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ABSTRACT 
 
Dynamic response of a structure is a remarkable characteristic which can be optimized 
(controlled) by imposing constraints on natural frequencies. But it is mentionable that size 
and shape optimization of trusses with multiple frequency constraints is a very non-linear 
and non-convex problem that may be converged to local optima when using meta-heuristic 
algorithms. To concur this problem, researchers have developed hybrid meta-heuristic 
algorithms. 

In this paper recently introduced dolphin echolocation algorithm is applied for optimum 
design of truss structures with frequency constraints. Four numerical examples are 
considered to demonstrate the efficiency of the algorithm in comparison to hybrid meta-
heuristic algorithms. 
 
Keywords: 

 
 

1. INTRODUCTION 
 

Weight optimization of structures with frequency constraints is an important  problem especially 
for structures that are exposed to wind, hurricanes or violent earthquake. In fact, by imposing 
constraints on natural frequencies, one can reduce the domain of vibration and prevent the 
resonance phenomenon in dynamic response of structures [1]. But there are two common 
problems in frequency optimization. One problem is switching of vibration modes due to 
structural size and shape modifications that causes convergence difficulties in optimization. 
Another problem is the fact that some structures exhibit repeated eigenvalues even though the 
initial design did not have any [2]. Some optimization methods have been employed for 
optimum design of structures subjected to multiple frequency constraints. One of the first papers 
contributed to this field was by Bellagamba and Yang [3]. In this paper, a constrained parameter 
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optimization technique using Gauss method was presented. Yang et al [4] developed an 
evolutionary method of gradually omitting inefficient material to be replaced with new material 
for structural topology optimization with frequency constraints. McGee and Phan [5] introduced 
an efficient optimality criteria (OC) method taking advantage of Kuhn-Tucker condition. 
Sedaghati [6] proposed a new approach using combined mathematical programming based on 
the Sequential Quadratic Programming (SQP) technique, and the finite element technique based 
on the Integrated Force Method. Lin et al. [7] utilized a bi-factor algorithm based on the Kuhn–
Tucker criteria. All these methods were time consuming and hard to apply. After that meta-
heuristic algorithms have been introduced, they have been taken into consideration for being 
applied to structural optimization with frequency constraints. Gomes [8] has been one of the 
pioneers in this field. He used standard particle swarm algorithm for simultaneous layout and 
size optimization of truss structures. Lingyun et al. [9] presented an enhanced genetic algorithm 
called NGHA (niche genetic algorithm). This hybrid algorithm, developed by combining 
simplex search and genetic algorithm, followed a nature based scheme of niche. Gholizadeh et 
al. [1] and Salajegheh et al. [10] used Genetic Algorithm (GA) and neural network (NN) 
togethere to optimize structures subjected to multiple natural frequency constraints. Kaveh and 
Zolghadr [11] employed the Charged System Search (CSS) algorithm and its enhanced form to 
solve the problem. Also Kaveh and Zolghadr [12] proposed a hybridized algorithm, CSS–
BBBC, with trap recognition capability for weight optimization of trusses on layout and size 
optimization. Furthermore, Kaveh and Zolghadr [13] presented a new hybrid meta-heuristic 
algorithm called Democratic PSO for truss layout and size optimization with frequency 
constraints. Kaveh and Javadi [14] utilized harmony search and a ray optimizer for enhancing 
the particle swarm optimization algorithm (HRPSO). Kaveh and Mahdavi [15] used a hybridized 
BB-BC/Quasi-Newton algorithm, and Kaveh and Mahdavi [16] utilized Colliding Bodies 
Optimization (CBO) for truss optimization with multiple frequency cobstraints. 

As mentioned, so far different methods have been employed to truss mass optimization 
with frequency constraints, considering that recently hybrid meta-heuristic algorithms have 
been taken into account more. This is because of the problem that such an algorithm with high 
exploitation is needed to explore a rather highly non-linear and non-convex search space with 
several local optima. Thus hybrid meta-heuristic algorithms have been known better choice for 
this kind of optimization problems. 

Dolphin echolocation algorithm, recently developed optimization method by Kaveh and 
Farhoudi [17], is going to be used in this paper. Dolphin echolocation algorithm is the first 
algorithm using CF index. CF is defined as convergence factor in the paper presented by 
Kaveh and Farhoudi [18]. With convergence factor (CF), we can control somewhat the 
exploration and explotation of an algorithm. In this paper the convergence rate of DEO 
(Dolphin echolocation algorithm) is investigated in comparison with hybrid meta-heuristic 
algorithms in structural optimization with frequency constraints. 

After this introduction, Section 2 presents the dolphin’s echolocation in nature. Section 3 
introduces dolphin echolocation algorithm, Section 4 states problem formulation, Section 5 
presents numerical examples. The last section is devoted to concluding remarks indicating the 
capabilities of the DE in comparison to some other meta-heuristic algorithms. 
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2. DOLPHIN ECHOLOCATION IN NATURE 
 
Dolphin echolocation mimics strategies used by dolphins for their hunting process. Dolphins 
produce a kind of voice called sonar to locate the target, doing this dolphin change sonar to 
modify the target and its location. Dolphin echolocation is depicted in Fig. 1. This fact is 
mimicked here as the main feature of the new optimization method [17]. 

 

 
Figure 1. A real dolphin catching its prey 

 
 

3. INTRODUCTION TO DOLPHIN ECHOLOCATION 
 

Regarding an optimization problem, it can be understood that echolocation is similar to 
optimization in some aspects; the process of foraging preys using echolocation in dolphins is 
similar to finding the optimum answer of a problem. 

Dolphins initially search all around the search space to find the prey. As soon as a 
dolphin approaches the target, the animal restricts its search, and incrementally increases its 
clicks in order to concentrate on the location. 

The method simulates dolphin echolocation by limiting its exploration proportional to the 
distance from the target. For making the relationship much clear, consider an optimization 
problem. Two stages can be identified: in the first stage the algorithm explores all around the 
search space to perform a global search, therefore it should look for unexplored regions. 
This task is carried out by exploring some random locations in the search space, and in the 
second stage it concentrates on investigation around better results achieved from the 
previous stage. These are obvious inherent characteristics of all meta-heuristic algorithms. 
An efficient method is presented in Ref. [18] for controlling the value of the randomly 
created answers in order to set the ratio of the results to be achieved in phase 1 to phase 2. 

By applying Dolphin Echolocation (DE) algorithm, the user would be able to change the 
ratio of answers produced in phase 1 to the answers produces in phase 2 according to a 
predefined curve. In other words, global search, changes to a local one gradually in a user 
defined style. 

The user defines a curve on which the optimization convergence should be performed, 
and then the algorithm sets its parameters in order to be able to follow the curve. The 
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method works with the likelihood of occurrence of the best answer in comparison to the 
others. In other words, for each variable there are different alternatives in the feasible region, 
in each loop the algorithm defines the possibility of choosing the best so far achieved 
alternative according to the user determined convergence curve. By using this curve, the 
convergence criterion is dictated to the algorithm, and then the convergence of the algorithm 
becomes less parameter dependent. The curve can be any smooth ascending curve but there 
are some recommendations for it. 

Previously, it has been shown that there is a unified method for parameter selection in 
meta-heuristics [18]. In the latter paper, an index called the convergence factor was 
presented. A Convergence Factor (CF) is defined as the average possibility of the elitist 
answer. 

 

 
Figure 2. Sample convergence curves, applying Eq. (1) for different values of power [1]. 

 
3.1 Dolphin echolocation algorithm 
Before starting optimization, search space should be sorted using the following rule: 

Search space ordering: For each variable to be optimized during the process, sort 
alternatives of the search space in an ascending or descending order. If alternatives include 
more than one characteristic, perform ordering according to the most important one. Using 
this method, for variable j, vector Aj of length LAj is created which contains all possible 
alternatives for the jth

 variable putting these vectors next to each other, as the columns of a 
matrix, the Matrix AlternativesMA*NV is created, in which MA is max(LAj) j=1:NV; with NV 
being the number of variables. 

Moreover, a curve according to which the convergence factor should change during the 
optimization process should be assigned. Here, the change of CF is considered to be 
according to the following curve: 
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:1PP  Convergence factor of the first loop in which the answers are selected randomly. 
:iLoop  Number of the current loop. 
:Power  Degree of the curve. As it can be seen, the curve in Eq. (1) is a polynominal of 

Power degree. 

:NumberLoops  Number of loops in which the algorithm should reach to the convergence 
point. This number should be chosen by the user according to the computational effort that 
can be afforded for the algorithm. 

Fig. 2 shows the variation of PP by the changes of the Power, using the proposed 
formula, Eq. (1). 

The flowchart of the algorithm is shown in Fig. 3. The main steps of Dolphin 
Echolocation (DE) for discrete optimization are as follows: 

Initiate NL locations for a dolphin randomly. 
This step contains creating LNL*NV matrix, in which NL is the number of locations and NV 

is the number of variables (or dimension of each location). 
Calculate the PP of the loop using Eq. (1). 
Calculate the fitness of each location. 
Fitness should be defined in a manner that the better answers get higher values. In other 

words the optimization goal should be to maximize the fitness. 
Calculate the accumulative fitness according to dolphin rules as follows: 
a) 
for i = 1 to the number of locations 
for j = 1 to the number of variables 
find the position of L(i,j) in jth column of the Alternatives matrix and name it as A. 
for k = Re to Re 

 

  jkAe
e

jkA AFiFitnesskR
R

AF )()( )(*
1

   (2)

end 
end 
end 
Where 

jkAAF )(   is the accumulative fitness of the (A+k)th alternative (numbering of the 

alternatives is identical to the ordering of the Alternative matrix) to be chosen for the jth 
variable; eR  is the effective radius in which accumulative fitness of the alternative A's 
neighbors are affected from its fitness. This radius is recommended to be not more than 1/4 

of the search space; Fitness  (i) is the fitness of location i. 
It should be added that for alternatives close to edges (where A+k is not a valid; A+k < 0 or 

A+k > LAj), the AF is calculated using a reflective characteristic. In this case, if the distance of 
an alternative to the edge is less than Re, it is assumed that the same alternative exists where 
picture of the mentioned alternative can be seen, if a mirror is placed on the edge. 

b) In order to distribute the possibility much evenly in the search space, a small value of 
  is added to all the arrays as  AFAF . Here,   should be chosen according to the way 
the fitness is defined. It is better to be less than the minimum value achieved for the fitness. 
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c) Find the best location of this loop and name it “The best location”. Find the 
alternatives allocated to the variables of the best location, and let their AF be equal to zero.  

In other words: 
for j=1: Number of variables 
for i=1: Number of alternatives 
if i = The best location(j) 
 

0ijAF (3)
 
end 
end 
end 
for variable j(j=1 to NV), calculate the probability of choosing alternative i(i=1 to ALj), 

according to the following relationship: 
 





LAj

1i
ij

ij
ij

AF

AF
P  

(4)

 
6. Assign a probability equal to PP to all alternatives chosen for all variables of the best 

location and devote rest of the probability to the other alternatives according to the following 
formula: 

for j=1: Number of variables 
for i=1: Number of alternatives 
if i= The best location(j) 
 

PPPij  (5)
 
else 
 

ijij PPPP )1(  (6)
 
end 
end 
end 
Calculate the next step locations according to the probabilities assigned to each 

alternative. 
Repeat Steps 2 to 6 as many times as the Loops Number. 
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Figure 3. The flowchart of the DE algorithm 

 
 

4. PROBLEM STATEMENTS 
 

In this paper, the aim is to minimize the weight of the structure under frequency constraints. 
The optimization problem can be stated mathematically as follows: 
 

Find X=(x1,x2,x3,..,xn)
to minimizes Mer (X) = f(X) × fpenalty(X) 

Subjected to 
ωj ≤ ωj*       for some natural frequencies j 
ωk ≥ ωk*      for some natural frequencies k 

ximin ≤ xi ≤ ximax 

(7)

 
Where X is the vector containing the design variables, including both nodal coordinates 

and cross-sectional areas. Here n is the number of variables which is usually chosen with 
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respect to the symmetry and practice requirements. Mer(X) is the merit function; f(X) is the 
cost function, which is taken as the weight of the structure; fpenalty(X) is the penalty function 
which results from the violations of the constraints corresponding to the response of the 
structure [8]; ωj is the ith natural frequency of the structure and ωj

* is its upper bound. ωk is 
the kth natural frequency of the structure and ωk

* is its lower bound. ximin and ximax are the 
lower and upper bounds of the design variable xi, respectively. 

The cost function is expressed as  
 




mn

i iii ALxf
1

)(  (8)

 
where ρi is the material density of member i; Li is the length of member i; and Ai is the 

cross-sectional area of member i. 
The penalty function differs according to the problem. 
 
 

5. NUMERICAL EXAMPLES 
 

10-bar truss 
The 10-bar planar truss shown in Fig. 4 is a common benchmark problem in the field of 
weight optimization of the structures with frequency constraints. This is a size optimization 
problem firstly investigated by Grandhi and Venkayya [7] using the optimality algorithm. 

A non-structural mass of 454.0 kg is attached to the free nodes. For DE algorithm, all 
cross sectional areas of members are selected from discrete set of {0.645 0.7 0.8 0.9…50} 
cm2. Table1 shows the material properties, variable bounds, and frequency constraints for 
this example.  

This problem is solved for two different values for the elastic modulus as 6.89 × 1010 and 
6.98 × 1010 N/m2 (107 psi). 

The design vectors and the mass of the corresponding structures obtained by different 
researchers, is presented in table 2. Frequencies of the optimum answers are presented in 
Table3. Fig. 5 shows the convergences curve of the best result obtained by DE and compares 
it with other algorithms. 

It can be seen although treat the problem with a discrete optimization method, it achieved 
nearby results in comparison with other meta-heuristic methods which were a continuous 
search method. 

 
Figure 4. A 10-bar planar truss 
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Table 1: Material properties, variable bounds and frequency constraints for 10-bar truss structure 

Property/unit Value 
E (modulus of elasticity)/N/m2 6.98 × 1010 

Ρ (Material density)/kg/m3 2770.0 
Added mass/kg 454.0 

Design variable lower bound/m2 0.645×10-4 

L (Main bar’s dimension)/m 9.144 
Constraints on first three frequencies/Hz ω1≥ 7, ω2 ≥ 15, ω3 ≥ 20 

 
Table 2: Optimum answers for 10 bar truss 

Element 
number 

Optimal cross-sectional areas (cm2) 
Grandhi and 
Venkayya 

[17] 

Sedaghati 
[6] 

Wang et al. 
[18] 

Lingyun 
et al. [9] 

Gomes 
[8] 

Kaveh and 
Zolghadr 

[12] 

Kaveh and 
Zolghadr 

[13] 

     PSO CSS-BBBC 
Democrat 

PSO 

 E=68.9 GPa E=68.9 GPa E=68.9 GPa 
E=69.8 

GPa 
E=69.8 

GPa 
E=69.8 GPa E=68.9 GPa 

1 36.584 38.245 32.456 42.234 37.712 35.274 35.944 
2 24.658 9.916 16.577 18.555 9.959 15.463 15.530 
3 36.584 38.619 32.456 38.851 40.265 32.11 35.285 
4 24.658 18.232 16.577 11.222 16.788 14.065 15.385 
5 4.167 4.419 2.115 4.783 11.576 0.645 0.648 
6 2.070 4.194 4.467 4.451 3.955 4.880 4.583 
7 27.032 20.097 22.810 21.049 25.308 24.046 23.610 
8 27.032 24.097 22.810 20.949 21.613 24.340 23.599 
9 10.346 13.890 17.490 10.257 11.576 13.343 13.357 
10 10.346 11.4516 17.490 14.342 11.186 13.543 12.357 

Weight (kg) 594 537.01 553.8 542.75 537.98 529.09 532.39 
 

Table 2: Optimum answers for 10 bar truss (continue) 

Element number 
Optimal cross-sectional areas (cm2) 

Kaveh and Javadi [14] Present work 
 HRPSO DE 
 E=68.9 GPa E=69.8 GPa E=68.9 GPa E=69.8 GPa 
1 35.54022 34.79250 35.3 34.6 
2 15.29310 15.24510 15.1 15.1 
3 35.78427 35.56230 36.5 35.5 
4 14.60570 13.83640 15.4 15.2 
5 0.64554 0.64640 0.645 0.645 
6 4.62572 4.58270 4.6 4.6 
7 24.77893 25.5346 23.7 23 
8 23.31005 22.3002 24 23.7 
9 12.48229 11.6142 11.5 12.5 
10 12.67468 13.0716 13.5 12.7 

Weight (kg) 532.11 524.88 532.814 525.136 
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Table 3: Frequencies of optimum results 

Frequency 
number 

Grandhi 
and 

Venkayya 
[19] 

Sedaghati 
[6] 

Wang et 
al. [20] 

Lingyun et 
al. [9] 

Gomes 
[8] 

Kaveh and 
Zolghadr 

[12] 
Kaveh and 

Zolghadr [13] 

     PSO CSS-BBBC Democrat PSO 

 
E=68.9 

GPa 
E=68.9 

GPa 
E=68.9 

GPa 
E=69.8 

GPa 
E=69.8 

GPa 
E=69.8 GPa E=68.9 GPa 

1 7.059 6.992 7.011 7.008 7.000 7.0028 7.000 
2 15.895 17.599 17.302 18.148 17.786 16.7429 16.187 
3 20.425 19.973 20.001 20.000 20.000 20.0548 20.000 
4 21.528 19.977 20.100 20.508 20.063 20.3351 20.021 
5 28.976 28.173 30.869 27.797 27.776 28.5232 28.243 
6 30.189 31.029 32.666 31.281 30.939 29.2911 29.243 
7 54.286 47.628 48.282 48.304 47.297 49.0342 48.769 

8 56.546 52.292 52.306 53.306 52.286 51.7451 51.389 

 
Table 3: Frequencies of optimum results(continue) 

Frequency 
number 

Kaveh and Javadi [14] Present work 
HRPSO DE 

E=68.9 GPa E=69.8 GPa E=68.9 GPa E=69.8 GPa 
1 6.9999 7.0000 7.0003 7.0006 
2 16.1752 16.1686 16.2084 16.2035 
3 19.9999 20.0015 20.0056 20.0055 
4 20.0060 20.0050 20.0231 20.1094 
5 28.5156 28.1466 28.1111 28.5985 
6 28.9837 29.2724 29.3084 29.1892 
7 48.5734 48.5235 48.7437 48.7367 
8 51.0823 50.9950 51.3341 51.3418 

 

 
Figure 5. Convergence history for design of 10-bar truss 
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Figure 6. A 72-bar space truss 

 
72-bar space truss 
A 72-bar space truss depicted in Fig. 6 is considered. This problem was investigated by 
Konzelman [21] for the first time. This is a mere size optimization. Four non-structural 
masses of 2270 kg are attached to the nodes 1–4. Material properties, variable bounds, 
frequency constrains and added masses are listed in Table 4. The72 elements of the truss are 
set to 16 design categories according to Table 5. This problem is solved by different elastic 
modulus as 6.89 × 1010 and 6.98 × 1010 N/m2 (107 psi) for better comparison. Optimum 
cross-sectional areas obtained with different methods are shown in Table 5. Frequencies of 
the optimum answers are presented in Table 6. 

It can be seen although DE treats the problem with a discrete optimization method, it 
achieves nearby results in comparison with other meta-heuristic methods which were a 
continuous search method. 

 
Table 4: Material properties, variable bounds and frequency constraints for 72-bar space truss 

Property/unit Value 
E ( modulus of elasticity) / N/m2 6.98 * 1010 

ρ ( Material density) / kg/m3 2770.0 
Added mass / kg 2270 

Design variable lower bound / m2 0.645*10-4 

Constraints on first three frequencies / Hz ω1 ≥ 4.0, ω3≥ 6.0 
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Table 5: Optimum answers for 72-bar truss 

Element 
Group 

 

Optimal cross-sectional areas (cm2) 

Konzelma
n [21] 

Sedaghati 
[6] 

Gomes 
[8] 

Kaveh 
and 

Zolghadr 
[12] 

Kaveh and Javadi 
[14] 

Present work 

    
CSS-

BBBC 
HRPSO DE 

 
E=68.9 

GPa 
E=68.9 

GPa 
E=68.9 

GPa 
E=69.8 

GPa 
E=68.9 

GPa 
E=69.8 

GPa 
E=68.9 

GPa 
E=69.8 

GPa 
1 A1~A4 3.499 3.499 2.987 2.854 3.9494 3.63529 3.6 4.5 
2 A5~A12 7.932 7.932 7.749 8.301 7.9680 7.83480 8.1 7.6 
3 A13~A16 0.645 0.645 0.645 0.645 0.6452 0.64507 0.645 0.645 
4 A17~A18 0.645 0.645 0.645 0.645 0.6479 0.64558 0.645 0.645 
5 A19~A22 8.056 8.056 8.765 8.202 7.5252 8.41172 8.85 7.6 
6 A23~A30 8.011 8.011 8.153 7.043 7.8638 7.96728 8.5 7.8 
7 A31~A34 0.645 0.645 0.645 0.645 0.6451 0.64503 0.7 0.645 
8 A35~A36 0.645 0.645 0.645 0.645 0.6520 0.64510 0.645 0.645 
9 A37~A40 12.812 12.812 13.450 16.328 12.9665 13.29653 11.85 12.3 
10 A41~A48 8.061 8.061 8.073 8.299 8.3473 7.87893 8.1 7.9 
11 A49~A52 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 
12 A53~A54 0.645 0.645 0.645 0.645 0.6451 0.645 0.645 0.645 
13 A55~A58 17.279 17.279 16.684 15.048 17.3896 15.9834 17.6 17 
14 A59~A66 8.088 8.088 8.159 8.268 8.0068 8.07824 7.55 8.6 
15 A67~A70 0.645 0.645 0.645 0.645 0.645 0.64501 0.645 0.645 
16 A71~A72 0.645 0.645 0.645 0.645 0.6451 0.64609 0.645 0.645 
Weight (lb) 327.605 327.605 328.823 327.507 328.589 324.497 329.422 325.678 

 
Table 6: Frequencies of optimum answers of 72-bar truss 

Frequency 
number 

Konzelman 
[21] 

Sedag
hati 
[6] 

Gomes 
[8] 

Kaveh and 
Zolghadr 

[12] 

Kaveh and Javadi 
[14] 

Present work 

   CSS-BBBC HRPSO DE 
E=68.9 

GPa 
E=68.
9 GPa 

E=68.
9 GPa 

E=69.8 
GPa 

E=68.9 
GPa 

E=69.
8 GPa 

E=68.
9 GPa 

E=69.
8 GPa 

1 4.000 4.000 4.000 4.000 4.0000 4.0000 4.000 4.000 
2 4.000 4.000 4.000 4.000 4.0000 4.0000 4.000 4.000 
3 6.000 6.000 6.000 6.004 6.0002 6.0003 6.001 6.008 
4 6.247 6.247 6.219 6.2491 6.2639 6.2958 6.261 6.302 
5 9.074 9.074 8.976 8.9726 9.1166 9.1215 9.15 9.168

 
A 52-bar dome-like truss 
The initial topology of a 52-bar dome truss is depicted in Fig.7. Material properties, 
frequency constraints and variable bounds for this example are summarized in Table 7. Non-
structural masses of 50 kg are attached to all free nodes. All of the elements of the structure 
are classified in eight groups according to Table 8.All free nodes are allowed to move in a 
manner that the symmetry of the truss remains. Their movement can vary by ±2 m. Thus this 
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is a shape and size optimization problem, with both the cross-sectional area of the members 
and the nodal coordinates considered as variables. This example has been investigated 
recently by Kaveh et al [11-14] with different hybrid meta-heuristic algorithms. 

 
Table 7: Material properties, variable bounds and frequency constraints of 52-bar space truss 

Property/unit Value 
E ( modulus of elasticity) / N/m2 2.1* 1011 
ρ (Material density) / kg/m3 7800 

Added mass / kg 50 
Allowable range for cross-sections / m2 0.0001 ≤ A≤ 0.001 
Constraints on first two frequencies / Hz ω1 ≤ 15.916, ω2 ≥ 28.648 

 
Table 8:Element grouping of 52-bar space truss 

Group number Elements 
1 1-4 
2 5-8 
3 9-16 
4 17-20 
5 21-28 
6 29-36 
7 37-44 
8 45-52 

 
Table 9 represents results obtained by the various methods and Table 10 shows 

corresponding natural frequencies. Fig. 8 compares the convergence curve for the best result 
obtained by DE with other algorithms. 

It can be seen that DE leads to results nearby the best solution obtained so far, with a 
reasonable convergence rate. 
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Figure 7. A 52-bar dome-like truss 

 
Table 9: Optimum results of 52-bar truss 

Variable 
Initial 

Lin et 
al. [7] 

Lingyun 
et al. [9] 

Gomes 
[8] 

Kaveh 
and 

Zolghadr 
[12] 

Kaveh 
and 

Javadi 
[14] 

Kaveh and 
Zolghadr 

[13] 

Present 
work 

   PSO 
CSS-

BBBC 
HRPSO 

Democrat 
PSO 

DE 

ZA  (m) 6.000 4.3201 5.8851 5.5344 5.331 5.82857 6.1123 5.72 
XB (m) 2.000 1.3153 1.7623 2.0885 2.134 2.24360 2.2343 2.14 
ZB (m) 5.700 4.1740 4.4091 3.9283 3.719 3.72064 3.8321 3.78 
XF (m) 4.000 2.9169 3.4406 4.0255 3.935 3.95665 4.0316 3.94 
ZF (m) 4.500 3.2676 3.1874 2.4575 2.500 2.50008 2.5036 2.52 

A1 (cm2) 2.0 1.00 1.0000 0.3696 1.0000 1.00000 1.0001 1.1 
A2 (cm2) 2.0 1.33 2.1417 4.1912 1.3056 1.13655 1.1397 1.2 
A3 (cm2) 2.0 1.58 1.4858 1.5123 1.4230 1.22183 1.2263 1.2 
A4 (cm2) 2.0 1.00 1.4018 1.5620 1.3851 1.48666 1.3335 1.6 
A5 (cm2) 2.0 1.71 1.911 1.9154 1.4226 1.39548 1.4161 1.4 
A6 (cm2) 2.0 1.54 1.0109 1.1315 1.0000 1.00000 1.0001 1.0 
A7 (cm2) 2.0 2.65 1.4693 1.8233 1.5562 1.55152 1.5750 1.5 
A8 (cm2) 2.0 2.87 2.1411 1.0904 1.4485 1.41820 1.4357 1.5 
Weight 

(kg) 
338.69 298.0 236.046 228.381 197.309 193.361 195.351 195.852 
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Table 10: Frequencies of optimum answers of 52-bar truss 

Frequency 
number 

Initial 
Lin et 
al. [7] 

Lingyun 
et al. [9] 

Gomes 
[8] 

Kaveh 
and 

Zolghadr 
[12] 

Kaveh 
and 

Javadi 
[14] 

Kaveh 
and 

Zolghadr 
[13] 

Present 
work 

   PSO 
CSS-

BBBC 
HRPSO 

Democrat 
PSO 

DE 

1 22.69 15.22 12.81 12.751 12.987 11.6853 11.315 11.4102 

2 25.17 29.28 28.65 28.649 28.648 28.6486 28.648 28.6499 

3 25.17 29.28 28.65 28.649 28.679 28.6486 28.648 28.6499 

4 31.52 31.68 29.54 28.803 28.713 28.6509 28.650 28.7566 

5 33.80 33.15 30.24 29.230 30.262 29.1298 28.688 29.6327 

 

 
Figure 8. Convergence history for design of 52-bar truss 

 
A simply supported 37-bar bridge 
Fig. 9 indicates the initial configuration of the simply supported 37-bar bridge. This example 
was first investigated by Wang et al. [20]. The nodes exists on lower chord are attached to 
non-structural mass of 10 kg. The elements of this chord are considered as bar elements with 
fixed rectangular cross section area of 4 × 10−3 m2. The other bars are considered as simple 
bar elements with initial sectional areas of 1 × 10−3 m2. In this example, the elastic modulus 
is 210 GPa and the material density is ρ = 7,800 kg/m3 for all elements. All nodes of the 
upper chord are permitted to shift in y direction in a symmetrical manner and all the 
diagonal upper chord bars are allowed to vary its cross-sectional areas with the lower bound 
of A =1 × 10−3 m2. The first three natural frequencies are subjected to constraints so that ω1 
≥ 20 Hz, ω2 ≥ 40 Hz, ω3 ≥ 60 Hz. Therefore this is a size and shape optimization problem 
with frequency constraints 
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Figure 9. A 37-bar truss 

 
Table 11: Optimum answers for 37-bar truss 

Variable group 

Initial 
design 

Wang et 
al. [20] 

Lingyun 
et al. [9] 

Gomes 
[8] 

Kaveh 
and 

Javadi 
[14]

Kaveh and Zolghadr 
Present 
work 

   PSO HRPSO 
Standard 
CSS [11] 

Democrat 
PSO [13] 

DE 

Y3 , Y19 (m) 1.0 1.2086 1.1998 0.9637 1.07444 0.8726 0.9482 1.04 
Y5 , Y17 (m) 1.0 1.5788 1.6553 1.3978 1.49568 1.2129 1.3439 1.40 
Y7 , Y15 (m) 1.0 1.6719 1.9652 1.5929 1.73243 1.3826 1.5043 1.64 
Y9, Y13 (m) 1.0 1.7703 2.0737 1.8812 1.89449 1.4706 1.6350 1.74 

Y11 (m) 1.0 1.8502 2.3050 2.0856 1.96970 1.5683 1.7182 1.84 
A1, A27 (cm2) 1.0 3.2508 2.8932 2.6797 2.85176 2.9082 2.6208 2.7 
A2, A26 (cm2) 1.0 1.2364 1.1201 1.1568 1.00000 1.0212 1.0397 1.0 
A3, A24 (cm2) 1.0 1.0000 1.0000 2.3476 1.83410 1.0363 1.0464 1.0 
A4, A25 (cm2) 1.0 2.5386 1.8655 1.7182 1.88766 3.9147 2.7163 2.4 
A5, A23  (cm2) 1.0 1.3714 1.5962 1.2751 1.06267 1.0025 1.0252 1.2 
A6, A21 (cm2) 1.0 1.3681 1.2642 1.4819 1.80266 1.2167 1.5081 1.2 
A7, A22 (cm2) 1.0 2.4290 1.8254 4.6850 1.93387 2.7146 2.3750 2.2 
A8, A20 (cm2) 1.0 1.6522 2.0009 1.1246 1.24946 1.2663 1.4498 1.3 
A9, A18 (cm2) 1.0 1.8257 1.9526 2.1214 1.87404 1.8006 1.4499 1.9 
A10, A19 (cm2) 1.0 2.3022 1.9705 3.8600 1.95716 4.0274 2.5327 2.2 
A11, A17 (cm2) 1.0 1.3103 1.8294 2.9817 1.24410 1.3364 1.2358 1.3 
A12, A15 (cm2) 1.0 1.4067 1.2358 1.2021 1.77792 1.0548 1.3528 1.4 
A13, A16 (cm2) 1.0 2.1896 1.4049 1.2563 1.80643 2.8116 2.9144 2.5 

A14  (cm2) 1.0 1.0000 1.0000 3.3276 1.00000 1.1702 1.0085 1.0 
Weight (kg) 336.30 366.50 368.84 377.20 364.72 362.84 360.40 361.03 

 
Table 11 observes the comparison of the results of utilized algorithm with the outcomes 

of other algorithms. And Table 12 shows the corresponding natural frequencies. It can be 
seen that DE obtains near optimum answer although it is dealt with a continuous problem as 
a discrete algorithm. 
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Table 12: Frequencies of optimum answers of 37-bar truss (continue) 

Frequency 
number 

Initial 
design 

Wang 
et al. 
[20] 

Lingyun 
et al. [9] 

Gomes 
[8] 

Kaveh 
and 

Javadi 
[14]

Kaveh and Zolghadr 
Present 
work 

   PSO HRPSO 
Standard 
CSS [11] 

Democrat 
PSO [13] 

DE 

1 8.8778 20.0850 20.0013 20.0001 20.0000 20.0000 20.0194 20.0334 
2 29.2135 42.0743 40.0305 40.0003 40.0160 40.0693 40.0113 40.3460 
3 48.5539 62.9383 60.0000 60.0001 60.0101 60.6982 60.0082 60.0644 
4 67.7487 74.4539 73.0444 73.0440 79.3488 75.7339 76.9896 76.4469 
5 84.2484 90.0576 89.8244 89.8240 100.2331 97.6137 97.2222 96.4887 

 
6. CONCLUSION 

 
In this study, DEO is applied for optimum design of truss structures with frequency 
constraints. The new method has the advantage of working according to the computational 
effort that user can afford for his/her optimization. In this algorithm, the convergence factor 
defined in [17] is controlled in order to perform a suitable optimization. 

For the examples optimized in this paper, the DE achieves better or nearby results 
compared to other existing meta-heuristic algorithms. The authors believe that the results 
achieved from meta-heuristics are mostly dependent on the parameter tuning of the 
algorithms. It is also believed that by performing a limited number of numerical examples, 
one cannot correctly conclude the superiority of one method with respect to the others. 
Dolphin echolocation is an optimization algorithm that has the capability of adopting itself 
by the type of the problem in hand, having a reasonable convergence rate, and leading to an 
acceptable optimum answer in a number of loops specified by the user. 
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