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ABSTRACT 
 

In this paper, finite element method is used for the analysis of sequential construction of 

embankment. The idealized study gives information on the behavior of a multi-stage 

construction of an embankment over a soft cohesive deposit.  If the response is determined 

after the construction of entire structure, it is likely to be different from the results which are 

obtained by considering sequential construction procedure. The displacement and stresses 

have been calculated during each stage of sequential construction of embankment. The 

developed computer program shows bearing capacity failure at final lift where the algorithm 

fails to converge leading to failure. 

 

Keywords: Earthen embankment; bearing capacity failure; material non-linearity; Mohr-

Coulomb and Von-Mises failure criteria; visco-plastic framework; finite element method. 

 

 

1. INTRODUCTION 
 

The main purpose of construction of earthen embankment is to hold back water in order to 

prevent flooding from seas, lakes, or rivers onto adjacent land and to support transportation. 

These typically strong barriers provide protection to lower-lying grounds by acting as 

a levee. Recent social and economic development around the world has brought about an 

increase in the construction of embankment used in highway and railway systems, flood and 

irrigation projects and harbor and airport installations. Staged construction can be used to 

construct embankments with relatively steep side slopes [1, 2]. This method relies on the 

increase in the undrained shear strength of the subsoil during consolidation and is therefore 

most beneficial when used with vertical drains. The study by He and Zhang [3] is based on 

Mohr-Coulomb yield and Drucker-Prager yield criteria considering equivalent area circle as 

yield criterion. The results showed that equivalent area circle D - P yield criterion was 
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suitable for slope stability analysis and that strength reduction technology could be applied 

in simple homogeneous side slope stability analysis. Chen et al. [4] modeled the sequential 

construction of a high embankment dam over 300 m and its effect of settlement has been 

discussed. The simulation results have demonstrated that at least 25 layers are required to 

accurately model the stage construction of a high embankment dam over 300 m. Huzjak et 

al. [5] presented the field and laboratory data, design and construction phase analyses, 

construction monitoring data and conclusions about the design predictions and embankment 

performance during construction. 

In reality, the soil/rock foundation has nonlinear, inelastic stress-strain behavior. 

Therefore, in order to truly asses the behavior of the soil-structure system during interaction 

analysis, the nonlinear material properties of the foundation should be considered. Various 

types of constitutive models are available to characterize the nonlinear behavior of geologic 

materials such as nonlinear elastic models, elasto-plastic models and elastoviscoplastic 

models. The hyperbolic nonlinear, elastic model proposed by Duncan and Chang [6] is very 

popular among the researchers throughout. The Von-Mises, Tresca, Mohr-Coulomb and 

Drucker-Prager models form the major part of the elasto-plastic models available for 

geomaterials. Ozcoban et al. [7] conducted field and laboratory tests to determine the 

geotechnical characteristics of the foundation soils for the construction of Alibey dam. They 

used elastoplastic soil model that yielded realistic predictions of field behavior in response 

to the complex construction history. Swan and Seo [8] developed slope stability analysis 

framework, wherein the soil mass is treated as a continuum and in-situ soil stresses and 

strengths are computed accurately using inelastic finite element methods with general 

constitutive models. Lin and Wei [9] analyzed one side widened embankment. They used 

ABAQUS software and Mohr-Coulomb constitutive model was used to set up the finite 

element model of the stability analysis of one side widened-embankments. Yu and Fei [10] 

found that the magnitude and rate of settlement are the key elements subjected to design 

analysis of embankments on soft ground.  

The analysis of non-linear problems is far from straight forward and traditional 

techniques are not always sufficiently accurate to be reliable methods for design. Numerical 

analysis using the finite element method overcomes several of the disadvantages of 

traditional methods and produces predictions for displacements and stresses. Kelln et al. [11] 

used elastic–viscoplastic (EVP) soil model to simulate the measured deformation response 

of a soft estuarine soil loaded by a stage-constructed embankment. The simulation 

incorporates prefabricated vertical drains installed in the foundation soils and reinforcement 

installed at the base of the embankment. Ding et al. [12] studied a highway embankment 

constructed over wash pond sediments. To improve the engineering properties of the soft 

soils for the proposed embankment, prefabricated vertical (PV) wick drains in combination 

with staged construction of the embankment were implemented to accommodate the 

anticipated settlement and to meet the required minimum factor of safety for the 

embankment slope stability. A case history of road embankment over very weak clay was 

studied by Sura and Othman [13]. Stability analyses indicated that construction of the 

embankment using typical methods would lead to embankment failure. However, the 

analyses showed that staged construction will result in acceptable factors of safety for 

stability. Furthermore, the consolidation data suggested the soft clay will consolidate 

relatively quickly, making staged construction feasible. 
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Totsev and Jellev [14] presented the comparison between two different directions in 

slope stability analysis for a particular example and the way these results can affect various 

parameters. Clough and Woodward [15] applied finite element method to evaluate 

embankment stresses and deformations. Construction sequence plays an important part in 

the deformations developed in earth embankment. Analysis demonstrates the influence of 

basic parameters such as material properties, size, and geometry on the stresses and 

deformations developed in embankments, and the effect of foundation flexibility on the 

embankment. Sakai et al. [16] proposed an elasto-plastic constitutive model of soil in which 

the tensile failure is considered. They performed couple of non-linear dynamic finite 

element analysis of embankment using proposed constitutive model. One is the simulation 

of static inclination experiment of embankment models and the other is analysis of the 

railway embankment structure damaged during the 1968 Tokachi-oki earthquake. Hammah 

et al. [17] uses the application of finite element analysis to determine the factor of safety of 

rock slopes, for which strength is modeled by the Generalized Hoek-Brown failure criterion. 

In this particular work an attempt has been made to simulate the sequential construction 

procedure of earthen embankment. For that a finite element method program has been 

developed using constitutive non-linear model such as Von-Mises and Mohr-Coulomb. 

Because the stress and strain behavior of soil material is essentially non-linear in nature 

therefore it is important to consider a proper non-linear model with either visco-plastic or 

elasto-plastic framework. In this particular work, visco-plastic method has been used for 

simulation purpose. The program used for simulation of sequential construction of 

embankment leading up to bearing capacity failure is an extension of that given by Smith 

and Griffiths [18]. Here, results have been established for displacement by varying several 

soil parameters like cohesion, unit weight, tolerance limit, Poisson’s ratio. Result also shows 

the variation of iteration limit and number of load increment. In this present work, contour 

plot of major and minor principal stress is presented. Also, effect of stress (compressive and 

tensile) has been shown in each lift. This helps to understand that in which lift the 

embankment suffers bearing capacity failure. The use of finite element method has been 

found to be very useful since it describes stress, strain and displacement behavior at every 

sequential loading stage. The algorithm presented here is robust in terms of runtime as well 

as memory allocation considerations. 

 

 

2. THEORETICAL FORMULATION 
 

2.1 Failure criteria 

The embankment has been analyzed following a plane strain idealization. Several failure 

criteria have been proposed to represent the strength of soils as engineering materials. For 

soils with both frictional and cohesive components of shear strength, conical failure criteria 

are appropriate, which is best known to be the Mohr-Coulomb criterion. Also, Von-Mises 

failure criteria has also been used in this work and the results from both criteria are 

compared. The details of both of these failure criteria may be referred to Smith and Griffiths 

[18]. 
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2.2 Visco-plastic model for soil material 

The present work uses visco-plastic framework to model the material nonlinear behaviour of 

the embankment soil. The detail of visco-plastic algorithm used in this work may be found 

in the book by Smith and Griffiths [18].  

 

2.3 Generation of body load 

According to Smith and Griffith [18], constant stiffness methods use repeated elastic 

solutions to achieve convergence by iteratively varying the loads on the system. Within each 

load increment, the system of equations 

 

    ii
m FUK   (1) 

 

Must be solved for the global displacement increments  iU  , where i  represents the 

iteration number,  mK  the global stiffness matrix, and  i
F  the global external and internal 

(body) loads. The element displacement increments  iu  are extracted from  iU , and these 

lead to strain increments via the element strain-displacement relationships: 

 

    ii uB  (2) 

 

Assuming the material is yielding, the strains will contain both elastic and (visco) plastic 

component, thus 

 

     ivpiei   (3) 

 

It is only the elastic strain increments  ie  that generates stress through elastic stress-

strain matrix, hence 

 

    ieei D   (4) 

 

These stresses increment are added to stresses already existing from the previous load 

step and updated stresses substituted into the failure criterion Eq. (6). If stress redistribution 

is necessary ( 0F ), this is done by altering the load increment vector  iF  in Eq. (16). In 

general, this vector holds two types of load, as given by 

 

     i

ba

i
FFF 

 
(5) 

 

Where  aF  the actual is applied external load increment and  ibF  is the body loads 

vector that varies from one iteration to next. The  ibF  vector must be self-equilibrating so 

that the net loading on the system is not affected by it.  
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2.4 Visco-plasticity 

Accolrding to Zienkiewicz and Cormeau [19], the material is allowed to sustain stresses 

outside the failure criterion for finite “periods”. Overshoot of the failure criterion as 

signified by a positive value of F , is an integral part of the method and is actually used to 

drive the algorithm. Instead of plastic strains, we now refer to viscoplastic strains and these 

are generated at a rate that is related to the amount by which yield has been violated through 

the expression 
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Where F is the yield function and Q  is the plastic potential function.  

It should be noted that a pseudo-viscosity property equal to unity is implied on the right 

hand side of Eq. (6) from dimensional considerations. Multiplication of the viscoplastic 

strain rate by a pseudo-time step gives an increment of viscoplastic strain which is 

accumulated from one “time-step” or iteration to the next; 
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and       ivpivpivp 



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 (8) 

 

The body loads  ibF  are accumulated at each “time-step” within each load step by 

summing the following integrals for all elements containing a yielding  0F  Gauss point: 

 

          
all

elements

ivpeTi
b

i
b dxdyDBFF 1  (9) 

 

This process is repeated at each “time-step” iteration until no integrating point stresses 

violate the failure criterion within the tolerance. The convergence criterion is based on a 

dimensionless measure of the amount by which the displacement increment vector  iU  

changes from one iteration to the next. 

 

2.5 Gravity loading 

The forces generated by the self-weight of the soil are computed by using a procedure 

involving integrals over each element of the form: 

 

    eT
V

e dVNp e   (10) 

 

Where  N  is the shape of the functions of the element and the superscript e refers to the 

element number. This integral evaluates the volume of each element, multiplies by the total 
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unit weight of the soil and distributes the net vertical force consistently to all the nodes. 

These element forces are assembled into a global gravity force vector that is applied to the 

finite element mesh in order to generate the initial stress state of the problem.  

The present work applies gravity in a single increment to an initially stress-free slope. 

Others have shown that under elastic conditions, sequential loading in the form of 

incremental gravity application or embanking, affects deformations but not stresses [15]. In 

nonlinear analyses it is recognized that the stress paths followed due to sequential 

excavation may be quite different to those followed under a gravity “turn-on” procedure, 

however the factor of safety appears unaffected when using simple elasto-plastic models. 

 

2.6 Computation of stresses 

In finite element analysis, once the nodal displacements of an element are obtained, the 

stresses {σ} can be calculated as 

 
     ee qBD  (11) 

 

where [D] is the constitutive matrix, [B] is the strain displacement matrix, {σe} is the 

elemental stress vector and {qe} is the elemental displacement vector. The stresses {σe}at 

any point inside an element are estimated by interpolating the stresses obtained at sampling 

points. Unfortunately, while determining the stresses at the nodal points, it has been found 

that they are discontinuous in nature. Efforts to calculate stresses directly at the nodal points 

have proved them to be very bad sampling points [20], though the nodes are most useful 

points for output and interpretation of stresses. For two dimensional isoparametric elements, 

the 2 × 2 Gauss points have been found out to be the optimal sampling points [21]. The 

nodal point stresses are calculated as per the method suggested by Hinton and Campbell 

[22]. Major and minor principal stresses are calculated as follows: 
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2.7 Degeneration of quadrilateral elements into triangular elements 

At the left portion of the embankment, where shape of the ground is inclined, it is necessary 

that finite element chosen should also represent in proper diagram. So 8-noded elements are 

converted into triangular element. In whole domain, 8-noded elements are used. But at the 

inclination 8-noded element has been squeezed in type shown in Fig. 1. In Fig. 1, the 

quadrilateral element is numbered from 1 to 8 in clockwise manner. These are being 

squeezed to a triangular element. So the node numbers 2, 3 and 4 will assemble on the 

hypotenuse. 
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Figure 1. Nodal positions for elements on the sloping side 

 

2.8 Staged construction of embankment 

Engineering structures are usually constructed in a definite sequence of operations. A 

conventional linear analysis of such structures is performed by assuming that the entire 

construction takes place in single operation. In other words stresses and deformation are 

computed by considering loads on completed structures. However, for the non-linear 

problems typical in soil and foundation engineering, the behavior of soil at a particular stage 

of loading is dependent upon the state of stress and stress history. Thus the stresses in final 

configuration are dependent upon the sequence of intermediate configurations and loadings. 

Gravity is one of the main agencies causing deformation and it is common to employ 

gravity turn-on as the loading mechanism. In "Numerical Results" part (section 3.8), the 

contour plots of major and minor principal stresses for the embankment are shown which 

clearly depicts sequential construction procedure of the embankment. The embankment is 

assumed to be raised in a series of lifts, the first of which merely stresses the foundation 

block gravitationally under at rest condition. 

 

 

3. NUMERICAL RESULTS 
 

3.1 Selection of an optimum mesh size 

The stress-strain behaviour of the earthen embankment is non-linear in nature which is dealt 

with visco-plastic method. The dimensions of the earthen embankment are shown in Fig. 2. 

The material properties of earthen embankment are: unit weight of soil = 20 kN/m3, dilation 

angle = 00, angle of friction = 00, cohesion = 14 kN/m2, Poisson’s ratio = 0.49, modulus of 

elasticity = 105 kN/m2. The parameters are initially same as those considered by Smith and 

Griffiths [18]. The bottom boundary nodes are attached to hinges as shown in Fig. 2. Also 

all the right and left side nodes are provided with rollers support. 

In order to investigate the response of different parameters like (displacement, stress and 

loading), an analysis of staged construction of an earthen embankment has been done. 

Therefore, a solution with minimum error and discretization and with maximum accuracy is 

sought by selecting an economic number of divisions. Satisfactory solution may be arrived 

at either by (i) selecting the required number of subdivisions of the continuum from past 

experience or (ii) if an analysis is attempted for the first time, the convergence can be tested 

based on varied mesh grading and thereafter making a suitable choice. In this analysis body 

loads are being increased by increasing the number of lifts. 
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Figure 2. Geometry and Finite Element Discretization of Earthen Embankment 

 

3.2 Effect of number of load increments 

The maximum displacement is occurring at the final lift when the embankment has failed to 

achieve equilibrium within a specified number of iterations. Five lifts are applied one after 

each other to reach the final height of the embankment before it fails. For each of the lift, 

there are provisions of applying several load increments in the program designated by the 

parameter INCS. The value of displacement is plotted at point  'A' as shown in Fig. 2 has 

been shown in Table 1 when the embankment has failed to achieve equilibrium. It is 

observed that the values of displacements for both the yield criterion (i.e. Mohr-Coulomb 

and Von-Mises) at failure are nearly same used for representing the inclined slope of the 

embankment. 

The displacement obtained before failure is achieved at node designated by point 'A' (as 

shown in Fig. 2). The displacements at failure are nearly same for both Von-Mises and 

Mohr-Coulomb criteria. However, it has to be understood that when the algorithm has failed 

to converge within specified iteration limits, it only indicates that the failure has occurred. 

As the nonlinear algorithm is basically incremental in nature, the displacements, stresses and 

strains will increase manifold if the algorithm fails to achieve convergence, which is just the 

case at the point of failure. When the algorithm has not converged, as observed in lift 5, the 

displacements, stresses and strains obtained will not be correct. Only thing that can be said 

for sure is the structure has failed to reach the state of equilibrium indicating failure. 

However, the displacements and stresses and strains obtained in lift 4, where algorithm has 

converged, indicates correct values. 

 
Table 1: Effect of change in load increment 

Number of 

Load 

increment 

Failure criteria 

Maximum 

displacement (m) 

at failure at lift 5 

Maximum 

displacement (m) 

before failure at lift 4 

3 
Mohr-Coulomb 1.1377 10-1 3.3105 10-4 

Von-Mises 1.1379 10-1 3.3113 10-4 
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4 
Mohr-Coulomb 1.1328 10-1 2.5031 10-4 

Von-Mises 1.1329 10-1 2.5035 10-4 

5 
Mohr-Coulomb 1.1259 10-1 2.0194 10-4 

Von-Mises 1.1261 10-1 2.0203 10-4 

 

3.3 Effect of variation of iteration limit on embankment 

In this section, iteration limit is changed and change in displacement is observed. Table 2 

shows the numerical values of maximum displacement at failure and at the previous lift 

when the algorithm has converged for different values of iteration. From Table 3, it is clear 

that before failure the values are converging for both the yield criteria i.e. Von-Mises and 

Mohr-Coulomb yield criteria. But at lift 5, the algorithm is failing to converge and the value 

of displacement is increasing rapidly with great magnitude indicating failure of the 

embankment. If the iteration limit is taken equal to 5000, the maximum displacement 

increases to 1.0704 m for Mohr-coulomb yield criteria and approximately same for Von-

Mises yield criteria. As the algorithm fails to converge for iteration limit 500, it is 

considered to be sufficient to work with iteration limit equal 500.  

 
Table 2: Effect of displacement and iteration limit 

Iteration 

limit 
Failure criteria 

Maximum displacement (m) 

before failure at lift 4 

Maximum displacement 

(m) at failure at lift 5 

500 
Mohr-Coulomb 2.0194 10-4 1.1259 10-1 

Von-Mises 2.0203 10-4 1.1261 10-1 

1000 
Mohr-Coulomb 2.0194 10-4 2.2105 10-1 

Von-Mises 2.0232 10-4 2.2107 10-1 

5000 
Mohr-Coulomb 2.0194 10-4 1.0704 

Von-Mises 2.0203 10-4 1.0705 

 

3.4 Effect of variation of tolerance limit on embankment 

In this section tolerance limit has been changed and change in displacement has been 

analyzed. Table 3 shows the numerical values of maximum displacement at failure and at 

the previous lift when the algorithm has converged for changing values of tolerance limit. It 

is seen that if the tolerance limit is reduced below 0.0001, the obtained displacements are 

converging. Therefore, 0.0001 has been safely considered as convergence limit for the 

present work. 

 
Table 3: Effect of displacement and tolerance limit 

Tolerance 

Limit 
Failure criteria 

Maximum displacement 

before failure at lift 4 (m) 

Maximum displacement 

at failure at lift 5 (m) 

0.001 
Mohr-Coulomb 2.0195 10-4 1.1263 10-1 

Von-Mises 2.0203 10-4 1.1264 10-1 

0.0001 
Mohr-Coulomb 2.0194 10-4 1.1259 10-1 

Von-Mises 2.0203 10-4 1.1261 10-1 

0.00001 
Mohr-Coulomb 2.0194 10-4 1.1259 10-1 

Von-Mises 2.0203 10-4 1.1260 10-4 
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3.5 Effect of variation of cohesion 

Table 4 shows the numerical values of maximum displacement at failure which occurs at lift 

5 at point 'A' as shown in Fig. 2. Also, the values of maximum displacement at the previous 

lift when the algorithm has converged for different values of cohesion. Here, the values of 

cohesion considered are 14 kN/m2, 20 kN/m2, 25 kN/m2and 50 kN/m2 respectively. If 

material properties are improving, then we find that displacement is decreasing. Also in 

some cases i.e. c = 20 kN/m2 to 25 kN/m2, failure might not occur as evident from the result 

because the algorithm converges before the specified iteration limit. The value of 

displacement obtained at lift 5 is not correct as the algorithm fails to converge when the 

analysis is carried out with cohesion value of 14 kN/m2. But, for higher value of cohesion, 

the algorithm might converge before the specified iteration limit of 500. Also, difference 

between both the yield criteria i.e. Mohr-Coulomb and Von-Mises yield criteria is 

practically negligible. It is observed that the maximum displacements at failure are occurring 

at point 'A' in the Fig. 2. The major and minor principal stresses are also tabulated at the 

moment of failure at point 'A' as shown in Table 5. 

 
Table 4: Effect of cohesion on displacement behavior 

Cohesion 

(kN/m2) 
Failure criteria 

Maximum 

displacement 

(m) before 

failure at lift 4 

Maximum 

displacement 

(m) at failure at 

lift 5 

Major principal 

stress at failure 

(kN/m2) (lift=5) 

Minor principal 

stress at failure 

(kN/m2) 

(lift=5) 

14 
Mohr-Coulomb 2.0194 10-4 1.1259 10-1 24.9813 -4.9919 

Von-Mises 2.0203 10-4 1.1261 10-1 24.9864 -4.9873 

20 
Mohr-Coulomb 1.7158 10-4 2.0297 10-4 7.7958 0.0165 

Von-Mises 1.7158 10-4 2.0299 10-4 7.7962 0.0165 

25 
Mohr-Coulomb 1.7158 10-4 2.0274 10-4 7.6687 0.0181 

Von-Mises 1.7158 10-4 2.0274 10-4 7.6563 0.0181 

50 
Mohr-Coulomb 1.7158 10-4 2.0274 10-4 7.6687 0.0181 

Von-Mises 1.7158 10-4 2.0274 10-4 7.6687 0.0181 

 

It is being observed that for cohesion value equal to 20 kN/m2, the algorithm converges at 

lift 5 before specified iteration count (INCS). For a value of cohesion equal to 14 kN/m2, the 

maximum displacement obtained at lift 5 is 0.11259 m, which is too high for the soil 

material to sustain without cracking. This large value of displacement is also indicative of 

the failure of the soil mass. As the cohesion values increases, it is observed that failure does 

not occur even at lift 5. The corresponding values of displacements, major and minor 

principal stresses at point 'A' are comparatively very less to that obtained for cohesion value 

of 14 kN/m2. 

The variation of maximum displacement with cohesion obtained at the end of last lift 

(lift=5) for both failure criteria Mohr-Coulomb and Von-Mises are shown in graphical form, 

represented by Fig. 3. It is shown that in final lift the displacement has decreased by very large 

extent with the increase of cohesion. From Fig. 3, it is clear that for cohesion = 14 kN/m2, 

failure has occurred at iteration limit 500 (iters = 2, 2 designate two iterations are  required to 

achieve convergence for Mohr-Coulomb and Von-Mises criteria). But for other cohesion 

values, convergence has been achieved, as they are failing before iteration limit 500.  For Fig. 
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3 to Fig. 6, the points are plotted along with the numbers of iterations required for Mohr-

Coulomb and Von-Mises material to achieve convergence for the algorithm. The displacement 

obtained at the final lift for the cohesion = 14 kN/m2 is very large compared to those obtained 

for other values of cohesion. That is why, the plot seems to align with x axis even though the 

displacements obtained at cohesion values other than 14 kN/m2are non-zero. 

 

 
Figure 3. Displacement vs. cohesion at failure 

 

The variation of major and minor principal stresses with cohesion obtained at the end of 

last lift (at lift 5) for both failure criteria Mohr-Coulomb and Von-Mises are shown in 

graphical form, represented by Fig. 4 and Fig. 5 respectively. From all these figures, it is 

observed that in final lift the major principal stress has increased by very large extent. The 

major principal stresses occurring up to lift 4 are several times lower in magnitude from that 

occurring at lift 5. However, if the cohesion increases, the major and minor principal stresses 

also decreases. From Fig. 4 and Fig. 5, it is also observed that for higher values of cohesion 

other than 14 kN/m2, the algorithm converges in two iterations as indicated by the term iters 

= 2, 2 for both Mohr-Coulomb and Von-Mises criteria. This also indicates that the failure 

does not take place when the cohesion increases. Therefore, the values obtained for 

displacements, major and minor principal stresses are converged and correct values for 

higher values of cohesion. 
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Figure 4. Major principal stress vs. cohesion at failure 

 

 
Figure 5. Minor principal stress vs. cohesion at failure 

 

 
Figure 6. Displacement vs. cohesion at lift 4 
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The variation of maximum displacement with cohesion obtained at lift 4 (i.e. just before 

failure) for failure criteria Mohr-Coulomb and Von-Mises are shown in graphical form, 

represented by Fig. 6. It is being shown that in lift 4 the displacement has decreased. The 

displacement occurring at lift 4 is decreasing as cohesion is being increased. 

 

3.6 Effect of variation of unit weight on embankment 

In this section, the displacements with respect to changing values of unit weight are 

investigated keeping all the other material parameters same as mentioned in section 3.1. 

Table 5 shows the numerical values of maximum displacement at failure and at the previous 

lift when the algorithm has converged for changing values of unit weight of soil. For lower 

values of unit weight of soil, it is seen that the algorithm reaches equilibrium indicating no 

failure. The displacements observed at the final lift are also small. But, when the unit weight 

of the soil is considered to be 20 kN/m2, the displacement suddenly increases to very high 

value indicating failure has occurred. 

 
Table 5: Effect of displacement and unit weight 

Unit weight 

(kN/m3) 
Failure criteria 

Maximum displacement (m) 

before failure at lift 4 

Maximum displacement 

(m) at failure at lift 5 

16 
Mohr-Coulomb 1.3726 10-4 2.9950 10-4 

Von-Mises 1.3726 10-4 3.0121 10-4 

17 
Mohr-Coulomb 1.4720 10-4 5.7744 10-4 

Von-Mises 1.4721 10-4 5.7958 10-4 

19 
Mohr-Coulomb 1.7934 10-4 4.9059 10-3 

Von-Mises 1.7943 10-4 4.9164 10-3 

20 
Mohr-Coulomb 2.0194 10-4 1.1259 10-1 

Von-Mises 2.0203 10-4 1.1261 10-1 

 

3.7 Effect of variation of poisson’s ratio on embankment 

Table 6 shows the numerical values of maximum displacement at failure and at the previous 

lift (lift 4) when the algorithm has converged for different values of Poisson's ratio of soil 

for both the yield criterions. It is being shown that in lift 4 (i.e. before failure) the 

displacement is decreasing. The displacement occurring at lift 4 is decreasing as Poisson’s 

ratio is being increased. It is being observed that the displacements are increasing with the 

reduction of Poisson's ratio values. As the Poisson's ratio is the ratio of lateral strain and 

longitudinal strain, these results indicate that the lateral strain is increasing with the decrease 

of Poisson's ratio values of the material. 

 
Table 6: Effect of displacement and poisson’s ratio 

Poisson’s 

Ratio 
Failure criteria 

Maximum displacement(m) 

at just before failure at lift 4 

Maximum displacement 

(m) at failure. at lift 5 

0.25 
Mohr-Coulomb 1.3421  10-3 1.2387  10-2 

Von-Mises 1.3284  10-3 1.3326  10-2 

0.30 
Mohr-Coulomb 1.1335  10-3 1.1501  10-2 

Von-Mises 1.1460  10-3 1.2180  10-2 
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0.35 
Mohr-Coulomb 9.0542 10-4 1.0282 10-2 

Von-Mises 9.4865  10-4 1.080610-2 

0.40 
Mohr-Coulomb 6.3572 10-4 8.6544 10-3 

Von-Mises 7.2175 10-4 9.1173  10-3 

0.45 
Mohr-Coulomb 3.1943 10-4 1.1280  10-1 

Von-Mises 3.4577 10-4 1.1293 10-1 

0.49 
Mohr-Coulomb 2.0194 10-4 1.1259 10-1 

Von-Mises 2.0203 10-4 1.1261 10-1 

 

The variation of maximum displacement with Poisson’s ratio obtained at the end of  lift 4 

(before failure) for both failure criteria Mohr-Coulomb and Von-Mises are shown in 

graphical form, represented by Fig. 7. It is observed that in lift 4 (i.e. before failure) the 

displacement is decreasing. The displacement occurring at lift 4 is decreasing as Poisson’s 

ratio is being increased. 

 

 
Figure 7. Displacement vs. unit weight at lift 4 (before failure at lift 4) 

 

3.8 Effect of variation of young's modulus 

To investigate the effect of Young's modulus on the behaviour of the embankment, the value 

of the Young's modulus is varied and the corresponding displacements at point 'A' (as shown 

in Fig. 2) at the final lift as well as at the previous lifts are calculated. The values are 

provided in Table 7. The data reflect that displacement values reduce as the Young's 

modulus of soil increases. The displacements at lift 5 are found to be much higher than that 

obtained at lift 4. It is because the algorithm has failed to converge at the final lift indicating 

bearing capacity failure of the embankment has taken place. As the algorithm has failed to 

converged within a specified limit of iterations, the displacements have increased manifold 

compared to that obtained at previous lift. However, these displacements are not correct 

values because convergence of algorithm has not been achieved. Only inference that may be 

drawn is that the embankments has failed. 
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Table 7: Effect of displacement and young’s modulus 

Young’s 

Modulus 

(kN/m2) 

Failure criteria 
Maximum displacement 

(m) before failure at lift 4 

Maximum displacement (m) 

at failure at lift 5 

1105 
Mohr-Coulomb 2.0194 10-4 1.1259 10-1 

Von-Mises 2.0203 10-4 1.1261 10-1 

2105 
Mohr-Coulomb 1.0097 10-4 5.6299 10-2 

Von-Mises 1.0101 10-4 5.6305 10-2 

3105 
Mohr-Coulomb 6.7314 10-5 3.7533 10-2 

Von-Mises 6.7394 10-5 3.7537 10-2 

4105 
Mohr-Coulomb 5.0486 10-5 2.8149 10-2 

Von-Mises 5.0508 10-5 2.8152 10-2 

 

3.9 Effect of variation of lifts on embankment 

In this section the contour plots of major and minor principal stresses (kN/m2) are plotted for 

the embankment cross section. For yield criteria Mohr-Coulomb and Von-Mises yield 

criteria, it is noticed that the nature and the magnitude of principal stresses are very close to 

each other. To avoid repetition of similar contour plots, the plots are drawn only for Mohr-

Coulomb criteria. Fig. 8 and Fig. 9 show the contour plots for major and minor principal 

stress in lift 1. When no external loading is present as in the case of lift 1, the entire soil 

mass is loaded with at rest earth pressure (K0), which is evident from Fig. 8 and Fig. 9. It is 

seen that the value of compressive stress increases with depth. Since the bottom portion of 

embankment experiences maximum compressive stresses. Fig. 10 and Fig. 11 shows the 

contour plots for major and minor principal stress in lift 2. This two figures shows the nature 

of the principal stresses when the second lift is applied. From Fig. 10, it is observed that the 

magnitude of compressive stress reduces in the left portion. However, the bottom of the 

embankment is still under the influence of compressive stress. Fig. 12 and Fig. 13 show the 

contour plots for major and minor principal stress in lift 3. Here also the nature of stress is 

similar as before. Fig. 14 and Fig. 15 show that the nature of the principal stresses is 

compressive throughout the embankment in lift 4. Fig. 16 and Fig. 17 shows the contour 

plots for major and minor principal stress in lift 5. Fig 16 shows that the top right most 

portion of the embankment is experiencing tensile stress. Since soil is unable to withstand 

tensile stress, this portion is likely to crack leading to failure. This observation tallies well 

with the results of the program which shows that the embankment fails in lift 5. In order to 

validate the results, slope stability analysis of the embankment is also carried out at all the 

lifts. The slope stability analysis at all the lifts are carried out using the finite element 

procedure as stated in Smith and Griffiths (2004). Also, Bishop's simplified method (limit 

equilibrium method) is used to calculate the factor of safety of the embankment at each lift 

against failure with the help of SLOPEW software. The results are provided in Table 8. The 

values of factor of safeties obtained from both the types of analysis indicate that the 

embankment fails at lift 5. This serves as another vindication of the bearing capacity failure 

analysis carried out in this work. 
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Figure 8. Contour for major principal stress (kN/m

2
) at lift 1 

 

 
Figure 9. Contour for minor principal stress (kN/m

2
) at lift 1 

 

 
Figure 10. Contour for major principal stress (kN/m

2
) at lift 2 

 



SIMULATION OF SEQUENTIAL CONSTRUCTION OF EMBANKMENT BY FINITE ... 

 

 

363 

 
Figure 11. Contour for minor principal stress (kN/m

2
) at lift 2 

 

 
Figure 12. Contour for major principal stress (kN/m

2
) at lift 3 

 

 
Figure 13. Contour for minor principal stress (kN/m

2
) at lift 3 
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Figure 14. Contour for major principal stress (kN/m

2
) at lift 4 

 

 
Figure 15. Contour for minor principal stress (kN/m

2
) at lift 4 

 

 
Figure 16. Contour for major principal stress (kN/m

2
) at lift 5 
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Figure 17. Contour for minor principal stress (kN/m

2
) at lift 5 

 
Table 8: Factor of safeties of the embankment against failure at each lift 

Lift no. 
Factor of safety against failure using 

finite element method 

Factor of safety against failure using Bishop's 

simplified method using SLOPW software 

1 Very high (>10) Very high (>10) 

2 3.70 3.92 

3 1.89 2.22 

4 1.27 1.32 

5 0.95 0.99 

 

 

4. CONCLUSION 
 

The paper presents a methodology for the analysis of sequential construction of earthen 

embankment. The proposed method is validated from the literature which shows the 

accuracy of the developed algorithm. The analysis is carried out in a visco-plastic 

framework which effectively simulates the failure mechanism during sequential construction 

of embankments. In the present work two failure criteria namely Mohr-Coulomb and Von-

Mises have been used to the study sequential construction of earthen embankment. The 

results obtained for both the failure criteria are found to be very close. Several results have 

been obtained by changing the material properties. If values of cohesion are increased, it is 

found that at failure, the values of displacement have decreased. If the cohesion is too high, 

failure might not occur because the algorithm converged before the specified iteration limit. 

So for a higher value of cohesion, the algorithm may converge before specified iteration 

limit indicating a state of equilibrium has been reached for the soil mass. When the value of 

unit weight is increased, displacement also increases. The contour plots of major and minor 

principal stresses drawn at each lift clearly indicates tension is developed at the time of 

failure at the final lift. This fact is also validated by the slope stability analysis performed at 

each lift which clearly shows that the slope stability failure occurs at the final lift. The 

idealized study gives information on the behavior of a multi-stage construction of an 

embankment over a soft cohesive deposit. 
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