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ABSTRACT  
 

In harsh climates, utilizing thermal insulation in the building envelope can substantially 
reduce the building thermal load and consequently its energy consumption. The performance 
of the thermal insulation material is mainly determined by its effective thermal conductivity, 
which is dependent on the material’s density, porosity, moisture content, and mean 
temperature difference. The effective thermal conductivity of insulation materials increases 
with increasing temperature and moisture content. Hence, thermal losses may become higher 
than the design values. The availability of measured data of the thermal conductivity of 
insulations at higher temperatures and at elevated moisture contents is poor. In this article 
the Artificial Neural Networks (ANN) is utilized in order to predict the effective thermal 
conductivity of expanded polystyrene with specific temperature and moisture content. The 
experimental data was used for training and testing ANN. Obtained results from the ANN 
method give a good agreement with experimental data. 
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1. INTRODUCTION 
 

The decreasing of energy sources cause increasing of need of saving energy in the world. As 
energy becomes more precious and demand increases, the use of thermal insulations in 
buildings is being enforced in new building constructions. Many parameters should be 
considered when selecting thermal insulation including cost, compression properties, water 
vapor transmission properties and the effective thermal conductivity (k) of the material. The 
k of insulation materials is the most important property that is of interest when considering 
thermal performance and energy conservation measures.  

The effective thermal conductivity is dependent on the material density, porosity, 
moisture content, and the mean temperature difference. The effective thermal resistance of 
insulation materials decreases with increasing temperature and moisture content. 
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The impact of operating temperature on the thermal performance of insulation materials 
has been the subject of many studies. The influence of moisture on heat transfer through 
fibrous-insulating materials was presented in some articles [1-4]. Vieseh et al. [5] found 
mathematical models for thermal conductivity-density relationship in fibrous thermal 
insulation. 

Modeling the effective thermal conductivity of heterogeneous or composite materials is 
of interest in many heat transfer applications. Alternatively, an empirical parameter may be 
inserted to account for differences in material structure [6,7]. Another common way of 
estimating effective thermal conductivity for composite materials with known 
microstructures is to make rigorous numerical simulations using the finite difference or 
finite element methods [8–10]. Zhao et al. [11] developed a numerical model combined 
radiation and conduction heat transfer was to predict the effective thermal conductivity of 
fibrous insulation at various temperatures and pressures. Cheng and Fan [12] reported an 
improved model of coupled heat and moisture transfer with phase change and mobile 
condensate in fibrous insulation. However, analytical models are preferred over numerical 
models in many applications due to their physical basis, rapid and low cost calculation, and 
reasonable accuracy even when microstructure is uncertain. Many effective thermal 
conductivity models found in the literature are based on one or more than five basic 
structural models; specifically, the Series, Parallel, Maxwell–Eucken (two forms) [13] and 
Effective Medium Theory (EMT) models [14,15]. 

Fan et al. [16] have developed models for heat and moisture transfer in fibrous insulation 
(clothing in the first place) that considers phase change and mobile condensate. Bjrk and 
Enochsson [17] studied Properties of thermal insulation materials during extreme 
environment changes. 

Ochs et al. [18] showed a detail description of modeling and measurement of the 
effective thermal conductivity of porous bulk materials at temperatures up to 80oC and 
moisture contents below free water saturation. Consequently, the need for a more realistic 
evaluation of thermal insulation performance in harsh climatic conditions is undoubtedly 
necessary for a more accurate assessment of the thermal performance and for a better 
prediction of energy efficient design. 

The computational intelligence techniques, such as Artificial Neural Networks (ANNs), 
genetic algorithms (GAs), and fuzzy logic have been successfully applied in many scientific 
research and engineering practices. ANNs have been developed for about two decades and 
are now widely used in various application areas such as performance prediction, pattern 
recognition, system identification, and dynamic control and so on. Since ANNs provide 
better and more reasonable solutions. ANN offers a new way to simulate nonlinear, 
uncertain or unknown complex systems without requiring any explicit knowledge about the 
input–output relationship. It can approximate any continuous or nonlinear function by using 
a certain network configuration [19]. 

The ANN is an interpolation procedure. Through training, the network “learns” an 
association between a collection of inputs and their corresponding outputs. In operation, 
when the network is presented inputs which were not present in the training set, the network 
will produce a result which is consistent with the training data. The accuracy, fast response 
and non-iterative solution of ANN led to the use of neural network in many physical 
problems. Kaveh and Raiessi [20] predicted the deformation of domes under wind load by 
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using ANN. Erzin et al. [21] predicted soil thermal resistivity by ANN also Nouri et al. [22] 
used ANN for finding Soil profile. Eslamloueyan and Khademi [23] developed a neural 
network model for prediction of thermal conductivity of pure gases at atmospheric pressure 
over a wide range of temperatures. Kaveh and Khalegi [24] predicted strength for concrete 
specimens by ANN. Xie et al. [19]  predicted the performance of laminar and turbulent heat 
transfer and fluid flow of heat exchangers having large tube-diameter and large tube-row by 
ANNs. 

The objective of this study is to investigate the influence of moisture content and mean 
temperature on thermal conductivity of insulation materials by ANN and experimental data. 

 
 

2. THERMAL CONDUCTIVITY MEASUREMENTS 
 

During the last two decades, many advances have been made in thermal insulation 
technology, both in measurement techniques and in improved understanding of the 
principles of heat flow through insulating materials. Consequently, revisions have been 
made to the measurement methods of thermal transmission properties. These revisions are 
considered in the ASTM C518-04 standard [25]. 

In this study, 300mm×300mm specimens with thicknesses ranging from 50 to 100mm 
were mounted in the test section between two plates with specific different temperatures 
during the test. Upon achieving thermal equilibrium and establishing a uniform temperature 
gradient throughout the sample, thermal conductivity was determined. The temperature 
control system was thermoelectric. An external computer system equipped with a 
specialized software controlled the measuring apparatus.  

 
 

3. MODELING OF THERMAL CONDUCTIVITY 
 

There are three major methods for the modeling of effective thermal conductivity. Type I 
regards the temperature and heat flux profile of two particles which are in contact (unity 
cell). It is the most complex model in terms of calculation effort and has to be solved 
numerically. In type II the porous material is mapped onto a combination of serial and 
parallel layers representing thermal resistances of the components as proposed by Krischer 
and Kast [7]. All primary parameters such as porosity, thermal conductivity of the fluid(s) 
and of the solid as well as the influence of radiation which is a secondary parameter, are 
considered. A simplification is represented by type III. Analogue to type I the unity cell is 
regarded, but instead of a grid of isotherms and heat flux lines either parallel isotherms or 
heat flux lines are considered. In this paper, type II is considered for using the neural 
network method. Some primary parameters are considered as input data for the neural 
network and the effective thermal conductivity is considered as the output of neural network.  
The density, moisture content and mean temperature are considered as input data. For 
moisture content the normalized moisture content is used [18]. The moisture content is 
normalized by free saturation water content mentioned earlier.  
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4. ARTIFICIAL NEURAL NETWORKS 
 

As discussed by Dumek et al. [26] the neural network is a structure for parallel information 
processing which may be considered as a "black box" or a transfer function. A block 
diagram of the model of a neuron is shown in Figure 1. A neuron is a basic information 
processing and operating unit in a neural network. Specifically, a signal xi is connected to a 
neuron with the synaptic weight wi, and then all input signals weighted by their respective 
synapses are summed as a net input u. A bias b is applied to the neuron so that the increase 
or decrease in net input depends on whether the bias is positive or negative. Finally the 
increased or decreased net input is imported into an activation function. The activation 
function is so developed that the amplitude of the net output of a neuron is limited. The 
input-to-output operation of a neuron is formulized mathematically as follows [27]: 
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Figure 1. A block diagram of the model of a neuron [27] 

 
Figure 2 illustrates a typical full-connected network configuration. Such an ANN consists 

of a series of layers with a number of neurons (in Figure 2). Each connection between two 
neurons with a real value is called weight. Neurons are gathered together into a column 
called a layer. Among various types of ANNs, the feed-forward or multilayer perception 
neural network is widely used in engineering applications. The input information is 
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propagated forward through the network while the output error is back-propagated through 
the networks for updating the weights. 

 

 
Figure 2. A fully connected feed-forward neural network (the ANN having one hidden layer with 

six hidden neurons and one output layer with two outputs) 
 
There are many ways to design and implement ANNs. However, it is difficult to find an 

optimal network, considering the uniqueness of a real problem. Thus, a priori choice, such as 
selection of network topology, training algorithm and network size should be made based on 
experience. 

It is a very common way to use the back-propagation algorithm to train artificial neural 
networks. The main idea of this algorithm is to minimize the cost function by the steepest 
descent method to add small changes in the direction of minimization. It simply consists of 
back-propagating the output errors to the network by modifying the weight matrices, that is, 
adding a correction weight Δw to a synaptic weight w. More descriptions of the Back-
Propagation (BP) algorithm can be found in references [28-29]. Varying the learning rate 
dynamically or using momentum terms can improve the convergence speed. The 
mathematical background, the procedures for training and testing the ANN, and the 
description of the BP algorithm can be found in the reference [27]. Although the BP 
algorithm needs a long time to converge, the algorithm has gained a remarkable popularity 
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in the neural network community since it is relatively easy to implement in engineering 
applications as well as in thermal and energy applications, see [19–24]. Also the BP 
algorithm might provide solutions to difficult problems [27]. Thus in this study the BP is 
implemented to train the network. There are three basic types of activation functions: 
Threshold function, Piecewise linear function and Sigmoid function [27]. The tan-sigmoid 
function and linear function are used in this paper respectively between input layer and 
hidden layer and between hidden layer and output layer. The curves of each function are 
shown in Figure 3. 

 

  
 tan-sigmoid function  linear function 

Figure 3. The activation functions used in this study 
 
The development of an ANN model involves three basic steps: the generation of data 

required for training, the training and testing of the ANN model and the evaluation of the 
ANN configuration leading to the selection of an optimal configuration. The procedure used 
for the development of the ANN model is outlined next section. 

 
4.1 Training artificial neural network 
In order to predict effective thermal conductivity, attempts should be done to develop some 
ANN configurations and finally find a relative optimal or good configuration for prediction. 
As aforementioned, the feed-forward network structure was used in our study as shown in 
Figure (2). It employs an input layer of 3 neurons corresponding to each of the input density, 
moisture content and mean temperature and an output layer consisting of one neuron 
representing the output parameter k. In the training stage, to identify the output precisely, the 
number of neurons was increased from 3 to 9 based on the trial and error method in the 
hidden layer. Among them, the network with 7 neurons and a single hidden layer has 
provided the best results. Therefore, the results provided in the following sections are based 
on this configuration. 

The Levenberg-Marquardt back propagation algorithm [27, 30] was used for training. 
This algorithm resembles the quasi-Newton methods. Newton’s method is an alternative to 
the conjugate gradient methods for fast optimization. The basic step of Newton’s method is 

 

 k
-1

k1 gA- ww k k =+  (3) 
 

where kw  is a vector of current weights and biases, kg is the current gradient and -1
kA  is the 
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Hessian matrix (second derivatives) of the performance index at the current values of the 
weights and biases. Newton’s method often converges faster than conjugate gradient 
methods. Unfortunately, it is complex and expensive to compute the Hessian matrix for 
feed-forward neural networks. There is a class of algorithms that is based on Newton’s 
method which doesn’t require the calculation of second derivatives. These are called quasi-
Newton methods. These methods update an approximate Hessian matrix at each iteration of 
the algorithm. The update is computed as a function of the gradient. 

 The Levenberg-Marquardt algorithm was designed to approach second-order training 
speed without having to compute the Hessian matrix. When the performance function has 
the form of a sum of squares (as is typical in training feed-forward networks), then the 
Hessian matrix can be approximated as 

 
 JJH T=  (4) 
and the gradient can be computed as 

 eJg T=  (5) 
 

where J is the Jacobian matrix that contains first derivatives of the network errors with 
respect to the weights and biases, and e is a vector of network errors. The Jacobian matrix 
can be computed through a standard BP technique that is much less complex than computing 
the Hessian matrix.  

The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in the 
following Newton-like update: 

 

 e][ 1
1

T–T
k k JI J J- ww µ+=+  (6) 

 
When the scalar µ is zero, this is just Newton’s method, using the approximate Hessian 
matrix. When µ is large, this becomes gradient method with a small step size. Newton’s 
method is faster and more accurate near an error minimum, so the aim is to shift toward 
Newton’s method as quickly as possible. Thus, µ  is decreased after each successful step 
(reduction in performance function) and is increased only when a tentative step would 
increase the performance function. In this way, the performance function is always reduced 
in each iteration of the algorithm. 

 
 

5. RESULTS AND DISCUSSION 
 

The experimental data of expanded polystyrene is used for training neural network.  Some 
data is left for the test of neural network. The history diagram of mean squared error versus 
the number of epochs is shown in Figure 4. 



S. Veiseh and M. Sefidgar 

 

326 

 
Figure 4. History diagram of mean squared error of neural network for this case 

 
The thermal conductivity values trained by ANN compared to experimental data are 

shown in Figure 5 and 6. In Figure 5 the thermal conductivity is plotted versus density and 
mean temperature with constant moisture content around zero and in Figure 6 the thermal 
conductivity is plotted versus normalized moisture content and mean temperature with 
apparent density. The network is trained with 70% of the experimental data. It can be clearly 
seen that both predicted results trained by neural network are very close to the corresponding 
measured data. The maximum average relative error between the trained predictions and 
measured data is less than 0.5% for Figure 5 and is less than 1% for Figure 6. 

 

 
Figure 5. Comparison of thermal conductivity trained by ANN to experimental data in variant 

temperature and density for EPS boards 
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Figure 6. Comparison of thermal conductivity trained by ANN to experimental data in 

temperatures and normalized moisture contents for EPS boards 
 
In Figure 7 the predicted results of neural network for variant temperatures and densities 

are illustrated. The figure shows the neural network can predict the effective thermal 
conductivity of EPS with good accuracy. The maximum relative error between predicted 
result and experimental data is 5% and the average relative error is less than 1.7%.  

 

 
Figure 7. Comparison of thermal conductivity predicted by ANN with experimental data in 

various temperatures and densities for EPS boards 
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In Figure 9 the prediction results of neural network for variant normalized moisture 
content and mean temperature are illustrated. The results show that the neural network can 
predict the effective thermal conductivity of expanded polystyrene with good accuracy. The 
maximum relative error between predicted result and experimental data is 4% and the 
average relative error is less than 1.3%.   

 

 
Figure 9. Comparison of thermal conductivity predicted by ANN with experimental data in 

variant temperatures and normalized moisture contents for EPS  
 
 

6. CONCLUSION 
 

In this paper the effect of moisture content and temperature on effective thermal 
conductivity of EPS was studied by experimental methods. The experimental results show 
that the effect of these parameters on effective thermal conductivity is significant. For 
finding a model that can predict the effective thermal conductivity, the neural network was 
employed. The feed-forward network by Levnberg- Marquadet training method is used for 
modeling. The results show high accuracy of ANN prediction for different cases. The 
maximum relative error between predicted results and experimental data is only 7% and the 
average of errors is less than 2% that shows the ability of neural network for predicting 
effective thermal conductivity. It can be substituted for complicated numerical models and 
cost and time consuming experimental methods.  
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