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ABSTRACT 
 
Frequency domain procedure of the scaled boundary method (SBM) for analyzing 
unbounded mediums has been modified recently using the hybrid spectral element (SE) 
approach and lumped coefficient matrices. In this paper, the modified method is extended to 
analyze 2D non-homogenous unbounded domains. In the modified frequency domain 
approach, elasticity modulus and mass density of unbounded domains can be considered as 
power functions in the radial direction. Accuracy and efficiency of the presented method is 
evaluated by some benchmark examples and it is shown that the modified method leads to 
correct answers. 
 
Keywords: Scaled boundary method; diagonal matrices; dynamic stiffness; unbounded 
domains; non-homogenous. 

 
 

1. INTRODUCTION 
 

In recent years, the boundary element method (BEM) has been developed for analyzing different 
engineering problems. For example, the boundary element method was applied to analyze 
seepage problems [1, 2] static problems [3, 4] and dynamic problems [5, 6]. The most attractive 
feature of the boundary element method is the mesh reduction property. By using the boundary 
element approach, dimension of problem reduces by one. Needing to a fundamental solution is 
the main drawback of the boundary element method. Fundamental solution is an analytical 
answer, which must satisfy the governed equations in the domain of the problem [7]. Recently a 
fundamental solution less boundary element method has been developed by Wolf and Song [8]. 
This method, which is named scaled boundary, is a semi analytical method and couples the 
advantages of the two mostly used finite element (FE) and boundary element methods [9]. The 
scaled boundary method (SBM) uses a scale center (SC) and two dimensionless local 
coordinates (η, ) for two-dimensional (2D) problems. Scale center must be selected in a manner 
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that whole boundary can be viewed from it [7]. For bounded domains, dimension less radial 
coordinate ( ) begins from the scaling center with the value zero. 

This coordinate is selected equal to one on the boundary and is specified by 1≤ <∞ for 
unbounded domains [7]. The dimensionless circumferential coordinate (η) is chosen like the 
standard boundary elements -1≤η<1. Domain discretization scheme of the scaled boundary 
method is shown in Fig. 1.  

 

 
Figure 1. Domain discretization scheme in the scaled boundary method 

 
Like the boundary element method, scaled boundary approach has been applied to solve 

different problems. For example, the method was used to analyze seepage problems [10, 11], 
static problems [12, 13] and dynamic problems [14, 15]. By coupling the scaled boundary 
method with other numerical approaches, the original method can be enhanced to obtain better 
features. For example, a more accurate stress field can be achieved by the hybrid mesh free-
scaled boundary methods [16, 17]. Nonlinear behavior of near field media can be modeled using 
the coupled finite element method (FEM)-scaled boundary finite element method (SBFEM) 
[18].  

Another hybrid approach can be achieved using the spectral element method. Spectral 
element is an h-p refined high order form of the finite element method [19] that can be used as a 
mass lumping procedure in the finite element analysis [20]. The conventional scaled boundary 
method has four coefficient matrices and as it is described in the next sections, two of the 
coefficient matrices can be lumped using the hybrid scaled boundary spectral element method 
(SBSEM). Scaled boundary method is a convenient way for analyzing unbounded mediums 
especially for dynamic problems. Radiation damping condition of unbounded mediums can be 
modeled using the scaled boundary method accurately. In the time domain procedure, 
calculating interaction force can be a very time consuming task. Required time of the analysis 
may be reduced by using the frequency domain approach [21]. In the most of the previously 
done researches with the scaled boundary method, homogenous unbounded mediums were 
analyzed, while limited numbers of the studies were dedicated for non-homogenous unbounded 
domains. Doherty and Deeks [22] investigated non-homogeneous unbounded mediums by the 
scaled boundary finite element method for static problems. Dynamic behavior of non-
homogenous unbounded mediums was studied by Wolf [7] and Wolf and Song [8] where 
material properties were selected as power function of radial coordinate in the scaled boundary 
method. Bazyar and Song [23] developed the conventional frequency domain procedure of the 
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scaled boundary finite element method for non-homogenous problems. They used material 
properties as power functions of both radial and circumferential coordinates.  

The frequency domain procedure of the scaled boundary method leads to a system of 
ordinary differential equations [7]. For unbounded mediums, scaled boundary differential 
equation in dynamic stiffness can be solved as an initial value problem [8]. Therefore, an initial 
value is needed. This initial value can be achieved using a high frequency asymptotic expansion 
of dynamic stiffness matrix [7]. Recently a modified approach has been presented to expand 
dynamic stiffness matrix efficiently at high frequencies [21]. In the modified method, the hybrid 
scaled boundary spectral element approach was used to lump coefficient matrices. The enhanced 
method simplifies the original analyzing procedure by eliminating extra computational efforts. 
Formulation of the modified scaled boundary spectral element method was presented for 
homogenous unbounded domains [21]. In this paper, the proposed method is extended to 
analyze non-homogeneous unbounded mediums. The modified approach is employed a same 
technique which was presented by Bazyar and Song [23] however  elasticity modulus and mass 
density of unbounded media are considered as power function of radial coordinate.  

The paper is organized as follows: it commences with a brief review of the scaled boundary 
method, the modified method is then derived and two numerical examples are solved to evaluate 
accuracy and efficiency of the proposed approach. 
 
 

2. SUMMARY OF THE SCALED BOUNDARY FINITE ELEMENT METHOD 
 
The fundamental solution less, scaled boundary method is a semi analytical method which 
solves boundary value problems numerically in the circumferential direction and analytical 
in the radial direction [7]. The hybrid scaled boundary spectral element method can be used 
instead of the conventional method for enhancing the original features. Like the SBFEM, 
SBSEM has four coefficient matrices (E0, E1, E2, and M0). E0 and M0 are made only by 
shape functions while E1 and E2 contain derivatives of shape functions. E0, E1, E2, and M0 
coefficient matrices can be achieved using Equation (1), Equation (2), Equation (3) and 
Equation (4) respectively. 
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In the equations, [D] is the elasticity matrix for two-dimensional problems and [ρ] is the 

density matrix. [B1] and [B2] are two important matrices in the scaled boundary method 
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where [B1] is the first strain matrix and can be achieved using shape functions (N(η)). [B2] is 
the second strain matrix and contains derivatives of shape functions [7]. Like the mass 
matrix of bounded mediums, M0 (can be considered as mass matrix of unbounded domains), 
can be lumped by using the spectral element idea. In this method, an appropriate integration 
rule (for example the Gauss-Lobatto-Legendre quadrature) must be used to integrate the 
coefficient matrices. In addition, shape functions must have the Kronecker delta function 
property. In the case of the E0 matrix, a full diagonally lumped matrix can be obtained when 
a 1D boundary with constant x coordinate or y coordinate (dx=0 or dy=0) is evaluated [21]. 
In this paper, Lagrange polynomials are used as shape functions and Gauss-Lobatto-
Legendre (GLL) quadrature is used to integrate the coefficient matrices. Lagrangian shape 
functions for 1D problem can be calculated using Equation (5). 
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For homogenous unbounded domains, dynamic stiffness matrix can be determined by the 

frequency domain approach of the scaled boundary method. The SBM leads to a system of 
ordinary differential equations. This first order nonlinear differential equation is introduced 
in Equation (6) [4]. 
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In the Equation (6), s is the dimension of the geometry (s=2 for 2D and s=3 for 3D 

problems). In this paper, only 2D problems are discussed hence s is considered equal to 2. 
S∞(ω) is the dynamic stiffness of homogenous unbounded domain. An initial condition is 
required to solve Equation (6) as an initial value problem. Previously, researchers proposed 
a high frequency asymptotic expansion for dynamic stiffness of unbounded mediums. This 
expanded matrix can be used as an initial condition for Equation (6). Equation (7) indicates 
this expanded matrix [6]:  
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Where, C∞ and K∞ are constant dashpot and spring matrices of unbounded media, 

respectively. For homogenous unbounded domains, unknown matrices of the Equation (7) 
can be obtained using the previously proposed modified SBSE method. In the modified 
method, additional computational efforts have been removed and an efficient formulation is 
available. Detailed description about the enhanced SBSE method is presented in the Ref. 
[21], however a comparison between the modified and original approaches can be reached 
by comparing flowchart of the methods. Fig. 2 presents flowchart of the original method and 
Fig. 3 introduced flowchart of the modified approach.  
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Figure 2. Flowchart of the SBFE (original) method to calculate S∞(w) [21] 

 
For non-homogenous unbounded domains, researchers presented scaled boundary 

differential equation in dynamic stiffness for different cases. Wolf [7] used material 
properties as power function of the radial coordinate while Bazyar and Song [23] improved 
the scaled boundary method for spatially nonhomogeneous materials. They used material 
properties as power functions of spatial coordinates [23]. For the unbounded domains with 
non-homogeneity in the radial direction, material properties can be stated as: 
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Figure 3. Flowchart of the modified SBSE method to calculate S∞(w) [21]. 

 
Where values of E(η) and ρ(η) on the boundary ( =1) are defined as 
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In these equations, α and β are non-homogeneity parameters of elasticity and density, 

respectively. E0 and ρ0 are the starting values for elasticity and density respectively. L is a 
characteristic length which could be chosen with different definitions. As Booker et al. [24] 
indicated, α can be selected with values between zero and one (0≤α≤1) for geotechnical 
analysis. Required equations for determining dynamic stiffness matrix of non-homogenous 
unbounded mediums in the conventional scaled boundary finite element method were 
detailed by Bazyar and Song [23]. The main differences are in determining coefficient 
matrices (Equation (1)- Equation (4)) and in the scaled boundary differential equation 
(Equation (6)). In the next section, the scaled boundary method is modified for diagonal E0 
and M0 coefficient matrices to analyse non-homogenous unbounded mediums. 

 
 

3. THE MODIFIED METHOD FOR NON-HOMOGENOUS MEDIUMS 
 

For non-homogenous unbounded mediums, elasticity and density matrices must be chosen 
as functions of radial coordinate. In the scaled boundary coordinates, elasticity and density 
matrices relate to circumferential and radial coordinates (Equation (8) and Equation (9)). 
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Since, coefficient matrices are integrated only over the circumferential direction (Equation 
(1)- Equation (4)), a separation of variables must be applied on elasticity and density 
matrices. Hence the resulted matrices can be defined as [23]: 
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)()(  y (13)
 

Differential equation for dynamic stiffness matrix of non-homogenous unbounded 
mediums has been derived previously and it is introduced in Equation (14) [23]. 
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It must be mentioned that in the conventional scaled boundary method Equation (14) 

should be transformed in a new form. In the original approach, transformed coefficient 
matrices must be used. The transformed coefficient matrices in the original scaled boundary 
method can be achieved by Equation (15) - Equation (18). 
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In these equations,  can be obtained by the Cholesky decomposition of [E0]-1 (Equation 

(19)). 
 

TE ][][][ 10  (19)
 
All of the transformation efforts are removed in the modified scaled boundary spectral 

element method and coefficient matrices are used on their original forms [21]. To obtain the 
needed initial condition for the differential equation (Equation (14)), the unknown 
coefficient matrices of Equation (7) must be determined. Therefore, Equation (7) must be 
substituted in Equation (14). By rearranging the obtained equation in descending order of the 
power series iω, Equation (20) can be formed. 
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In Equation (20), [�] is defined as: 
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Each term of Equation (20) must be set equal to zero. First term yields to an equation for 

constant dashpot matrix of the unbounded media (C∞). Hence, C∞ can be achieved using 
Equation (22). 
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Since the M0 and E0 coefficient matrices are positive, and they have diagonally lumped 

form (in the SBSE approach), C∞ will be a positive definite matrix with diagonally lumped 
entries [21]. By setting the second term of Equation (20) equal to zero, a linear algebraic 
equation for K∞ can be achieved.  The resulted equation can be formed as: 
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Equation (23) is a Lyapunov equation and can be solved using an iterative procedure. 

Third term of Equation (20) yields to a Lyapunov equation for the unknown coefficient 
matrix A1. The resulted equation is shown in Equation (24). A same equation has been 
achieved for homogenous unbounded mediums, previously. 
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To calculate the unknown coefficient matrix A2, the fourth term of Equation (20) must be 

set equal to zero. Equation (25) shows the resulted Lyapunov equation for A2. 
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If m is selected larger than two in Equation (7), unknown coefficient matrices Ai+1 can be 

calculated using Equation (26).  
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In the original form of Equation (26) (in the conventional SBFEM) the unknown matrices 

Aj must be calculated in the transferred form (aj) then an inverse transformation should be 
applied for each i (i=1, 2,…, 2×m) while in the modified formulation, all these extra 
computational efforts are eliminated (see Fig. 3) [21]. Since all the unknown matrices of 
Equation (7) are determined, high frequency asymptotic expansion of dynamic stiffness 
matrix can be calculated. It is notable that the new formulation is only valid for the scaled 
boundary spectral element method with diagonally lumped E0 and M0 matrices [21]. To 
show differences between the modified methods for analysing homogenous and non-
homogenous unbounded domains, it must be mentioned that some terms (which contain α 
and β) are added in Equation (23), Equation (24),  Equation (25) and Equation (26) while 
other equations (Equation (21), Equation (22)) remain without any change. 

 
 

4. NUMERICAL EXAMPLES 
 

In this section, two different numerical examples are solved to assess accuracy and 
efficiency of the modified method. To achieve time history of displacements the inverse fast 
Fourier transformation is used in the examples. In these analyses, the extended mesh method 
(EMM) is used to verify obtained results. In addition, for the case α=0 and β=0 
(homogenous media) achieved answers are compared with the results in the literature. 

 
4.1 Circular Cavity Embedded in Full Plane 
For the first example, a circular cavity embedded in an elastic full plane is selected. The 
plain strain condition is considered where wall of the cavity is subjected to a uniform 
pressure. In this example, radius of the cavity is selected equal to 2m. Young’s (elasticity) 
modulus of the cavity is considered as a function of radius, which is introduced by Equation 
(10). The characteristic length (L) is selected equal to 18 0.5 (see Fig. 4. (a)) . The initial 
value of elasticity modulus (E0) is set equal to E0=18720 kN/m2. Other mechanical properties 
are considered constant, Poisson’s ratio v=0.3 and mass density ρ=2×103 kg/m3. As the 
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problem is symmetrical, only one quarter of the cavity is analyzed. Fig. (4.a) presents 
considered geometry for cavity and its surrounded area. Non-homogeneity of the problem 
can be found in Fig. 4. (b) for the case that α is selected equal to one (α=1). In the analysis, 
Four twenty-five nodded spectral elements and four five-nodded scaled boundary spectral 
elements are used to model near field bounded and far field unbounded mediums, 
respectively. Sub-structure method is undertaken to achieve lumped E0 and M0 coefficient 
matrices of unbounded and mass matrix of bounded mediums. 

 

 
(a)                                                           (b) 

Figure 4. (a) geometry discretization for a circular cavity embedded in full plane using SE-
SBSEM (b) Distribution of elasticity modulus in the geometry of problem for α=1 (circular 

cavity embedded in full plane) 
 
The used extended mesh for this study is shown in Fig. 5. 
 

 
Figure 5. Extended mesh for modeling a circular cavity embedded in full plane 

 
In the extended mesh method, 1375 nodes are used while in the coupled scaled boundary 

method, total number of nodes is equal to 85. Time history of the applied uniform pressure 
is considered as a triangular function, which is defined in Fig. 6(a). Duration of the load is 
0.1s and the peak value of the load is selected equal to 10kN. Amplitude of the load function 
in the frequency domain is plotted in Fig. 6(b). 
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(a)                                                                (b) 

Figure 6. (a) Time history of considered triangular load function (b) Amplitude of the pressure in 
frequency domain 

 
Firstly, homogenous case (α=0) is investigated. In this analysis, four different methods 

are used. Analytical solution of this problem is in available; for example can be found in 
Ref. [26]. Obtained results are plotted in Fig. 7. It is shown that, the modified scaled 
boundary method leads to an excellent agreement with the EMM and the original SBM. In 
addition, a good agreement with the analytical solution is achieved. It must be mentioned 
that the run time of the modified SBSE method is equal to 10.87s (in a conventional laptop) 
while the extended mesh method needs to 62.13s for analyzing the considered problem.    

For investigating the accuracy of the modified SBSE approach in the non-homogenous 
mediums, two different cases are considered. For the case α=1, variability of elasticity 
modulus by radial coordinate can be found in Fig. 8.  

 

 
Figure 7. Radial displacement time history of cavity wall (α=0) 
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Figure 8. Distribution of elasticity modulus in the extended mesh method for α=1 (circular cavity 

embedded in full plane) 
 
Obtained radial displacement time histories of the cavity wall for α=1 and α=0.5 are 

plotted in Fig. 9. As this figure shows, excellent agreement between the EMM and the 
modified SBSE approach is achieved. This figure also shows that by increasing the 
parameter α, an increment in the peak of the displacements is occurred. 

 

 
(a)                                               (b) 

Figure 9. Radial displacement time history of cavity wall for (a). α=0.5 (b) α=1 
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To assess efficiency of the proposed procedure, an elastic half plane, which is shown in Fig. 
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horizontal dynamic load function. In this example, Initial elasticity modulus of half plane 
E0=2.66×105 kN/m2, constant Poisson’s ratio v=0.33 and constant mass density ρ=2×103 
kg/m3 are selected to perform the analysis. Dynamic load is applied at the point B (Fig. 
10(a)) with coordinates x=-20 and y=0. Time history of the load function is plotted in Fig. 
10(b) where this function can be obtained using Equation (27) and frequency content of the 
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load function can be achieved using Equation (28) [25].  
 

 
(a)                                                            (b) 

Figure 10. (a) Geometry of the problem (b) Time history of the load function 
 
The known parameters of the load function are selected as AR=1, t0=1/π, ts=3/π. 
 

))(exp())(21()( 2

0

2

0 t

tt

t

tt
AtR SS

R





 (27)

))(25.(exp)(5.)( 2
0

2
00 tttAR R   (28)

 
An extended mesh is generated for this problem, which discretize a domain with length 

and width equal to 1100m and 400m, respectively. Fig. 11 presents the used spectral element 
and extended meshed for this problem. In the SE-SBSE method, 81 nodes are used while 
1073 nodes are employed in the EMM. Response of the domain are calculated for only 
homogenous cases (α=0 and β=0). Estorff and his coworker [27] was used the coupled finite 
element- boundary element method (FE-BEM) to analyze this problem (in homogenous 
condition). 

 

 
(a)                                                           (b) 

Figure 11. (a). Geometry discretization using spectral elements (b) extended mesh 
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to same answer, which means that the EMM and the modified SBSEM can able to model 
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this problem accurately. By increasing period of the vibration, reflected waves can affect 
answer of the EMM while the SBSE method can be used for any considered period.     

 

 
(a)                                               (b) 

Figure 12. Horizontal displacement time histories of (a) point A (b) point C 
 
 

5. CONCLUSION 
 

In this paper, the frequency domain procedure of the modified scaled boundary spectral 
element method is extended to analyze non-homogenous unbounded mediums. The 
presented formulation is valid for non-homogeneity in spatial coordinates however only the 
non-homogeneity in radial direction is studied. By the proposed formulation some extra 
computational efforts of the original scaled boundary finite element method can be removed. 
Accuracy and efficiency of the discussed method is evaluated by solving two numerical 
examples. Five verifications are presented to ensure that the modified SBSEM leads to 
correct answers. Hence it can be concluded that the modified scaled boundary spectral 
element method can be used to analyze dynamics of non-homogenous unbounded mediums, 
efficiently. 
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