193 W14x90 

A19 W14x311 W12x65 W10x49 W12x65 W14x90 W12x252 W12x87 W14x233 W12x210 

A20 W14x370 W12x40 W12x26 W10x39 W10x112 W14x90 W12x53 W14x30 W14x90 

A21 W14x257 W10x49 W12x170 W10x45 W12x79 W14x455 W10x112 W12x87 W12x65 

A22 W14x311 W10x49 W10x54 W14x90 W10x100 W12x65 W14x211 W12x65 W10x88 

A23 W12x252 W14x74 W12x26 W10x39 W12x72 W14x159 W10x49 W12x30 W12x65 

A24 W14x257 W14x90 W12x170 W12x58 W10x100 W14x233 W14x233 W14x176 W10x49 

A25 W14x211 W12x65 W10x49 W14x109 W12x65 W14x311 W12x96 W12x190 W12x65 

A26 W14x233 W10x60 W12x26 W10x68 W14x82 W10x88 W10x49 W10x26 W10x49 

A27 W12x190 W12x65 W12x120 W14x82 W10x54 W12x120 W12x96 W10x68 W12x210 

A28 W14x193 W12x72 W10x49 W14x99 W12x79 W14x90 W14x176 W14x109 W12x65 

A29 W14x211 W12x65 W10x39 W10x54 W10x49 W14x233 W10x49 W10x39 W14x99 

A30 W14x159 W12x65 W12x40 W10x60 W10x60 W10x68 W14x176 W14x48 W12x252 

A31 W12x210 W12x72 W12x65 W12x45 W10x49 W14x176 W12x72 W12x136 W12x65 

A32 W14x120 W12x72 W14x342 W10x49 W14x48 W14x120 W10x49 W12x136 W14x90 

A33 W12x120 W14x109 W14x283 W14x99 W12x26 W14x176 W12x72 W12x87 W12x65 

A34 W14x159 W12x65 W14x193 W14x90 W10x33 W12x65 W14x145 W14x211 W14x455 

A35 W12x96 W14x90 W14x176 W14x145 W14x665 W14x120 W12x53 W12x120 W10x49 

A36 W12x305 W14x342 W14x283 W14x283 W12x230 W14x283 W14x145 W14x283 W12x65 

A37 W14x283 W14x370 W12x210 W12x45 W14x159 W12x190 W12x65 W14x145 W14x455 

A38 W14x370 W14x550 W12x252 W10x77 W14x109 W14x398 W10x49 W12x279 W10x49 

A39 W14x730 W14x426 W14x145 W10x33 W14x109 W14x342 W12x65 W14x193 W14x109 

A40 W14x730 W14x426 W14x109 W12x58 W14x109 W14x730 W14x145 W14x193 W12x65 

A41 W14x730 W14x455 W10x88 W10x54 W14x145 W14x500 W10x49 W12x136 W12x65 

A42 W14x730 W14x455 W14x398 W14x550 W12x96 W14x730 W14x145 W14x426 W14x370 
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Bridge topological forms Variable 
Pratt    Parker Baltimore Petit K-truss Warren Q-Warren S-Warren Whipple 

A43 W14x730 W14x398 W14x550 W14x550 W14x132 W14x605 W12x72 W14x398 W14x550 

A44 W14x730 W14x550 W14x605 W14x500 W10x88 W14x730 W10x49 W14x730 W14x550 

A45 W14x730 W14x605 W14x665 W14x500 W14x109 W14x730 W12x65 W14x605 W14x500 

A46 W14x730 W14x550 W14x730 W14x500 W10x88 W14x730 W14x145 W14x730 W14x550 

A47 W10x49 W12x65 W12x65 W14x176 W14x99 W10x100 W14x145 W12x72 W14x730 

A48 N/A N/A N/A N/A W12x72 N/A W12x210 N/A W14x730 

A49 N/A N/A N/A N/A W14x99 N/A W14x311 N/A W14x730 

A50 N/A N/A N/A N/A W10x68 N/A W14x426 N/A W14x730 

A51 N/A N/A N/A N/A W12x87 N/A W14x398 N/A W14x730 

A52 N/A N/A N/A N/A W12x53 N/A W14x665 N/A W14x730 

A53 N/A N/A N/A N/A W12x65 N/A W14x550 N/A W14x455 

A54 N/A N/A N/A N/A W12x53 N/A W14x730 N/A W14x455 

A55 N/A N/A N/A N/A W12x65 N/A W14x730 N/A W14x455 

A56 N/A N/A N/A N/A W12x40 N/A W14x730 N/A N/A 

A57 N/A N/A N/A N/A W12x65 N/A W14x730 N/A N/A 

A58 N/A N/A N/A N/A W12x79 N/A W12x53 N/A N/A 

A59 N/A N/A N/A N/A W12x152 N/A N/A N/A N/A 

A60 N/A N/A N/A N/A W14x211 N/A N/A N/A N/A 

A61  N/A N/A N/A N/A W14x283 N/A N/A  N/A N/A 

A62  N/A N/A N/A N/A W14x342 N/A N/A  N/A N/A 

A63  N/A N/A N/A N/A W14x398 N/A N/A  N/A N/A 

A64  N/A N/A N/A N/A W14x455 N/A N/A  N/A N/A 

A65  N/A N/A N/A N/A W14x500 N/A N/A  N/A N/A 

A66  N/A N/A N/A N/A W14x550 N/A N/A  N/A N/A 

A67  N/A N/A N/A N/A W14x550 N/A N/A  N/A N/A 

A68  N/A N/A N/A N/A W14x665 N/A N/A  N/A N/A 

A69  N/A N/A N/A N/A W12x65 N/A N/A  N/A N/A 

Shape variables (in.)  

y1 739 222 802 450 867 726 733 810 638 

y2 N/A 363 N/A 736 N/A N/A N/A N/A N/A 

y3 N/A 445 N/A 956 N/A N/A N/A N/A N/A 

y4 N/A 549 N/A 1110 N/A N/A N/A N/A N/A 

y5 N/A 640 N/A 1157 N/A N/A N/A N/A N/A 

y6 N/A 704 N/A 1167 N/A N/A N/A N/A N/A 

y7 N/A 769 N/A N/A N/A N/A N/A N/A N/A 

y8 N/A 817 N/A N/A N/A N/A N/A N/A N/A 

y9 N/A 860 N/A N/A N/A N/A N/A N/A N/A 

y10 N/A 887 N/A N/A N/A N/A N/A N/A N/A 

y11 N/A 895 N/A N/A N/A N/A N/A N/A N/A 

y12 N/A 900 N/A N/A N/A N/A N/A N/A N/A 

Weight,lb 
(kg) 

1379721.2 
(626007.80)

722558.3 
(327839.52)

869646.4 
(394576.41)

624277.4 
(283247.46)

830048.1 
(376609.85)

1150368.2
(521945.64)

1090091.5 
(494596.87)

855874.5 
(388327.81) 

1384147.8
(628016.24)
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Figure 9. The design history curve of the best solution recorded under each topological form for 
600ft long span bridge 

 

 

Figure 10. A comparison of design weights obtained with various topological forms for 100, 
200, 400 and 600 ft long span bridges 

 
Petit and Parker trusses, which have polygonal upper chords seem to be the most weight-

effective models since they yield the minimum design weights in all case studies considered. 



448 O. Hasançebi and E. Doğan 

 

 

The resulting optimum shapes of the bridge developed with Petit and Parker trusses are such 
that bridge height is reduced from mid-span towards the ends to eliminate unnecessary 
material use in the design. This can be verified by an analogy to the behaviour of a simply 
supported beam subjected to distributed transverse loading, where the bending moment is 
maximum at mid-span and goes towards zero when approaching the ends. These two models 
can economically be used for all span length requirements. 

The results also indicate that some bridge forms, such as Whipple and Pratt should be 
avoided for all span lengths, and Warran and Quadrangular Warren for relatively long span 
lengths as far as the weight efficiency of the resulting bridge is concerned. Baltimore, 
Subdivided Warran and K-truss form lead to design weights in some similar scales. These 
forms benefit from reducing member lengths and thus increasing significantly out-of-plane 
buckling strengths of the  members.  
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