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ABSTRACT 
 

Meta-heuristic methods provide powerful means to optimize frame structures and hybridizing 
these methods seems to be unavoidable to improve the properties of the algorithms. This 
paper provides a new hybrid advanced algorithm by using the abilities of heuristic particle 
swarm ant colony optimization (HPSACO) and a hybrid big bang–big crunch algorithm 
(HBB–BC). The advantages of the HPSACO and HBB–BC are combined to improve the 
performance of the resulted algorithm. In the present approach, there are three main steps as 
global searching step, local searching step and location controlling step. These steps all 
together improve the exploration and exploitation abilities of the algorithm. The proposed 
method is tested on frame structures from the literature. The results of the optimum design 
obtained by the present study are compared to those of some existing optimization methods to 
verify the suitability of the new method. 

 
Keywords: Meta-heuristic optimization algorithms, Hybrid big bang–big crunch algorithm, 
Heuristic particle swarm ant colony optimization, Optimal design of frames  
 
 

1. INTRODUCTION 
 
In today's world, providing powerful algorithms to solve structural optimization problems 
forms an important research field due to the necessity of performing efficient designs. Meta-
heuristics are known as one of the most powerful approaches in this area and hybridizing these 
methods seems to be unavoidable to improve the properties of the algorithms. This paper 
presents such an improved algorithm by hybridizing two recent advanced hybrid algorithms. 
These algorithms are heuristic particle swarm ant colony optimization (HPSACO) [1] and a 
hybrid big bang–big crunch (HBB–BC) optimization algorithm [2]. 
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HPSACO was designed to improve the performance of the standard particle swarm 
optimizer (PSO). In fact, the main optimizer of HPSACO is the PSO and the advantages of 
other methods are added to improve the abilities of this method. Although the standard PSO 
often does eventually locate the desired solution, however, its practical use in solving 
engineering optimization problems is severely limited due to high computational cost of the 
slow convergence rate [3]. In addition it is known that PSO had difficulties in controlling the 
balance between exploration (global investigation of the search place) and exploitation (the 
fine search around a local optimum), [4]. 

The HBB–BC algorithm was designed to improve the standard BB–BC method. The 
standard BB–BC performs well in the exploitation, however it experiences some problems at 
the exploration stage. For example, if all of the candidates in the initial Big Bang are collected 
in a small part of search space, the BB–BC method may not find the optimum solution and 
with a high probability, it may be trapped in that subdomain [2]. HBB–BC adds the capacities 
of the PSO to the BB–BC where considers the combinational of the center of mass, the best 
position of each candidate and the best visited position of all candidates as an average point in 
the beginning of each Big Bang.  

The new algorithm is obtained by collecting the good features of these two advantaged 
algorithms to increase the optimization abilities of the resultant algorithm. Finally some 
structures previously solved by meta-heuristic algorithms namely the HPSACO and HBB–BC 
are considered to investigate the capacity of the final algorithm in finding the optimum design 
of structures. 

The remainder of this paper is organized as follows. Section 2 presents the formulation of 
the frame optimization problem. Section 3 reviews the HPSACO and HBB–BC as the 
previous hybrid algorithms. The new algorithm is presented in Section 4. Numerical study is 
provided in Section 5, and finally Section 6 concludes the paper. 

 
 

2. FRAME OPTIMIZATION PROBLEMS 
 

Optimal design of frame structures can be formulated as [1] 
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where X is the vector of design variables containing the cross-sectional areas of W sections; 
ng is the number of design variables or the number of member groups; )(Xfit  is the fitness 
function; )(Xf  is the cost function which is usually taken as the weight or volume of the 
structure; )(Xpenaltyf  is the penalty function which results from the violations of the 
constraints corresponding to the response of the structure; T∆  is the maximum lateral 
displacement; H is the height of the frame structure; R is the maximum drift index; dj is the 
inter-story drift; hj is the story height of the jth floor; ns is the total number of stories; RI  is the 
inter-story drift index permitted by the code of the practice. 

Using the AISC [5] for design, the permissible inter-story drift index is taken as 1/300 and 
from the LRFD interaction formula constraints (AISC, 2001, [5] Equation H1-1a,b), the 
violation is defined as 
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where uP  is the required strength (tension or compression); nP  is the nominal axial strength 
(tension or compression); cφ  is the resistance factor ( 9.0=cφ  for tension, 85.0=cφ  for 
compression); uxM  and uyM  are the required flexural strengths in the x and y directions; 
respectively; nxM and nyM  are the nominal flexural strengths in the x and y directions, and 

bφ  is the flexural resistance reduction factor ( 90.0=bφ ). 
The cost function in the form of the weight of frame structure is expressed as 
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where iγ  is the material density of member i; iL  is the sum length of the members belonging 
to group i. 

The penalty function is defined as 
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where 1++= nsnmn  represents the number of evaluated constraints for each individual 

design. Here, nm is the number of elements to control the interaction formula constraints (Eqs. 
(4), (5)), ns is the number of stories to check the inter-story drift constraint (Eq. (3)), and one 
is because of checking the total lateral displacement constraint. 1ε  is set to 1, 2ε  is selected in 
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a manner to decrease the penalties and reduce the cross-sectional areas. Thus, in the first steps 
of the search process, 2ε  is set to 1.5 and it is ultimately increased to 3, [6]. 

 
 

3. A REVIEW OF TWO HYBRID META-HEURISTIC ALGORITHMS 
 

In this section a brief review of the heuristic particle swarm ant colony optimization (HPSACO) 
and a hybrid Big Bang–Big Crunch optimization algorithm (HBB–BC) is presented. 
 
3.1 Heuristic particle swarm ant colony optimization  
The HPSACO algorithm applies particle swarm optimizer with passive congregation 
(PSOPC) for global optimization, while ant colony strategy (ACO) works as a local search, 
wherein, ants apply pheromone-guided mechanism to refine the positions found by particles in 
the PSOPC stage. In HPSACO, a simple pheromone-guided mechanism of ACO is proposed 
and employed for the local search. 

The PSOPC stage involves a number of particles, which are initialized randomly in the 
feasible space. These particles fly through the search space and their positions are updated 
based on the best positions of individual particles, the best position among all particles in the 
search space, and the position of a particle selected randomly from the swarm in each 
iteration. 

The update moves a particle by adding a velocity change, 1+k
iV , to the current position k

iX  
as follows: 
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where ω  is an inertia weight to control the influence of the previous velocity; r1, r2 and r3 are 
three random numbers uniformly distributed in the range of (0,1); c1 and c2 are two 
acceleration constants; c3 is the passive congregation coefficient; k

iP  is the best position of the 
ith particle up to iteration k; k

gP  is the best position among all particles in the swarm up to 
iteration k; and Ri is a particle selected randomly from the swarm. 

The ACO stage handles M ants equal to the number of particles in PSOPC, [1], and each 
ant generates a solution around k

gP  which can be expressed as 
 

 ),( σk
g

k
i N PZ =  (10) 

 
where, k

iZ  is the solution constructed by ant i in the stage k; ),( σk
gN P  denotes a random 

vector normally distributed with mean value k
gP  and variance σ , where 
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Here, η  is the step size. ACO stage in the HPSACO algorithm works as a helping factor to 
guide the exploration and to increase the control in the exploitation [1]. 

Then, the value of the objective function for each ant, )( k
ifit Z , is computed and the 

current position of ant i, k
iZ , is replaced with the position k

iX , the current position of particle 
i in the swarm, if )( k

ifit X  is bigger than )( k
ifit Z and current ant is in the feasible space. 

In this algorithm, if a particle flies out of the variable boundaries, the solution cannot be 
used even if design constraints are satisfied. Here, the harmony search-based approach is 
employed to deal with this problem. According to this mechanism, any component of the 
solution vector (particle or ant) violating the variable boundaries can be regenerated randomly 
from k

iP  as 
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where ),( jk

ix  is the jth component of the particle i in iteration k; The HMCR varying between 0 
and 1 sets the rate of choosing a value in the new vector from the historic values stored in the 

k
iP , and (1−HMCR) sets the rate of randomly choosing one value from the possible range of 

values. The pitch adjusting process is performed only after a value is chosen from k
iP . 

 
3.2 Hybrid Big Bang–Big Crunch optimization algorithm 
The BB–BC method developed by Erol and Eksin [7] consists of two phases: a Big Bang 
phase, and a Big Crunch phase. In the Big Bang phase, candidate solutions are randomly 
distributed over the search space. The Big Crunch is a convergence operator that has many 
inputs but only one output, which is named as the center of mass. The term mass refers to the 
inverse of the fitness function value for the structures. The point representing the center of 
mass that is denoted by k

cX , is calculated according to 
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where M is the population size in Big Bang phase. 

After the Big Crunch phase, the algorithm creates the new solutions to be used as the Big 
Bang of the next iteration step, by using the previous knowledge. The hybrid BB–BC 
approach uses the center of mass, the best position of each candidate ( k

iP ) and the best global 
position ( k

gP ) to generate a new solution as 
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where ir  is a random vector obtained from a standard normal distribution which changes for 
each candidate; 1α  is a parameter used for limiting the size of the search space; 2α  and 3α  
are adjustable parameters controlling the influence of the global best and local best on the new 
position of the candidates, respectively. These successive explosion and contraction steps are 
carried out repeatedly until a stopping criterion has been met. A maximum number of 
iterations is utilized as a stopping criterion. 

 
 

4. HEURISTIC BIG BANG–BIG CRUNCH PARTICLE SWARM ALGORITHM 
 

The heuristic big bang–big crunch particle swarm algorithm (HBBPSO), a hybridized 
approach based on HPSACO and HBB–BC, is described in this section. This new algorithm 
follows the HPSACO levels and it can be considered as an improved HPSACO, however the 
positive characters of the HBB–BC is added to improve the final algorithm. In global 
searching level of the new algorithm instead of PSOPC, a methodology resulted by 
hybridizing the PSO and the big crunch level of the BB–BC is utilized. The local searching 
level employs the ACO stage of HPSACO and the big crunch level of the HBB–BC. Location 
controller is similar to HS strategy of HPSACO. The PAR parameter related to this level is 
updated according to some recent studies of the HS algorithm.  

 
4.1 Global searching step 
The main searching step is based on hybrid PSO and the BB–BC which is obtained by 
modifying the velocity formulation of the PSO algorithm by adding the term of the center of 
mass from the BB–BC algorithm. Often in order to enhance the searching abilities of the 
standard PSO algorithm, one or more additional terms are added to the velocity formula. For 
example Eq. (9) is obtained by adding Ri (the location of a particle selected randomly from the 
swarm) to the standard PSO improving the searching performance of the algorithm because of 
increasing exploration of the algorithm. If one can utilize the effect of all other particles in the 
term of velocity (such as defined for charged system search [8,9]), more efficient PSO-based 
algorithm will be obtained. Since the center of mass point ( k

cX ) as defined in Eq. (13) is a 
good agent of all particles, it seems to be the best choice. Therefore the velocity formula is 
redefined as follows: 
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4.2 Local searching step 
After performing an iteration using the global searching, the position of the local best ( k

iP ) 
and the global best points ( k

gP ) are calculated. This level is used instead of the one defined for 
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the HPSACO in the ACO level (Eq. 10). In the new formulation, in addition to k
gP , other 

points such as k
iP  and k

cX  are used to generate new solutions of the local level. Therefore in 
this level, we will have 
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In fact this new relationship is obtained by combing the big bang level of HBB–BC defined by 
Eq. (14) and the ACO level of the HPSACO defined by Eq. (10). Because of using the 
information achieved by all particles instead of only k

gP , it is expected this new formula 
improves the exploitation ability of the algorithm.  

 
4.3 Location controlling step 
It is possible in both global search and local search levels, the particles move out of search 
space and therefore their locations must be corrected. The location correction level in the new 
algorithm is similar to the one defined for HPSACO, however the value of PAR is defined 
dynamically as follows [10]: 
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where PARk is the value of PAR related to the kth iteration and PARmax and PARmin are the 
maximum and the minimum values for PAR and in this paper these are set to 0.99 and 0.35 
according to the suggestion of Ref. [10]. 

Also, In Eq. (12), the definition of the term "choose a neighboring value" is as follows 
 

 kjk
i

jk
i bwrxx ⋅±= ),(),(  (18) 

 
where bwk is defined as  
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In this paper, bwmax = 5 and bwmin = 0.01. 
 
 

5. DESIGN EXAMPLES 
 

This section presents the numerical example to evaluate the capability of the new algorithm in 
finding optimal design of steel structures. The examples contain one planar frame and one 
space frame. The final results are compared to the solutions of other methods to show the 
efficiency of the present approach. 
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5.1 Design of a 3-bay 24-story frame 
Figure 1 shows the topology and the service loading conditions of a three-bay twenty four-
story frame consisting of 168 members originally designed by Davison and Adams [11]. 
Camp and Bichon [12] utilized ant colony optimization (ACO), Degertekin [13] developed 
least-weight frame designs for this structure using a harmony search (HS)  and the authors 
utilized HBB–BC [14] and imperialist competitive algorithms (ICA) [15] to optimize this 
frame. 
 

 
Figure 1.  Topology of the three-bay twenty four-story frame 

The frame is designed utilizing the LRFD specification and uses an inter-story drift 
displacement constraint. The modulus of elasticity E=205GPa and a yield stress of Fy=230.3 
MPa. The detailed information is available in Ref. [14]. 
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Table 1 lists the designs developed by: the HBBPSO, the HBB–BC algorithm [14], the ant 
colony algorithm [12], harmony search [13] and imperialist competitive algorithm [15]. The 
HBBPSO algorithm required 8,000 frame analyses to converge to a solution, while the 10,500 
analyses were required by the HBB–BC, 15,500 analyses by the ACO, 13,924 analyses by the 
HS, 7,500 analyses for the ICA. Figure 2 compares the convergence histories for the 
HBBPSO and the HBB–BC algorithms. The HBBPSO algorithm can find the best results 
with 941.55kN which is 4.15%, 1.55%, 2.01% and 0.50% lighter than the results of the ACO, 
HS, HBB–BC and ICA, respectively. 

 
Table 1: Optimal design comparison for the 3-bay 24-story frame 

Optimal W-shaped sections 
Present work ICA [15] HBB–BC [14] HS [13] ACO [12] 

Element group 

W30X90 W30X90 W30X90 W30X90 W30X90 1 
W21X55 W21X50 W21X48 W10X22 W8X18 2 
W21X48 W24X55 W18X46 W18X40 W24X55 3 
W8X24 W8X28 W8X21 W12X16 W8X21 4 

W14X176 W14X109 W14X176 W14X176 W14X145 5 
W14X90 W14X159 W14X159 W14X176 W14X132 6 
W14X99 W14X120 W14X109 W14X132 W14X132 7 
W14X99 W14X90 W14X90 W14X109 W14X132 8 
W14X74 W14X74 W14X82 W14X82 W14X68 9 
W14X74 W14X68 W14X74 W14X74 W14X53 10 
W14X38 W14X30 W14X38 W14X34 W14X43 11 
W14X34 W14X38 W14X30 W14X22 W14X43 12 

W14X145 W14X159 W14X159 W14X145 W14X145 13 
W14X132 W14X132 W14X132 W14X132 W14X145 14 
W14X109 W14X99 W14X109 W14X109 W14X120 15 
W14X90 W14X82 W14X82 W14X82 W14X90 16 
W14X74 W14X68 W14X68 W14X61 W14X90 17 
W14X48 W14X48 W14X48 W14X48 W14X61 18 
W14X38 W14X34 W14X34 W14X30 W14X30 19 
W14X22 W14X22 W14X26 W14X22 W14X26 20 
941.55 946.25 960.90 956.13 980.63 Weight (kN ) 

8,000 7,500 10,500 13,924 15,500 No. of required 
analyses 
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Figure 2. Comparison of the convergence history for the -bay 24-story planar frame 

 
5.2 Design of a 290-member 10-story space frame 
A 10-story space steel frame as the second example is considered as shown in Figure 3.  

 

 
Figure 3. Topology of the10-story space frame  
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The material properties have a modulus of elasticity E = 200GPa and a yield stress of fy = 
248.2 MPa. The columns in each story are divided into three member groups as corner, inner 
and outer columns, whereas beams are divided into two groups as inner and outer beams. 
Each of the above five divisions includes the members having the same section in every three 
consequent stories and the last story thereafter. This results in a total of 20 distinct member 
groups as originally designed in [16].  

The optimum design of the space frame described above is carried out using the HBBPSO, 
the HPSACO and the CSS in [16]. The optimum design attained by the HBBPSO method is 
742.06 kN, while it is 760.64 kN, 799.43kN and 753.88kN for the HPSACO, HBB–BC and 
CSS methods, respectively [16]. The minimum weights as well as W-section designations 
obtained by these algorithms are provided in Table 2. The design history of the best run by 
each technique is shown in Figure 4 in which the maximum number of iterations is set to 
14,000 analyses for the algorithms. This shows that the new algorithm can reach to better 
results compared to the other methods. For the design of the HBBPSO, the maximum value 
for the inter-story drift is 1.15cm which is less than the allowable limit (1.17 cm). The 
maximum value for the stress ratio is 96.66%. 

 
Table 2: Optimal design comparison for the10-story space frame 

Optimal W-shaped sections 
Present work CSS [16] HPSACO [16] HBB–BC [16] 

 Element 
group 

W14X61 W12X58 W14X61 W10X54 1 
W18X76 W18X76 W16X77 W16X77 2 
W18X86 W14X82 W12X79 W14X99 3 
W16X50 W10X54 W16X57 W10X49 4 
W24X62 W18X60 W18X55 W21X55 5 
W21X68 W18X65 W18X71 W14X61 6 
W14X30 W8X24 W8X24 W21X44 7 
W14X38 W16X36 W14X43 W12X53 8 
W21X48 W21X50 W21X50 W14X61 9 
W10X12 W10X15 W5X16 W10X12 10 
W12X22 W8X21 W8X28 W8X18 11 
W18X40 W16X36 W16X31 W16X36 12 
W18X40 W18X40 W21X44 W18X46 13 
W10X19 W14X22 W10X19 W12X22 14 
W16X36 W18X40 W18X35 W18X35 15 
W14X26 W14X22 W12X26 W14X26 16 
W14X26 W16X31 W16X31 W12X30 17 
W10X19 W10X17 W10X15 W14X22 18 
W10X26 W14X26 W14X22 W8X28 19 
W10X19 W8X21 W8X28 W6X25 20 
742.06 753.88 760.64 799.43 Weight (kN ) 
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Figure 2. Comparison of the convergence history for the 10-story space frame 

 
 

6. CONCLUSION REMARKS 
 

The Heuristic Big bang–Big crunch Particle Swarm Optimization (HBBPSO) as a new hybrid 
meta-heuristic is developed for optimum design of frame structures. This new algorithm 
contains three steps: 

 
• Global searching step where a hybrid PSO and BB–BC is utilized and the effect of all 

agents on the velocities of other particles is considered by using the center of mass, the 
main point obtained in big bang level of the BB–BC.  

• Local searching step which is similar to the ACO level of the HPSACO while instead 
of using only the global best point to generate new solutions, the local best and the 
center of mass points are also utilized. 

• Location controlling step where a modified harmony search algorithm is used to 
correct the location of particles flies to out of search space. 

 
Compared to the HPSACO, this new algorithm does not require addition computational 

efforts. The extra computation corresponds to the center of mass point which must be 
calculated only one time for each iteration. Since for performing the global searching step 
calculating the global best, local best and center of mass points is necessary, in the next step 
(local searching step) this information can be utilized easily without additional calculation. In 
addition for the location controlling step, the local best points are utilized as the harmony 
memory and therefore this step can be utilized easily.  

To investigate the efficiency of the new algorithm, two frame structures are selected. The 
first example is a benchmark planar frame solved by different meta-heuristic algorithm. 
Compared to these algorithms, the HBBPSO method can find better result and also it needs 
less number of iteration to convergence. For the second example, the HPSACO, the HBB–
BC, the CSS in addition to HBBPSO are utilized to solve this problem. The HBBPSO can 
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reach a design which is 2.5% and 7.7% lighter than the results of the HPSACO and HBB–
BC.  
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