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ABSTRACT 
 

A new hybrid framework is proposed for optimization of orderable search spaces. It is based 

on fuzzy-membership of design variable alternatives to the optimal solution. The method has 

dynamic behavior since the membership values are assigned as any solution candidates 

arises during the search and they are summed based on their overlaps in the alternatives 

scope. A trail matrix is also utilized to indirectly share values of the fuzzy memberships 

further ranked regarding closeness of an individual to the optimal solution both in the 

objective function and in the design space scope. The method takes benefit of different 

random, vector-sum and probability-based walks to move new solutions toward the global 

optimum. Utilizing a generalized cooling procedure, the related thresholds are tuned to 

choose between different walk types in searching the design space and also a search 

refinement strategy is developed. Two variants of such a framework is then proposed and 

compared with each other in addition to some well-known procedures including genetic 

algorithm and particle swarm optimization. Test results with some treated problems, reveals 

the superior performance of the proposed algorithm and its special feature in adaptive tuning 

the diversity index during the search. 

 

Keywords: Meta-heuristic algorithms; information share; fuzzy logic; structural 

optimization. 

 

 

1. INTRODUCTION 
 

Application of meta-heuristic algorithms in various engineering field has experienced a 

considerable growth in the last three decades. It is due to simplicity of their programming 

and generality in solving gradient-free and discrete optimization problems. However, there 

are some challenges in their reliability to obtain global optimum result and the required 
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computational effort for such a purpose. Several meta-heuristic algorithms have recently 

been developed by investigators to solve different problems [1-6]. 

The metaheuristic algorithms can be categorized as bio-inspired, nature-based and other 

heuristics in the original form; however, hybridization techniques are also used to combine 

some of their features for an efficient search in a particular problem. A main challenge to 

develop a proper search method is how to provide proper balance between 

diversification/intensification or global/local search features of that algorithm. It is desired to 

make early access of the search agents to all regions in the design space, meanwhile not to 

miss and overpass true optima in narrow valleys of it at the end. Because of different 

constraints and design spaces in different problems, the method is desired to be capable of 

changing its diversity balance adaptively case by case. 

This paper presents a novel hybrid framework aiming to provide required features in 

searching discrete orderable problems. It takes benefit of cooling strategy to tune the balance 

between probability thresholds which are used to switch between explorative random walks 

and exploitative movements. Meanwhile the concept of fuzzy-membership functions is 

extended to the available alternatives space combined with an indirect share strategy using 

artificial pheromone trail and ranking based on closeness of the newcomer designs to the 

best-so-far one. First the concepts of this method, called Dynamic Fuzzy-membership 

Optimization (DFO), are introduced followed by its general formulation. Then, two variants 

out of the general framework is developed and further tested with some benchmark 

problems. Finally a comparison between the results of the employed algorithms and well-

known genetic and particle swarm optimization is performed. The performance and 

behavioral features of the proposed algorithm variants are then declared and discussed. 

 

 

2. FUZZY MEMBERSHIP IN THE VARIABLES’ SCOPE 
 

The search space of many optimization problems is defined using a fixed-length design 

vector. It is called a signal in BA [7], a chromosome in GA [8], a trip in ACO [9], a position 

in PSO [10]. The entire search space can thus be constructed by choosing possible values for 

each component of such a design vector and generating their combinations within the fixed-

length vector. Each combination has its individual fitness value. However in some problems, 

a preference order may be distinguished among available values for each design variable 

with indirect effect on the resulting value of the objective or fitness function. They are here-

in-after called orderable search spaces. 

The design space of a truss-like sizing problem is an example of such spaces in which 

increasing area of each element will result in increasing the total structural weight. In such a 

case, one can arrange the section areas assignable to a member in ascending (or descending) 

order. The optimal design vector, however, depends on the problem constraints rather than 

only to the minimal weight. 

Every meta-heuristic algorithm applies its way of generating newcomer design-candidate 

out of the current population of design vectors. Once a newcomer is generated and its fitness 

is evaluated, the chosen value of its variables in the design vector can be assigned a fuzzy-

membership to the optimal solution. That means, a value in the allowable range for every 

variable is not strictly good or bad, but it by some degree (the fuzzy membership) belongs to 
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the best solution. It will further be shown how such a strategy is applied to accelerate the 

optimization in the ordered search spaces. 

 

 

3. INDIRECT INFORMATION SHARE 
 

Choosing the fuzzy membership function is a real challenge when the optimum is not yet 

found. Some methods [11] use a triangular function to highlight position of the value 

belonging to the best-so-far solution during optimization. Here, we use an ant-based fuzzy 

membership assignment. Let’s first review some essential features of ant colony algorithms 

prior to employ them in our work.  

Ant Colony Optimization (ACO), is a common term for a set of algorithms which mimic 

the following behavior of natural ants in finding their routes to the goal [9]. Each ant likely 

chooses a route in which more pheromone is deposited by previous ants that have already 

passed it. Since the pheromone is continuously evaporated, the more pheromone in a route 

means more deposit in unit time; that occurs for shorter routes. 

Some amount of the deposited pheromone is decreased during evaporation while new 

deposits usually take place by other ants. In this way the ants (as search agents) indirectly 

share information about shorter routes to their goal via pheromone trail. Hence, a short-term 

memory of best routes is constructed in every loop of the search. 

The idea is employed here to assign pheromone,  , to the corresponding values in the 

matrix of alternative solutions, Alt . Let each variable ix in a design vector X  can choose 

m  values between 
LB

ix  and 
UB

ix
 when there is n  variables in X . In this case, Alt  is a m

by n  matrix. Once an optimization loop is completed and the best-so-far 
best

X  is updated, 

  for any component of Alt  is updated using the following relation: 

 

(1 )ij ij ij     
 

(1) 

( , , )i i

ij ij ju Alt x g   
 

(2) 

1

( )

i Min
i

Max Mini best

Fitness Fitness
g

Fitness FitnessX X 


 

 
 

(3) 

 

Where   is the pheromone evaporation ratio and u  denotes a fuzzy-membership 

function. According to this relation, fuzzy-membership is centered at iX  and amplified with 

its normalized fitness and also closeness of iX  to the 
best

X . A tiny positive value   is 

added to the norm of such a distance to prevent singularity at best
X . The pheromone packet 

ij  is distributed in range of indices k   to k  , where 
i

kj jAlt x  for any jth variable 

in the design vector. It is evaporated in this range by 1   for best
X . The matrix of remained 

pheromone values after deposit/evaporation is called ijAF      in the present work. 

Triangular function is a common choice for u , however, a normal distribution is offered 
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here-in-after, Fig. 1. Therefore it is taken ( , , )best

ij jN Alt x  ; a normal distribution centered at 
best

jx  with the standard deviation   as employed for pheromone deposition in continuous 

problems: 

 
2

2

(x )

2( , , )

a

N x a e 




  
(4) 

 

 
Figure 1. Sample fuzzy-membership functions: normal vs. triangular distribution 

 
 

4. SEARCH REFINING STRATEGY 
 

Bandwidth perturbation is a common search tool in meta-heuristic algorithms. It is 

performed in BA local search phase, HS pitch adjustment [12] and mutation in variable band 

GA [13].  

In this paper, similar idea is implemented indirectly by controlling the standard deviation,

 , in the normal-distributed fuzzy membership. The parameter definition is extended to 

( )j t  as: 

 

( ) ( ) ( )UB LB

j j j coolingt x x f t  
 

(5) 

 

The constant β determines the maximum band with respect to the allowable range of the 

jth variable. This band is, however, decreased according to the envelope function, ( )coolingf t , 

which starts from unity. Consequently, the effective range of pheromone deposition is 

decreased as the search iteration, t, gets closer to its maximum, tmax. 

The role of ( )coolingf t in the present algorithm is somehow like cooling procedure in the 

well-known Simulated Annealing Algorithm [14], since both are used to decrease the ratio 

of exploration to local search as the search progresses to its end in order not to loose the 

solutions found at later iterations. 
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5. PROBABILITY-BASED WALKS 
 

Each heuristic algorithm has its own method of generating new-comer solutions based on 

search experience in the current population. The present work not only takes benefit of 

directional walks [15] but also uses the following ant-based probability threshold for this 

purpose: 

 

kj

kj

kj

j

q







 

(6) 

 

It is used as probability of choosing the kjAlt
 in the alternatives matrix for the jth 

position in any current member of population; i

jx
 
via Roulette-Wheel selection role. Such a 

procedure constitutes an intensification operator in the present algorithm. The other one is to 

change the iX  location in the vector search space toward the current global best; 
best

X

adding a portion of their distance to  the former vector: 

 
, , 1 ,

1 2 ( )
i t i t best i t

i sV rc V r c X X


  
 

(7) 

, , , 1i t i t i t
X V X


   

(8) 

 

Where ic  and sc  stand for inertial and social constants, respectively and 1 2,r r  are 

randomly generated number between 0 to 1. The algorithm selection criterion is thus as 

follows: 

 

1

,

2 1

, , 1

( )LB UB LB

j j j

i t

j kj kj

i t i t

j j

x r x x if r p

x Alt with probability q if r p r p

x V otherwise

   


   
   

(9) 

 

While r is a random number in the range 0 to 1. The balance between different selection 

roles are tuned using probability thresholds 1p  and 2p  that are more discussed in the next 

section. 

 

 

6. ALGORITHM PARAMETERS 

 

Population size; PopulationN  and the maximum number of iterations; 
maxt  are common 

parameters for this algorithm. The others are  ,  , ic , sc  probability thresholds; 1p , 2p
 and 

shape of the function ( )coolingf t . The choice of these extra parameters determines which 

variant of the algorithm to be further used in practice. Two variants are given in Table 1:  



M. Shahrouzi and A. Kaveh 

 

 

254 

 
Table 1: Control parameters for two variants of the DFO algorithm 

Method 𝛼 𝛽 𝑐 𝑐𝑠 u  
ig
 

( )coolingf t
 1p

 2p
 

DFOv1 
0.

1 
0.25 1 2 

Normal 

Distribution 

1

( )

i Min

Max Mini best

Fitness Fitness

Fitness FitnessX X 




 
 max

1
1 ( )

1

t

t




  

( )coolingf t

 
1- ( )coolingf t  

DFOv2 1 0.25 0 0 
Triangular 

Distribution 

i Min

Max Min

Fitness Fitness

Fitness Fitness



  max

1
1 ( )

1

t

t




  
0 1- ( )coolingf t  

 

Performance of DFO is then compared with a number of well-known meta-heuristics 

using the same 25PopulationN   and max 200t   treating some test problems in this study as 

follows. Each design variable range is also subdivided into 200 equal spaces for DFO 

implementation. 

For the sake of true comparison, the randomly initiated population in the first method is 

saved and identically used for the second so that the resulting convergence curves have the 

same starting point. Thus, a fitness improvement factor; FI , is defined for each run of an 

optimization algorithm as: 

 

max 1

1

(t ) (t )

(t )

BestSoFarFitness BestSoFar Fitness
FI

BestSoFar Fitness




 
(10) 

 

In addition, a diversity index; DI , is defined for the population in every iteration as: 

 

( )
j

UB LB

j j

SD
DI mean

x x



 

(11) 

 

 

7. ILLESTRATIVE EXAMPLES 

 

Test problem 1 

As the first example, a pure convex search space is considered by De Jong’s first function 

to be minimized, Fig. 2. There are no local optima but one global optimum 0 at 0X   for 

this minimization problem: 

 





N

i

ixXf
1

2)(

 

(12) 

 

Meanwhile each design variable for N=2 dimensions is in the range 5.12 5.12to  as 

reported in literature [16]. 
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Figure 2. DeJong’s test function 

 

Test problem 2 

In this problem, it is aimed to minimize the Griewangk’s function with the following 

relation in N=2 dimensions, Fig. 3: 

 

 
 


N

i

N

j

j

i
j

x
xXf

1 1

2 1)cos(
4000

1
)(

 

(13) 

 

The design vector is limited to the range [-100,100]2. The function has several local 

optima in detail scale with one global optimum at (0) 0f  .  

 

 
Figure 3. Griewangk’s test function 
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Test problem 3 

Ackley’s function is selected here to test a multimodal search space with one highlighted 

global optimum and several neighboring local optima, Fig. 4. With the following relation in 

N=2 dimensions, minimum of ( )f X  is to be searched when X  is limited to [-32.768, 

32.768]2. The global minimum is located at (0,0). 

 

ex
N

x
N

Xf
N

i

i

N

i

i  


20)).2cos(
1

exp(
1

2.0exp(20)(
11

2 

 

(14) 

 

 
Figure 4. Ackley’s test function 

 

 
Figure 5. The Eggcrate test function 
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Test problem 4 

In order to test the algorithms in severe hill-climbing, the Eggcrate function is selected 

here with its global minimum at (0,0) and several local optima with close objective function, 

Fig. 5. The design variable is limited to vary within range 2  in N=2 dimensions. 

Eggcrate function is given by the following relation: 

 

2 2

1 1

( ) 25 sin ( )
N N

i i

i i

f X x x
 

  
 

(15) 

 

Test problem 5: A 3-Bar Truss Design 

The 3-bar truss design is considered here as its objective function can be plotted in Fig. 6 

due to having only 2 area section variables 1 2( , )X x x . This was introduced by Nowcki-

1974 [17] as a base structural sizing problem for weight minimization. Using 100l cm , 
22 /kN cm   and vertical load 2P kN  the problem is defined as:  

 

1 2( ) (2 2 )Minimize f X l x x  
 

1 2
1 2

1 1 2

2
2 2

1 1 2

3

1 2

1

2

2
0

2 2

0
2 2

1
0

2

0 1

0 1

Subject to

x x
g P

x x x

x
g P

x x x

g P
x x

x

x








  



  


  


 

   

(16) 

 

Fig. 7 shows  the search space of a narrowly constrained problem. 

 

 
Figure 6. Schematic of the 3-bar design problem [18] 
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Figure 7. Search space of 3-bar design problem 

 

Test problem 6: Design of a coil spring 

It is another sample of constrained structural problem for minimizing the coil spring’s 

weight subject to behavioral constraints of on shear stress, surge frequency and deflection, 

Fig. 8. However, additional variables’ bounds constraints; ,UB

ii

LB

i xxx   should also be 

satisfied. The design variables x1 to x3 include the mean coil diameter D, the wire diameter d 

and the number of active coils N as shown in Fig. 8, respectively.  

 
2
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(17) 
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Figure 8. Schematic of the coil spring under static loading [18] 

 

Test problem 7: A welded beam design problem 

As the second example, fabrication cost of a welded  beam of Fig. 9, is to be minimized 

subjected to constraints on bending stress  , shear stress  , buckling load cP , end 

deflection   and side constraint as given below. Design variables are hx 1 , lx 2
,

tx 3  and bx 4
 as depicted in Fig. 9. The overall fabricating cost of set-up, welding, 

labor and used material is introduced by the following objective function: 

 
2

1 1 3 4 2( ) 1.10471 0.04811 (14.0 )Minimize f X x x x x x  
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Figure 9. Schematic of the welded beam problem [19] 

 

In this paper the treated algorithms search for the highest fitness function in each test 

problem defined with the following formulation: 

 

( ) ( )(1 ( ))

( ) ( )

( ) if ( ) 0
( )

0

penalty

i

i

i i

i

Maximize F X f X k INF X

INF X Q X

g X g X
Q X

otherwise

   




 




 

(19) 

 

Whereas, iQ  denotes the amount of ith constraint violation and 50penaltyk 
 

is the 

constant penalty coefficient. 

Comparison of DFO variants 

In this section, the proposed variants of DFO; i.e., DFOv1 and DFOv2 are compared with 

each other treating the referred test problems. Results of the most successive run regarding 

elitist fitness among a number of trials are provided in Tables 2 and 3 while statistical 

calculations including mean and standard deviation are also proposed as desired. Several 
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parameters are evaluated including the optimal/elitist fitness *F , the corresponding 

objective function *OF and its infeasibility; ( *)INF X  and the design vector; 
*

X , fitness 

improvement index; FI , iteration of last fitness improvement, LI  and the number of fitness 

evaluations up to it; NFE . 

 
Table 2: Evaluation of the best DOFv2 results 

Test 

Problem: 
1 (Mean:SD) 2 (Mean:SD) 3 (Mean:SD) 4 (Mean:SD) 5 (Mean:SD) 6 (Mean:SD) 7 (Mean:SD) 

F* 0 0 -8.9E-16 0 
-268.289 (-

280.3:14.65) 

-0.0130 (-

0.0228 

:0.0196) 

-2.9814 (-

3.7968:0.7218) 

INF(X*) 0 0 0 0 0 0 0 

OF* 0 0 8.88E-16 0 268.2889 0.0130 2.9814 

NFE 
550 

(757:267) 
5 (50:0) 50 (50:0) 

650 

(713:233) 
5000 

(3331:1096) 
525 (995:722) 

1000 

(2100:915) 

LI 22 2 2 26 200 21 40 

FI 1 1 1 1 
0 

(0.016:0.026) 

0.999 

(0.992:0.007) 

0.982 

(0.695:0.327) 

CPU time 

(s) 
5.046 4.968 4.968 4.953 5.031 7.016 9.219 

X* 0,0 0,0 0,0 0,0 0.770,0.505 
0.050,0.315,14

.545 

0.432,2.377,6.

584,0.480 

 
Table 3: Evaluation of the best DOFv1 results 

Test 

Problem: 
1 (Mean:SD) 2 (Mean:SD) 3 (Mean:SD) 4 (Mean:SD) 5 (Mean:SD) 6 (Mean:SD) 7 (Mean:SD) 

F* 0 0 -8.9E-16 0 

-263.946 

(-264.22 : 

0.26) 

-0.0102 

(-0.0119 

:0.0019) 

-1.9556 

(-2.1579:0.2489) 

INF(X*) 0 0 0 0 0 0 0 

OF* 0 0 8.88E-16 0 263.9457 0.0102 1.9556 

NFE 
2650 

(2930:180) 

4300 

(2720:1427) 
 

2600 

(2227:706) 

3150 

(2510:542) 

2950 

(2797:1403) 

4000 

(4367:355) 

4600 

(4437:320) 

LI 106 172 104 126 118 160 184 

FI 1 1 1 1 
0.074 

(0.071:0.046) 

0.994 

(0.995:0.002) 

0.540 

(0.799:0.328) 

CPU 

time (s) 
7.312 7.281 7.328 7.312 7.312 10.547 13.921 

X* 0,0 0,0 0,0 0,0 0.790,0.405 
0.050,0.365,9

.215 

0.242,3.218,8.36

6,0.252 

 

As can be observed from Tables 3 and 4 that both algorithms have captured the global 

optimum of first 4 test problems, however, taking different computational efforts. DOFv2 

has shown much higher convergence rate than DFOv1; for example while it has captured the 

optimum by 50 fitness evaluations (2 iterations) it took more than 2500 (100 iterations) for 
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the other variant of DFO in the 2nd and 3rd test functions. Besides, close fitness in the local 

optima of the Eggcrate function has delayed such a convergence to 26 and 126 iterations for 

the best trial of these methods. Testing with the 3-bar example, however, reveals a serious 

weakness of the DFOv2 in overriding a local optimum. It has not only shown no fitness 

improvement during 200 iterations of DFOv2 in this trial, but also has been stopped in an 

average result of -280.3 compared with -264.22 for DFOv1. In addition, the standard 

deviation of elitist fitness for DFOv1 vs. DFOv2 has a meaningful difference of 0.26 vs. 

14.65 for this test problem. Similar observation can be driven from Tables 3 and 4 for the 

other two constrained test problems 6 and 7 (Spring design and Welded Beam design 

problem). Considering the best achieved FI, it can be realized that the 5th problem (3-bar 

design) has been more complex for both methods; however, DFOv1 has still shown more 

stable convergence regardless of the initial population. 

 

  
(a) (b) 

  
(c) (d) 

Figure 10. Comparison of DFOv1 and DFOv2 for the test problem 1 

 

It is worth to trace the diversity variation to seek the reason of such behavior. Consider 

results of a trial run with the most fitness improvement by DFOv2 in test problem 2, Fig. 10. 

It is evident that DFOv1 has rapidly converged to the optimal fitness of 0 while DFOv2 has 

a more smooth and gradual convergence to this value. This observation is confirmed by 
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tracing average pheromone trail (Mean AF) in Fig. 10b. It rapidly tends to its minimum for 

DFOv2, which means most of the population has found the best objective function. Note 

that in DFOv2 algorithm, 1   leads to complete pheromone evaporation for the best 

individual, where no deposit is performed for the others. However, the condition is much 

different for DFOv1 when MeanAF first increases and then experiences a gradual decrease 

up to the last iteration when no further variation from already found optimum is desired.  

Similar behavioral difference is declared considering DI history in Fig. 10c. Thus despite 

the DFOv2, the diversity of population individuals in searching optimum does not suddenly 

drop in early iterations of DFOv1. Instead for DFOv1, DI has in average a little fluctuation 

till later iterations where the region of true optimum is identified and then it tends to zero 

more rapidly. Such a compared behavior can be better seen using semi-log scale in Fig. 10d.  

 

  

  
Figure 11. Comparison of DFOv1 and DFOv2 tracing mean AF 

 

Another issue to investigate is the capability of the algorithms to change diversity 

variation and fuzzy-membership trails adaptively as the problem changes.  Fig. 11 

demonstrates history of mean trial for more the test problems 3, 5, 6, 7.  It is evident that the 

fuzzy-membership values have resulted in trail variation which dynamically changes as the 

design space changes. For example, such mean value for DOFv2 is linearly decreased in the 

problem 3, stepwise in the problem 6, suddenly in the problem 5 and experiences a mixed 

linearly with sudden local drops and increases in test problem 7. Such a pattern not only 
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depends on the problem but also depends on the implemented algorithm. For DFOv1 

treating Ackley function, after an early peak it is almost constant up to half of iterations and 

then drops linearly with various dips. The early growth and step-wise variation is 

highlighted treating the problem 6 with a final S-shaped drop. The initial growth and width 

of the steps have been increased as the constraint narrowness or complexity or sharp-hills of 

the design space increases like in test problems 5 and 7. 

Figure 12 shows the history of diversity index, DI, for the same problems and methods. As 

can be realized DFOv1 has considerable superior capability than DFOv2 in saving and either 

increasing DI as needed in the treated problem. In all the examples, DFOv1 has saved much 

more diversity than DFOv2 in the early iterations for better exploration in this phase and has 

gradually decreased it as the search progress to its final iterations in order not to loose already 

found optima in such an exploitative phase. The observation provides sufficient reasoning for 

results of Tables 3 and 4 in more quality of the achieved final optima by DFOv1 and also 

rapid/premature convergence of DFOv2 (for example in the test problem 5). 

 

  

  
Figure 12. Comparison of DFOv1 and DFOv2 tracing DI. 

 

Comparison with other algorithms 
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improved versions of these algorithms have been introduced by investigators, at the moment 

standard formulations of them are considered in this work. The genetic operators include 

tournament selection and a direct real-coded one-point crossover and mutation [21] with 

probability thresholds; 85% and 5%, respectively. For the standard PSO the following 

formulation: 

 
, , 1 , , ,

( ) ( )
i t i t i Pbest i t Gbest i t

i c sV c V rand c X X rand c X X


      
 

(20) 

 

The inertial, cognitive and social constants are taken 1ic  , 2cc  , 2sc  , respectively 

while Pbest stands for previous best experience of each particle and Gbest denotes the global 

best found so far. Once the velocity of each particle is determined by Eq.20, its position is 

updated using Eq. (8). The size of population and number of iterations are taken the same as 

DFO. 

Comparison of DFOv1 vs. GA and DFOv1 vs. PSO are performed distinctly. Since for 

each comparison case the initial population is randomly generated and taken the same for the 

compared algorithms, the FI factor ratio between them is evaluated here to study 

effectiveness of algorithms in achieving better final solution. According to Table 4, it is 

declared that DFOv1 has better performance than GA both in best and average results. In 

addition, such superiority is more highlighted treating more complex test problems 3 and 5. 

Note that search space of the Ackley test function has a narrow symmetric global optimum 

valley while the constrained test problem 5 has a non-symmetric yet narrow shape about its 

minimum.  

Comparison of DFOv1 with PSO in Table 4 reveals similar results; however, PSO has 

been better than GA in most of the treated problems except the Ackley’s function. Sample 

plots of convergence history and DI trace in Figs. 13 and 14 for the best FI ratio confirms 

such a matter. According to Fig. 13, GA diversity index experiences many high fluctuations 

after early drop below DI history of DFOv1, which has prevent it to form proper converging 

to the fittest individual in spite of DFOv1. In the other hand, the average DI of PSO not only 

has not dropped during the search up to the final iteration. It is while DFOv1 after its smooth 

DI growth in early iterations has decreased DI near the end of optimization when local 

search to the true optimum is desired. Such a behavior has enabled DFO to continue its 

fitness improvements up to achieve fitter solution than the other two algorithms. These 

results show importance of maintaining higher DI in exploration and balancing it when 

intensifying to the final solution. 

 
Table 2: Evaluation of the best DOFv1 vs. other algorithms results 

Test 

Problem: 
1 (Mean:SD) 2 (Mean:SD) 3 (Mean:SD) 4 (Mean:SD) 5 (Mean:SD) 6 (Mean:SD) 7 (Mean:SD) 

FIDFO/ 

FIGA 

1.046 

(1.007:0.014) 

1.629 

(1.159:0.177) 

1.556 

(1.262:0.147) 

1.067 

(1.019:0.023) 

5.523 

(1.892:1.392) 

1.485 

(1.062:0.015) 

1.596 

(1.090:0.185) 

FIDFO/ 

FIPSO 

1.051 

(1.001:0.015) 

1.579 

(1.124:0.175) 

2.276 

(1.319:0.341) 

1.062 

(1.019:0.020) 

1.124 

(1.033:0.038) 

1.008 

(1.002:0.002) 

1.378 

(1.076:0.115) 
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Figure 13. Comparison of GA vs. DFOv2 in 3-bar truss design problem 

 

 
 

Figure 14. Comparison of PSO vs. DFOv2 in 3-bar truss design problem. 

 

 

8. CONCLUDING REMARKS  
 

In this paper a hybrid framework is developed to provide dynamic balance between 

diversification and intensification during the optimization process. It integrates vector-sum 

walks with probability-based walks through the design space and utilizes a special type of 

fuzzy-membership share for chosen alternatives between the search agents in a dynamic 

manner. Indirect information share between individuals is thus combined in real-time process 

with closeness to the optimal solution regarding both design space scope and fitness scope. A 

complete variant of the algorithm is then developed called DFOv1 using a normal-distribution 

fuzzy function while the other one, DFOv2, has suppressed random search portion and vector-

sum walks and variables closeness norm function. Two variants are then compared to study 

such effects on their behavior. The performance of the algorithms are compared not only using 

the elitist fitness and number of fitness evaluations as effectiveness and efficiency measures 

but also by characteristic curves of diversity index and trail update histories. 
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Based on the achieved tests and result statistics in the treated examples, it is found that 

DFOv2 has very high convergence rate in simpler convex spaces but suffers from too rapid 

diversity drop to overpass local optima in more complex or constrained examples. In 

contrary, complete version of DFOv1 was more effective in such examples by saving proper 

diversity up to near final iterations and gradual intensifying to the final solution  by reducing 

it at the end. Such a behavioral difference was confirmed regarding the mean trail based on 

fuzzy-membership overlaps during the search between the two algorithms. The complete 

version imposes a trial update curve like its diversity index history; that is a trail growth at 

early explorative iterations followed by step-wise/gradual trail drop as the search progress to 

the end. Because of evaporation procedure the mean trail is decreased when all the 

individuals intensify to a final solution. In the other hand the DFOv2 variant could not save 

proper diversity and trial amount up to near final iterations which describes why it was 

capable of premature convergence to local optima. It is worth notifying that variation and 

diverse positions of the individuals in every population of the search agents will enforce a 

dynamic fuzzy value integrated within the trail matrix to further guide new walks in the 

search space.  

Treating different search spaces and test problems it is thus concluded that using 

complete trial update procedure will result in dynamic behavior so that the proposed 

algorithm can adapt its DI history with the search problem changes. Such a feature enabled 

DFOv1 in obtaining higher quality results in all treated cases particularly with zero 

infeasibility in the constrained examples. 

Further comparison with genetic algorithm and particle swarm optimization confirms the 

special capability of the proposed algorithm in tuning diversity as the search progress while 

the others showed a monotonic average index. Regarding superiority of the proposed 

complete version of DFO in the treated examples, it is worth considering it as a powerful 

tool by a new procedure in tuning local and global search comparable with other existing 

meta-heuristic frameworks. Investigation of further issues such as the type of the employed 

fuzzy function or cooling procedure and algorithm adaptive performance in more practical 

examples is of course a future scope of our work. 
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