
ASIAN JOURNAL OF CIVIL ENGINEERING (BHRC) VOL. 14, NO. 5 (2013) 
PAGES 665-680 

    

PROBABILISTIC NONLINEAR DYNAMIC ANALYSIS OF A 
PLANE FRAME WITH MATERIAL AND GEOMETRIC 

UCERTAINTIES   

J. Alamatian*a and F. Shahabianb 

aDepartment of Civil Engineering, Mashhad Branch, Islamic Azad University, 91735-413, 
Mashhad, Iran 

bDepartment of Civil Engineering, Ferdowsi University of Mashhad, 91775-1111, 
Mashhad, Iran  

Received: 12 March 2012; Accepted: 14 July 2012   

ABSTRACT  

This paper focuses on probabilistic nonlinear dynamic analysis of a plane frame in which 
density, modulus of elasticity and section dimensions are random variables. The Monte 
Carlo method is used to simulate the random variables with different types of probability 
density functions and various coefficients of variation. The time-displacement responses of 
the frame show that randomness in the material and geometric properties can lead to 
significant uncertainty in the maximum response displacement. Also, the statistically 
dynamic responses obtained by the present approach will be useful for studying the 
structural safety and reliability.  

Keywords: Probabilistic nonlinear dynamic analysis; structural safety; monte carlo 
simulation.   

1. INTRODUCTION  

Uncertainty on the various elements of the given structure may be arise from different 
sources such as geometry, material properties, boundary conditions, and so on. The need to 
incorporate uncertainties in an engineering design has long been recognized [1]. The 
traditional approach, the so called deterministic analysis , makes use of safety coefficients 
in order to prevent unpredicted failures due to the variability of the data. As a consequence, 
it is not possible to quantify the reliability of the structure, defined as the probability that the 
structure does not experience a failure [1]. On the other side, are liability new trend, named 
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probabilistic analysis [2,3,4], allowing the estimation of the reliability of the design, 
considers the stochastic variability of the data. 

The probabilistic methods for treating uncertainty problems can be broadly classified into 
two categories: statistical approach and non-statistical approach. Direct Monte Carlo 
simulation technique is the most prevalent statistical approach. The Monte Carlo method, 
while requiring an effective and accurate tool for numerical generation of random fields, 
stands at the center of stochastic mechanics, providing a universal means of solving various 
complicated stochastic problems [5,6,7]. 

Some researchers have focused their interests on the non-statistical approach. Stochastic 
finite element method belongs to this category. This method in conjunction with Neumann 
expansion [8] or spectral approach [9] has been proposed to attain the statistics of response 
of stochastic structures. 

The structures, however, usually unavoidably exhibit strong non-linearity during their 
service life. In spite of the paramount importance, it is so far difficult to use non-statistical 
approach to capture accurate probabilistic response of such problems. 

On the other hand, the nonlinear stochastic dynamics [10], the probability density 
evolution methods [11] and the topic of variation of response due to the variation of 
parameters and excitations [12] have been developed in the past years. 

The objective of this investigation is to study the probabilistic nonlinear dynamic analysis 
of a plane frame with randomness in material properties and section dimensions by using 
finite element method. In the probabilistic finite element program, all variables can be 
treated as random variables, in particular: material properties and geometrical properties. 
The Monte Carlo simulation method is used to generate the random variables. Each variable 
is simulated for any type of probability density function (PDF) including normal, lognormal 
and uniform distribution with various coefficients of variation (COVs) changing from 5% to 
15%. The mean and the standard deviation of the top displacement of the plane frame are 
obtained for various PDFs and COVs . These obtained statistical responses are very 
useful for estimating the structural safety and evaluating the sensitivity of dynamic 
responses to the type of PDF and values of COV .   

2. NONLINEAR DYNAMIC ANALYSIS  

The dynamic analysis is usually performed by solving a set of time differential equations 
which contain nodal displacements, velocities and accelerations. In the other words, the 
dynamic equilibrium equation is a system of second order differential equations which can 
be formulated by the several well known approaches such as the Newton s second law of 
motion, principle of virtual work [13], Lagrange equation [13] or Hamilton s principle [14]. 
These procedures lead to the following system of dynamics equilibrium equations;  
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and external forces vectors, respectively. The structure has nonlinear behavior if inertia, 

damping or internal forces are nonlinear function of nodal displacement (
1n

D ) at time 1nt . 

Moreover, nodal velocity and acceleration vectors are presented by symbols 
1n

D

 

and 
1n

D , 
respectively. The initial conditions of Eq. (1) can be written as follows;  

00 D(0)D,DD(0)

 

(2)

  

where, 0D and 0D are displacement and velocity at the beginning  of analysis (t=0), 

respectively. It should be emphasized that there are some procedures which reduce the 
dynamic equation to a set of first order differential equations [15]. 

Since this paper deals with nonlinear dynamic analyses, the analytical methods such as 
modal analysis are not effective and applicable for solving Eq. (1). As a result, a numerical 
time integration approach is utilized here. Numerical schemes are known by step by step 
time integration. Generally, there are three groups of numerical algorithms: Explicit, Implicit 
and Predictor-Corrector. 

Explicit integrations which run by vector operations are quite simple and rapid. The main 
defect of these procedures is numerical instabilities so that very small time steps should be 
utilized for increasing accuracy and stability. In these methods, displacement and velocity of 
the current increment are explicitly formulated using some available previous time steps 
data. As a result, displacement and velocity of the new time step are calculated by few 
vector operations. Then, these quantities are substituted into the dynamic equilibrium 
equation (Eq. 1), and acceleration of the current time step is obtained by solving a solving 
system of simultaneous linear equations, even for nonlinear analyses. Some of the well 
known explicit time integrations are as follows; Single step integration [15]; explicit 
integration with optimal dissipation [16]; Generalized weighted residual approach [17]; SSpj 
method [18]; m algorithm [19] and Hoff-Taylor approach [20] and etc. 

In implicit methods, velocity and acceleration of the current time step are assumed to be 
function of current displacement and some available information of the previous steps. 
Utilizing these functions in dynamic equilibrium equation (Eq.1), an equivalent static system 
of simultaneous equations is obtained. For nonlinear analyses, this system will be nonlinear. 
Therefore, displacement vector of the new time step is calculated from the equivalent static 
system. These procedures are more stable and accurate than the explicit integrations so that 
greater time step can be used. Some of the well known implicit approaches are Newmark- , 
Wilson- , Generalized-

 

method [21] and recently implicit higher order integrations 
(IHOA) [22]. 

The third group of time integration methods is Predictor-Corrector integrations which are 
formulated by combining implicit and explicit procedures. In such algorithms, the explicit 
and implicit integrations are utilized for estimating and correcting the answer, respectively 
[23]. The correction stage should be iterated successively to achieve more accurate response. 
In spite of implicit integrations, predictor-corrector methods can be performed by vector 
operations even in nonlinear analyses. In the other words, a linear system of simultaneous 
equations should be only solved in each correction of these methods (like explicit 
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integrations). Such techniques present more stable and accurate integration compared with 
the explicit methods. Because of these specifications, higher order predictor-corrector 
integration called PC-m is used here for dynamic analysis of nonlinear portal frame [24].  
This algorithm is formulated based on the implicit higher order integration (IHOA) by 
considering different weighted factors. In these higher order methods, accelerations of 
several previous time steps are used to predict and correct the dynamic response of structure. 
Therefore, displacement and velocity of the current time step are predicted as follows [24]:  
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where, 
in

D

 

and 

 

are acceleration vector at time tn-i and accuracy order of the 

method, respectively. Also, weighted factors i

 

and i

 

which control stability and accuracy 

of the integration can be found in reference [24]. Using Eqs. (3) and (4) an estimation of 
dynamic response of structure (displacement and velocity) is obtained. Then, the 

acceleration of the current time step (
1n

D ) is calculated from the dynamic equilibrium 
equation (Eq. (1)). Now, the correction stage is started. For this purpose, the relationships of 
the IHOA integration is used; i.e. the displacement and velocity are corrected by the 
following implicit integration [22];  
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Here, i

 

and i

 

are weighted factors of the IHOA method and can be found in reference 

[22]. In this paper the integration order is assumed to be 6 i.e. 6 . In other words, the 
PC-6 algorithm is used for numerical dynamic analysis. More details of this algorithm can 
be found in [24]. 

To prove the accuracy of the PC-6 algorithm, an elastic pendulum shown in Figure 1 is 
analyzed [25]. This structure which has large deflection nonlinearity is modeled by a two 
nodes truss element [25]. Also, total LaGrange finite element approach is utilized to form 
the nonlinear equilibrium equations. The mass matrix is consistent [26] and the axial rigidity 
(AE) and material density per element length ( A) are 104 N and 6.57 kg/m, respectively. 
Bathe has been analyzed this structure by using implicit integration and two time steps; i.e. 
0.05 and 0.01 sec. Here, the PC-6 algorithm runs with time step 0.05 sec. Figure 2 shows the 
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response of the horizontal displacement of the pendulum between times 45 and 50 seconds. 
It should be noted that the exact solution has been obtained by implicit integration and very 
small time step (0.0001 sec). It is clear that the PC-6 algorithm is more accurate than the 
implicit integration presented by Bathe [25] so that numerical results of the PC-6 algorithm 
have good consistency with the exact solution. Therefore, higher order predictor-corrector 
time integration can be utilized for any nonlinear dynamic finite element analysis.  

 

Figure 1. Elastic pendulum  

 

Figure 2. Response of horizontal displacement of the elastic pendulum for time step 0.05 sec   

3. PROBABILISTIC DYNAMIC ANALYSIS  

For the probabilistic dynamic analysis, a plane frame is analyzed with elastic geometrically 
nonlinear behavior [27]. Figure 3 shows this frame. For this purpose, the co-rotational finite 
element model is used [27]. The structure is subjected to earthquake base excitation, in the 
shape of El Centro acceleration record which is shown in Figure 4. For each simulation, time 
step is considered as 0.0005 second and top displacement of the frame is obtained using PC-
6 method [24]. 
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The modulus of elasticity, mass density and section dimensions are considered to be 
random variables. The type of probability density function, mean value and coefficient of 
variation for the variables are presented in Table 1.  

 

Figure 3. Plane frame for stochastic nonlinear dynamic analysis  

 

Figure 4. Earthquake excitation history for dynamic analysis  

Table 1: Characteristics of random variables. 
Stochastic variable PDF Mean Value COV (%) 

Modulus of elasticity 

Normal 

Lognormal 

Uniform 

2×1011 kg/m2  

5, 10, 15 

Mass density 

Normal 

Lognormal 

Uniform 

39500 kg/m3  

5, 10, 15 

Height of section dimension 

Normal 

Lognormal 

Uniform 

0.3 m  
5, 10, 15 
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To study the probabilistic dynamic analysis of the plane frame, random variables i.e. density, 
modulus of elasticity and section dimensions are simulated by uniform, normal and lognormal 
probability density functions (PDF) and various coefficients of variation (COV) [28]. Herein, the 
Monte Carlo simulation is used in which one thousand data are generated based on the Sobol 
approach for each case [28]. For example, Figure 5 shows the histograph samples of the modulus 
of elasticity which has been plotted for some probability functions.  
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Figure 5. Simulated probability density function (PDF) for modulus of elasticity  

Some important parameters in probabilistic analysis such as standard deviation and mean 
values of the dynamic response are obtained and discussed for various states as following. 
Figures 6, 7 and 8 present the results for the standard deviation of the top displacement of the 
frame, respectively, for normal, lognormal and uniform distributions, respectively. The time 
history of standard deviation can be used to predict the value of standard deviation for any type 
of probability density function. For this purpose, the standard deviation has been calculated in 
each time step of dynamic analysis. Figures 6, 7 and 8 show that the standard deviation of the 
structural response increases by increasing the coefficient of variation of the random variables. It 
can be concluded that when the coefficient of variation of variables increases 5%, the standard 
deviation of the structural response increases more than 100%.  
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Figure 6. The standard deviation of the top displacement (Normal distribution) 
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Figure 7. The standard deviation of the top displacement (Lognormal distribution)  
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Figure 8. The standard deviation of the top displacement (Uniform distribution)  
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Figure 9. The standard deviation of the top displacement (COV=5%) 
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For comparison of three types of statistical distributions [28], standard deviation diagrams for 
different modes are drawn simultaneously. Figures 9, 10 and 11 show the standard deviation for 
three coefficients of variation i.e. 5%, 10%, and 15%, respectively. As it can be seen in Figures 
9, 10 and 11, standard deviation of the structural response for uniform and lognormal 
distributions is more than normal one.  

0

0.002

0.004

0.006

0.008

0 1 2 3 4 5
Time (sec)

St
an

da
rd

 D
ev

ia
ti

on
 (

m
)

Normal-10

Lognormal-10

Uniform-10 

Figure 10. The standard deviation of the top displacement (COV=10%)  
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Figure 11. The standard deviation of the top displacement (COV=15%)  

On the other hand, Figures 12, 13 and 14 show the time history of maximum values of 
the top displacement of the frame for various types of PDFs and various values of 
COVs , which are compared to the displacement time history with mean values of random 

variables which are regarded as deterministic values. As it can be seen in Figures 12, 13 and 
14, the maximum values of the top displacement increase when the values of COVs 
increase. The maximum difference between the time histories of displacement with 
deterministic inputs and maximum values of displacement with various PDFs and 
COVs is about 200%. Therefore, the uncertainty and values of COV in mechanical 
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properties and section dimensions affect on the dynamic response and especially on the 
maximum values of displacement.  
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Figure 12. The mean and the maximum top displacement (Normal distribution)  
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Figure 13. The mean and the maximum top displacement (Lognormal distribution)  
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Figure 14. The mean and the maximum top displacement (Uniform distribution)  

For comparison of the three types of statistical distributions, the time history of maximum 
values of the top displacement for different modes, are drawn simultaneously. Figures 15, 16 and 
17 show the maximum top displacements for coefficients of variation 5%, 10%, and 15%, 
respectively. These Figures show that the dynamic response of the structure is not sensitive to 
the type of the probability density function.  
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Figure 15. The mean and the maximum top displacement (COV=5%)  
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Figure 16. The mean and the maximum top displacement (COV= 10%)  
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Figure 17. The mean and the maximum top displacement (COV= 15%)   

4. STRUCTURAL FAILURE PROBABILITY  

The failure probability of a structure is an important factor in the design procedure since it 
quantifies the probability that a structure will fulfill its design requirements. Probabilistic 
analysis is a tool that assists the design engineer to take into account all possible 
uncertainties during the design, construction and life of a structure in order to calculate its 
probability of failure Pf; i.e. to estimate the level of risk against a local or a global structural 
failure [6]. 
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In probabilistic analysis the Monte Carlo method is often employed when the analytical 
solution is not attainable and the failure domain cannot be expressed or approximated by an 
analytical form [28]. The Monte Carlo estimation of Pf  is given by  

(7)

 

N

n
Pf

  

where N is the total number of simulations and n is the number of simulations which 
have greater values than the value for deterministic inputs (mean value of random variables). 

The probabilities of failure are shown in Figures 18, 19, 20 and 21. As it can be seen in 
these figures, the failure probability increases when the coefficient of variation increases. 
Moreover, Figure 21 shows the failure probability is more sensitive to uniform and 
lognormal distributions than normal one.  

 

Figure 18. Probability of failure (Normal distribution) 

 

Figure 19. Probability of failure (Lognormal distribution) 
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Figure 20. Probability of failure (Uniform distribution) 
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Figure 21. Comparison of the probabilities of failure   

5. CONCLUSION  

The probabilistic dynamic response has been investigated for a plane frame with random 
parameters under earthquake base excitation. The nonlinear finite element method with the 
Monte Carlo simulation have been employed to obtain the standard deviation, mean and 
maximum of displacement at the top of the plane frame. 

The results have been obtained for random structural properties (mass density, modulus 
of elasticity and section dimensions) for different probability density functions with 
coefficient of variation changing from 5% to 15% and using the Monte Carlo simulation in 
which one thousand data have been generated for each case. It is found that the standard 
deviation of the structural response is increased when the coefficient of variation of the 
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random variables is increased. Comparison of different types of statistical distributions 
shows that the standard deviation of the structural response is more sensitive to uniform and 
lognormal distribution than normal one. The time history of maximum values of the top 
displacement of the frame for various types of PDFs and various values of COVs , has 
been compared to the displacement time history with mean values of random variables 
which are regarded as deterministic values. It can be concluded that the maximum value of 
the top displacement is increased when the value of COV is increased. The maximum 
difference between the time histories of displacement with deterministic inputs and 
maximum values of displacement with various PDFs and COVs is about 200%. 
Comparison of the time history of maximum values of the top displacement for different 
types of statistical distributions shows that the dynamic response of the structure is not 
sensitive to the type of the probability density function. The results for the probabilities of 
failure show that the failure probability is increased when the coefficient of variation is 
increased. It is also shown that the failure probability is sensitive to the type of statistical 
distribution.   
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