
ASIAN JOURNAL OF CIVIL ENGINEERING (BHRC) VOL. 16, NO. 4 (2015) 

PAGES 467-492 

 
 

 

A COMPARATIVE STUDY OF SLOPE STABILITY ANALYSIS 

USING TRADITIONAL LIMIT EQUILIBRIUM METHOD AND 

FINITE ELEMENT METHOD 
 

 

A. Burman1, S. P. Acharya2, R. R. Sahay3 and D. Maity4 
1Department of Civil Engineering, National Institute of Technology, Patna, India 

2Birla Institute of Technology, Mesra, Ranchi, India 
3Department of Civil Engineering, Birla Institute of Technology, Patna, India 

4Department of Civil Engineering, Indian Institute of Technology, Kharagpur, India 

 

Received:12 October 2014; Accepted:2 February 2015 

 

 

ABSTRACT 
 

Traditional limit-equilibrium techniques are the most commonly-used analysis methods for 

slope stability problems. Recently, finite element method has emerged as an efficient and 

viable tool for analyzing various geotechnical problems. The Strength Reduction Technique 

(SRT) technique enables the FEM to calculate factors of safety for slopes. Despite the SRT‟s 

many obvious benefits, it has not yet received widespread acceptability among geotechnical 

engineers for routine slope stability analysis. To help change this situation this paper will 

compare the method‟s performance to those of the most widely used limit-equilibrium 

methods on a broad range of slope stability problems. 

 

Keywords: Slope stability; limit equilibrium methods; finite element method; strength 

reduction technique; Bishop's method; Spencer's method; Morgenstern and price's method. 

 

 

1. INTRODUCTION 
 

The stability of earth embankments or slopes, as they are commonly called, should be very 

thoroughly analysed since their failure may lead to loss of human life as well as colossal 

economic loss. The primary purpose of slope analysis in most engineering application is to 

contribute to the safe and economic design of excavations, embankments, earth dams etc. 

The failure of a mass of soil located beneath a slope is called a slide. It involves a downward 

and outward movement of the entire mass of soil that participates in the failure. The failure 

of slopes takes place due to  i  the action of gravitational forces, and  ii  seepage forces 

within the soil .They may also fail due to excavation or undercutting of its foot, or due to 
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gradual disintegration of the structure of the soil. Slides may occur in almost every 

conceivable manner, slowly or suddenly, and with or without any apparent provocation. 

The economic losses associated with slope movements reach about US$ 4.5 billion per 

year in Japan, US$ 2.6 billion in Italy, on the order of US$ 2 billion in the United States, and 

US$ 1.5 billion in India [1]. A further account of „annual losses from naturally disasters 

generally, to which landslides contribute significantly, are estimated by the UN Disaster 

Relief Coordinator to amount to 1 or 2 % of the gross national products in many developing 

countries‟ [2]. A dramatic Problem was provided in 1993 by the „La Josephina‟ landslide, 

which created a 90 m high dam with 180-
3hm reservoir that failed 33 days later. Seventy-

one persons died, and the direct cost was US$ 141 million: that is, 1.24% of the gross 

natural product of Ecuador [1]. 

Human casualties related to land slides are also important. This can be illustrated by the 

situation in China, which is probably the country that suffers the most from the facilities due 

to landslides. It includes the earthquake-induced Haiyuan landslides, which killed 100000 

(possibly 200000) people; it also include the Dong Xiang landslides, which in 1983 killed 

more than 200 people. historical records show that the number of landslides-related fatalities 

in China exceeds 100 per year [3]. Also, very recently the state of Sikkim in India suffered a 

major slope failure on 18th September, 2011 due to excessive rainfall which led to the loss of 

lives, blockage of roads and disruption of public transport system.  

Traditional limit-equilibrium techniques are the most commonly-used analysis methods 

for slope stability problems. They approach the problem with a few assumptions: i) A pre-

determined failure mechanism is assumed, ii) Normally the analysis is carried out in a 2-D 

framework ignoring the 3-D effects (although in reality slopes are three dimensional), iii) 

The soil mass is assumed to move as a rigid block, with the movement only taking place 

along the failure surface itself, iv) It is assumed that the mobilisation of shear stresses occurs 

locally. Normally, the shear stresses are not usually uniformly mobilised over the whole 

length of the failure surface. However, for the purpose of analysis, we assume they are.  

In the assessment of slopes, engineers primarily use factor of safety values to determine 

how close or far slopes are from failure. The basis for most limit equilibrium methods of 

slope stability analysis can be traced back to 1922, when the Geotechnical Commission was 

appointed by the Swedish State Railways to investigate solutions following a costly slope 

failure. The method has become known has the Swedish Slip Circle Method. This method 

assumes the slide occurs along a circular arc. Fellenius [4] developed this method further, 

creating a method known as the “Ordinary Method of Slices” or Fellenius‟ method. In any 

method of slices, the soil mass above the failure surface is subdivided into vertical slices, 

and the stability is calculated for each individual slice. Fellenius‟ Method simplifies the 

equation by assuming that the forces acting on the sides of each slice cancel each other. 

While this enables a solution to be determined, the assumption is not completely correct, and 

leads to low values for the computed Factor of Safety. 

The approach was refined by accounting for the interslice normal forces, thus calculating 

the factor of safety (FOS) with increased accuracy. The method of slices thus developed is 

known as the “Simplified Bishop‟s Method” [5]. However, Bishop‟s Method still does not 

satisfy all the conditions of static equilibrium (i.e., summation of horizontal forces is 

missing); therefore, it is an „incomplete equilibrium method‟. 

In 1967, Spencer [6] developed a complete equilibrium method known as Spencer‟s 
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Method, which satisfies both force and moment equilibrium forces. As a result, the FOS 

calculated by this method should be more precise. This method can also be adapted for use 

with non-circular slip surfaces, which is useful because many slope failures do not have 

circular failure surfaces. 

Other methods of slices for calculating stability for non-circular failure surfaces include 

“Janbu‟s Rigorous Method” and “Janbu‟s Simplified Method” [7]. His rigorous method 

accounts for the interslice forces; his simplified method assumes these forces are zero, but 

includes a correction factor to compensate for the interslice forces. An alternative method 

for analyzing slides with a noncircular failure path was developed by Morgenstern and Price 

[8]. This method satisfies all equations of statical equilibrium, and is known as the 

“Morgenstern-Price Method”. 

The limit equilibrium method of slices is based on purely on the principles of statics; that 

is, the summation of moments, vertical forces, and horizontal forces. The method says 

nothing about stress, strain and displacements, and as a result it does not satisfy 

displacement compatibility. It is the key piece of missing physics that creates many of 

difficulties with limit equilibrium method. Overcoming the gap left by the missing piece of 

physics means somehow incorporating a stress-strain constitutive relationship into the 

formulation. One way of doing this is to use FEM instead of determining the stresses from 

equation of statics. 

Although finite element method (FEM) has been commonly used in deformation analysis 

of embankments and other geotechnical problems, it is still not widely used for stability 

analysis of slope as compared to conventional limit equilibrium methods [9, 10]. FEM 

involves more complex theory and it usually requires more time for developing model 

parameters, performing the computer analyses and interpreting the results [9]. Despite that, 

the FEM for slope stability analysis have several advantages over the conventional limit 

equilibrium methods, as stated by Griffiths and Lane [10]: 
1) In this method, no assumptions are needs to be made in advance about the shape or 

location of failure surface. Failure occurs “naturally” through the zones within the soil mass 

in which the soil strength is unable to resist the applied shear stresses.  

2) Since there is no concept of slices in the finite element approach there is no need for 

assumptions about slice side forces. The finite element method preserves global equilibrium 

until “failure” is reached.  

3) If realistic soil compressibility data is available, the finite element solutions will give 

information about deformations at working stress levels. 

4) The finite element method is able to monitor progressive failure up to and including 

overall shear failure. 

One of the earliest studies that used the FEM for stability analysis of slopes was Smith 

and Hobbs [11]. Based on the elasto-plastic soil model, they reported results of u 0  slopes 

and obtained reasonable agreement with Taylor‟s charts [12]. Meanwhile, studies were 

conducted to analyse the stability of  '' c  slopes using the FEM [13, 14]. These studies 

also indicated that the FOS computed by the FEM was in good agreement with that 

calculated by limit equilibrium methods. Since then, more studies adopting for slope 

stability analysis have been reported [10, 15, 16, 17]. 
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This two-dimensional ( D2 ) elasto-plastic finite element software was developed and 

updated to include a better slope geometry routine [18]. It was later extended to three-

dimensional ( D3 ) analysis [19] in the fourth edition of the text. This finite element slope 

stability analysis software has been rigorously tested and validated against the limit 

equilibrium method [10]. They showed that the computer program can be applied to slopes 

under different conditions including undrained clay ( 0u ) slopes, '' c  slopes, layered 

slopes and slopes with a free surface. Meanwhile, Lane and Griffiths (2000) used the same 

computer program to estimate the stability of slope under a drawdown condition and 

comparisons were made with the limit equilibrium results published by Morgenstern [8]. The 

progression of failure within a slope under different loading strategies using the same 

computer program was carried out [20]. More recently, studies were conducted using the 3D 

version of the FEM computer program for the slope stability analysis and made comparisons 

with other 3 D limit equilibrium methods [21]. The 2D version of the finite element slope 

stability program has been used throughout this work. The theoretical aspects and formulation 

of the finite element slope stability model will be discussed in the subsequent part. 

Recently, however, the significant computing and memory resources available to the 

geotechnical engineer, combined with low costs, have made the FEM a powerful, viable 

alternative. The Strength Reduction Technique (SRT) enables the FEM to calculate 

factors of safety for slopes [22, 10]. The method enjoys several advantages including the 

ability to predict stresses and deformations of support elements, such as piles, anchors 

and geotextiles, at failure. As well the technique makes it possible to visualize the 

development of failure mechanisms. Despite the SRT finite element technique‟s many 

benefits, it has not received widespread acceptance among geotechnical engineers for 

routine slope stability analysis. In the authors‟ opinion this is primarily due to the very 

limited experience engineers have had with the tool for slope stability analysis and the 

limited published information on the quality/accuracy of its results. To improve 

confidence in the SRT, this paper will compare the method‟s performance to those of 

well-established limit-equilibrium methods on a broad range of slope stability problems. 
 

 

2. MATHEMATİCAL MODELS 
 

2.1 Slope stability analysis using limit equilibrium method 

In the conventional limit equilibrium approach, the stability of a slope measured by factor of 

safety (FOS), which is defined as the ratio between the shear strength of the soil to shear 

stress required to maintain the equilibrium of the slope [9]. A slip surface, which can be 

planar, circular or non-circular in shape, is required to be assumed prior to the equilibrium 

analysis. At that point of failure the shear strength is assumed to be fully mobilized along the 

slip surface and FOS is assumed to be constant for the entire slip surface. The stability 

analysis eventually involves an iterative process until the critical slip surface is found out 

where the critical slip surface is defined as the slip surface with lowest FOS. Over the years, 

many studies have been conducted to investigate the computational accuracy of different 

limit equilibrium methods and to develop techniques for searching the critical slip surface 

[9]. However, he pointed out that the critical slip surface can be assumed to be circle, in 
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most cases, with little inaccuracy unless there are geological layers that constrain the slip 

surface to a non-circular shape. 

An analysis of slope stability begins with the hypothesis that the stability of a slope is the 

result of downward or motivating forces (i.e., gravitational) and resisting (or upward) forces. 

These forces act in equal and opposite directions as can be seen in Fig. 1. The resisting force 

must be greater than the motivating forces in order for a slope to be stable. The relative 

stability of a slope (or how stable it is at any given time) is typically conveyed by 

geotechnical engineers through a Facto of Safety FOS  defined as follows: 

 





M

R
FOS  (1) 

 

 
Figure 1. Illustration of the motivating and resisting forces/moments involved in a slope stability 

analysis 

 

The eq. (1) states that the factor of safety is the ratio between the forces/moments 

resisting ( R ) movement and the forces/moments motivating ( M ) movement. When the 

factor of safety is equal to 1.0 a slope has just reached failure conditions. If the factor of 

safety falls below 1.0 then failure is imminent, or has already occurred. Factors of safety in 

the range of 1.3 to 1.5 are considered reasonably safe in many design scenarios. However, 

the actual factor of safety used in design is influenced by the risk involved as well as the 

certainty with which other variables are known. 

In the present study, the slice technique is used for slope stability analysis. The forces 

acting on a typical slice are shown in Fig. 2, where W weight of slice, kW seismic force 

applied to centre of slice, FS / mobilized shear force at base of a slice, 'P effective 

normal forces on base , U water pressure force on base, B  resultant top boundary force, 

X vertical side force, E horizontal slide force. In this work, four different types of limit 

equilibrium techniques have used. They are: a) Ordinary slice method, b) Bishop‟s method, 

c) Spencer‟s Method and d) Morgenstern and Price method to analyze stability of various 

types of slopes. 
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(a) Forces acting on a typical slice 

 

 
Figure 2. (b) Differences in assumptions regarding side forces in common methods of slope 

stability analysis 

 

As stated previously, equilibrium methods employ assumptions to make the problem 

statically determinate. The most critical of these assumptions typically deals with the side 

forces X and E. Fig. 2 shows the assumption made concerning side forces for the methods 

which have been used in this study. 

The method proposed by Fellenius [4] is also called "Ordinary Method of Slices". It is 

applicable only for circular slip surfaces. It satisfies one equation (moment equilibrium of 

entire mass). 

In the 1950‟s Professor Bishop at Imperial College in London devised a method which 

included interslice normal forces, but ignored the interslice shear forces. Bishop‟s method 

only satisfies moment equilibrium. Including the interslice normal forces means that 

Bishop‟s method is close to being in force equilibrium, as indicated by the force polygon for 

each slice [5]. Bishop developed an equation for the normal at the slice base by summing 



A COMPARATIVE STUDY OF SLOPE STABILITY ANALYSIS USING TRADITIONAL… 

 

 

473 

slice forces in the vertical direction. The consequence of this is that the base normal 

becomes a function of factor of safety. This in turn takes factor of safety equation nonlinear 

(that is, FOS appears on both the sides of the equation) and an iterative procedure is 

consequently required to compute factor of safety.  

Spencer's method satisfies all conditions of equilibrium. It is applicable to any shape of 

slip surface. It assumes that inclinations of side forces are the same for every slice. Side 

force inclination is calculated in the process of solution so that all conditions of equilibrium 

are satisfied. It is an accurate method [6]. 

Morgenstern and Price's [8] method satisfies all conditions of equilibrium. It is applicable 

to any shape of slip surface. It assumes that inclinations of side forces follow a prescribed 

pattern, called f(x). Side force inclinations can be the same or can vary from slice to slice. 

Side force inclinations are calculated in the process of solution so that all conditions of 

equilibrium are satisfied. It is an accurate method. The interslice functions available in 

software SLOPE/W for use with the Morgenstern-Price (M-P) method are: a) Constant, b) 

Half-sine, c) Trapezoidal and d) Data-point specified. Selecting the Constant function makes 

the M-P method identical to the Spencer method. But, in this paper half-sine is used for 

slope stability analysis purpose.  

 

2.2 Slope stability analysis using finite element method 

2.2.1 Determination of factor of safety 

The Factor of Safety (FOS) of a soil slope is defined here as the factor by which the original 

shear strength parameters must be divided in order to bring the slope to the point of failure. 

The factored shear strength parameters 
'

fc  and 
'

f  are therefore given by: 

 

SRF

C
C f


  (2) 








 
 

SRF
f




tan
tan 1

 
(3) 

 
Where SRF is a “Strength Reduction Factor”. This method is referred to as the “shear 

strength reduction technique” [23] and allows for the interesting option of applying different 

strength reduction factors to the 'c  and 'tan  terms. In this paper however, the same factor 

is always applied to both terms. To find the “true” factor of safety FOS ,it is necessary to 

initiate a systematic search for the value of SRF that will just cause the slope to fail. When 

this value has been found, FOS = SRF. 

According to Smith and Griffith [19], non-convergence within a user-specified number of 

iteration in finite element program is taken as a suitable indicator of slope failure. This 

actually means that no stress distribution can be achieved to satisfy both the Mohr-Coulomb 

criterion and global equilibrium. Slope failure and numerical non-convergence take place at 

the same time and are joined by an increase in the displacements. Usually, value of the 

maximum nodal displacement within the mesh just after slope failure has a big jump 

compared to the one before failure. If the algorithm is unable to satisfy these criteria, 

“failure” is said to have occurred. Most of the results shown in this work used an iteration 
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ceiling of 1000 and present results in the form of a graph of SRF vs. 2
max

' / HE  (a 

dimensionless displacement), where max the maximum nodal displacement at convergence 

and H is the height of the slope. This graph may be used alongside the displaced mesh and 

vector plots to indicate both the factor of safety and the nature of the failure mechanism. 

 

2.2.2 Mohr-coulomb failure criteria  

In the present work, two-dimensional plain-strain models are used to represent the slope 

failure problems. The Mohr-Coulomb constitutive model is used to describe the soil (or 

rock) material properties. The Mohr-Coulomb criterion relates the shear strength of the 

material to the cohesion, normal stress and angle of internal friction of the material. The 

failure surface of the Mohr-Coulomb model can be presented as [19]: 

 

 cossinsin
3

1
cossin

3
2

1 CJ
I

F 







  (4) 

 
Where φ is the angle of internal friction, C is cohesion and 

 

  mI  33211   (5) 
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






 222222

2
2

1
zxyzxyzyx

SSSJ 

 

(7) 

Where, 
222

3 2 xyzxzyyzxzxyzxyzyx ssssssJ  
 

(8) 

Also,  mzzmyymxx sss    and ,  (9) 

 
For Mohr-Coulomb material model, six material properties are required. These properties 

are the friction angle φ, cohesion C, dilation angle ψ, Young‟s modulus E, Poisson‟s ratio ν 

and unit weight of soil γ. Young‟s modulus and Poisson‟s ratio have a profound influence on 

the computed deformations prior to slope failure, but they have little influence on the predicted 

factor of safety in slope stability analysis. Dilation angle, ψ affects directly the volume change 

during soil yielding. If ψ = φ, the plasticity flow rule is known as “associated flow rule”, and if 

ψ ≠ φ, the plasticity flow rule is considered as “non-associated flow rule”. The change in the 

volume during the failure is not considered in this study and therefore the dilation angle is 

taken as 0. Therefore, only three parameters (friction angle, cohesion and unit weight of 

material) of the model material are considered in the modelling of slope failure. 

 

2.2.3 Generation of body loads using finite element method 

Constant stiffness methods use repeated elastic solutions to achieve convergence by 

iteratively varying the loads on the system [19]. Within each load increment, the system of 

equations. 
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    ii

m FUK   (10) 

 

In this equation, global displacement increments is given by  i
U , i  represents the 

iteration number,  mK  the global stiffness matrix, and  i
F  the global external and internal 

(body) loads. The element displacement increments  i
u  are extracted from i

U , and these 

lead to strain increments via the element strain-displacement relationships: 

 

    ii
uB  (11) 

 

Assuming the material is yielding, the strains will contain both elastic and (visco) plastic 

component, thus 

 

     ipiei
  (12) 

 

It is only the elastic strain increments  ie  that generates stress through elastic stress-

strain matrix, hence 

 

    ieei
D   (13) 

 

These stresses increment are added to stresses already existing from the previous load 

step and updated stresses substituted into the failure criterion (4). If stress redistribution is 

necessary (i.e. the yield function 0F ), this is done by altering the load increment vector 

 i
F  in eq. (10). In general, this vector holds two types of load, as given by 

 

     i

ba

i
FFF   (14) 

 

where  aF  is actually applied external load increment and  i

bF  is the body loads 

vector that varies from one iteration to next. The  i

bF  vector must be self-equilibrating so 

that the net loading on the system is not affected by it. Two simple methods for generating 

body loads are now described briefly. 

 

2.2.4 Viscoplastic algorithm  

Following viscoplastic algorithm [24], the material is allowed to sustain stresses outside the 

failure criterion for finite “periods”. Overshoot of the failure criterion as signified by a 
positive value of the yield criteria F as expressed in eq. (4). Viscoplastic strains are 

generated at a rate that is related to the amount by which yield has been violated through the 

expression. 
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
























Q
F

vp

 (15) 

 

Where Q  is the plastic potential function.  

It should be noted that a pseudo-viscosity property equal to unity is implied on the right 

hand side of eq. (15) from dimensional considerations. Multiplication of the viscoplastic 

strain rate by a pseudo-time step gives an increment of viscoplastic strain which is 

accumulated from one “time-step” or iteration to the next. Thus: 

 

 
i

vp
ivp t






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


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  (16) 

and        ivpivpivp 



1

 

(17) 

 

The “time step” for unconditional numerical stability has been derived by Cormeau 

(1975) and depends on the assumed failure criterion. For Mohr-Coulomb materials: 

 

  
 


2sin21

2114
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

E
t  (18) 

 

The derivatives of the plastic potential function Q with respect to stresses are 

conveniently expressed through the Chain Rule, thus: 
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where 2J is second invariant of deviatoric stress and the viscoplastic strain rate given by 

eq. (16) is evaluated numerically by an equation of the form: 
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In the above equation, 

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

are represented by the matrix vector 

products   1M ,   2M  and   3M . This is essentially the notation used by Zienkiewicz 

and Taylor (1989). The body loads  i

bF  are accumulated at each “time-step” within each 

load step by summing the following integrals for all elements containing a yielding  0F  

Gauss point: 
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         


all

elements

ivpeTi

b

i

b dxdyDBFF
1

 (21) 

 

This process is repeated at each “time step” iteration until no integrating point stresses 

violate the failure criterion within the tolerance. The convergence criterion is based on a 

dimensionless measure of the amount by which the displacement increment vector  i
U  

changes from one iteration to the next. 

 

2.2.5 Gravity loading 

The forces generated by the self-weight of the soil are computed by using a standard gravity 

“turn-on” procedure involving integrals over each element of the form: 

 
  eT

V

e dVNp e   (22) 

 

where N is the matrix of shape of the functions of the element and the superscript e refers 

to the element number. This integral evaluates the volume of each element, multiplies by the 

total unit weight of the soil and distributes the net vertical force consistently to all the nodes. 

These element forces are assembled into a global gravity force vector that is applied to the 

finite element mesh in order to generate the initial stress state of the problem. 

 

2.2.6 Influence of free surface and reservoir loading on slope stability 

We now consider the influence of a free-surface within an earth slope and reservoir loading 

on the outside of a slope as shown in Fig. 3. 

 

 
Figure 3. Slope with free-surface and reservoir loading 

 

Regarding the role of the free-surface, a rigorous approach would firstly involve 

obtaining a good quality flow net for free-surface flow through the slope, enabling pore 

pressures to be accurately estimated at any point within the flow region. For the purposes of 
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slope stability analysis however, it is usually considered sufficiently accurate and 

conservative to estimate pore pressure at a point as the product of the unit weight of water (

w ) and the vertical distance of the point  beneath the free surface. In Fig. 3-9, the pore 

pressures at two locations, A and B, have been calculated using this assumption. 

 

 
Figure 4. Detail of submerged area of slope beneath free-standing reservoir water showing 

stresses to be applied to the surface of the mesh as equivalent nodal loads 

 

In the context of finite element analysis, the pore pressures are computed at all 

submerged (Gauss) points as described above, and subtracted from the total normal stresses 

computed at the same locations following the application of surface and gravity loads. The 

resulting effective stresses are then used in the remaining parts of the algorithm relating to 

the assessment of Mohr-Coulomb yield and elasto-plastic stress redistribution. Note that the 

gravity loads are computed using total unit weights of the soil. The external loading due to 

the reservoir is modelled by applying a normal stress to the face of the slope equal to the 

water pressure. Thus, as shown in Fig. 4, the applied stress increases linearly with water 

depth and remains constant along the horizontal foundation level. These stresses are 

converted into equivalent nodal loads in finite element mesh and added to initial gravity 

loading. 

 

 

3. NUMERICAL RESULTS 
 

In this section, three example problems are computed to establish the effectiveness of the 

finite element method is solving slope stability problems. The first problem is simple single 

layered slope where both the material properties i.e. c (cohesion) and  (angle of internal 

friction) are considered. The second problem refers to a slope having multi layers. In this 

case also both c and  are considered as material properties. In the third problem, the effect 
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of rapid draw down is considered for a homogenous single layered slope. In all the three 

cases, limit equilibrium methods (i.e. Ordinary slice method, Bishop's method, Spencer's 

method and Morgenstern and Price's method) are also used to compute the factor of safety 

and the results are compared to that obtained from FEM. It is observed that the FOS values 

from limit equilibrium techniques and FEM tallies very well. However, FEM solutions also 

provide additional data regarding displacements of various points in the soil mass as well as 

its stress-strain behaviour. 

 

3.1 Problem 1 - A single layered slope 

The problem considers a single layered homogeneous, 
'' c  slope with foundation. The 

geometry of the slope, finite mesh input, deformed mesh at failure, displacement vectors at 

failure diagrams are shown in Fig. 5, Fig. 6, Fig. 7 and Fig. 8 respectively. The material 

parameters for this particular slope are as follows:  

,10 8.9' c kPa , ,0 64.27 3kN/m , 5.1' eE  2kN/m and 3.0'  .  

Gravity load is applied to the model and the strength reduction factor (SRF) gradually 

increased affecting eq. 2 and eq. 3 until convergence could not be achieved. The programs 

used in this paper are based on closely on Program 6.3 in the text by Smith and Griffiths 

(2004). The programs are for 2-d plane strain analysis of elastic-perfectly plastic soils with 

Mohr-Coulomb failure criterion utilizing 8-node quadrilateral elements with reduced 

integration (4 Gauss-points per element) in the gravity loads generation, the stiffness matrix 

generation and the stress redistribution phases of the algorithm. 

 

 
Figure 5. Geometry and material properties of slope in problem 1 

 

 
Figure 6. Finite element mesh for the slope in problem 1 
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Figure 7. Deformed mesh at failure for problem 1 

 

 
Figure 8. Displacement vectors at failure for problem 1 

 
The output result for problem 1 from finite element program is shown in Table 1. The 

Table indicates that five trial strength reduction factors were attempted ranging from 0.5 to 

1.2969. Each value represented a completely independent analysis in which the soil strength 

parameters were scaled by SRF as indicated in eq. (2) and (3). It is possible that the gravity 

loads and global stiffness matrix are the same in each analysis and are therefore generated 

once only. The “iterations” column indicates the number of iterations for convergence 

corresponding to each SRF value. The algorithm has to work harder to achieve convergence 

as the “true” FOS is approached. When SRF=FOS=1.2969  1.30, there is a sudden increase 

in the dimensionless displacement (
2

max

' / HE  ), and the algorithm is unable to converge 

within the iteration limit of 1000. The obtained factor of safety value from this method is 

very close to the values obtained from those traditional limit equilibrium methods. Fig. 9 

shows a graph of data from Table 1. 

 
Table 1: Finite element method results for problem 1 

Trial Factor Max Displacement Iterations 

0.5000 0.1040e-01 2 

1.0000 0.1449e-01 12 

1.2500 0.1722e-01 76 

1.2812 0.1821e-01 228 

1.2969 0.2513e-01 1000 
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Figure 9. Maximum displacement vs. srf for problem 1 

 

Using SLOPE/W software, the value of factor of safety calculated from traditional limit 

equilibrium methods for problem 1. Factor of safeties from different methods of problem 1 

are listed in Table 2. 

 
Table 2: Factor of safeties from FEM and limit equilibrium methods for problem 1 

 

Methods 

Ordinary Slice 

Method 

Bishop‟s 

Method 

Spencer‟s 

Method 

Morgenstern 

and Price 

Method 

Finite 

Element 

Method 

Factor of safety 1.237 1.316 1.315 1.315 1.3 

 
3.2 Problem 2 - two layered slope  

Stability analysis of a two-layer 
'' c Slope is carried out in this section. The geometry of 

the slope, finite mesh input, deformed mesh at failure, displacement vectors at failure 

diagrams are shown in Fig.10, Fig.11, Fig.12 and Fig.13 respectively. The material 

parameters for this particular slope are: (1) For layer 1: ,25 1' c kPa , ,0 20
3kN/m , 5.1' eE  2kN/m and 3.0'  ; (2) For layer 2: ,15 5.0' c kPa , ,0

20 3kN/m , 5.1' eE  2kN/m  and 3.0'  . The Problem has been solved using program 

of Smith and Griffiths [19]. 
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Figure 10. Cross section of slope problem 2 

 

 
Figure 11. Finite element mesh for problem 2 

 
Figure 12. Deformed mesh at failure for problem 2 
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Figure 13. Displacement vectors at failure for problem 2 

 
The output result for problem 2 from finite element program is shown in Table 3. The 

Table indicates that six trial strength reduction factors were attempted ranging from 0.5 to 

1.2344. Each value represented a completely independent analysis in which the soil strength 

parameters were scaled by SRF as indicated in eqn. (2) and (3). It is possible that the gravity 

loads and global stiffness matrix are the same in each analysis and are therefore generated 

once only. The “iterations” column indicates the number of iterations for convergence 

corresponding to each SRF value. The algorithm has to work harder to achieve convergence 

as the “true” FOS is approached. When SRF=FOS=1.2344  1.23, there is a sudden increase 

in the dimensionless displacement (
2

max

' / HE  ), and the algorithm is unable to converge 

within the iteration limit of 500. The obtained factor of safety value from this method is very 

close to the values obtained from those traditional limit equilibrium methods. Fig. 14 shows 

a graph of data from Table 3. 

 

Table 3: Finite element method results for problem 2 

Trial Factor Max Displacement Iterations 

0.5000 0.3043e-03 2 

1.0000 0.3383e-03 29 

1.1250 0.3600e-03 48 

1.1875 0.3824e-03 143 

1.2188 0.4241e-03 381 

1.2344 0.4857e-03 500 
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Figure 14. Maximum displacement vs srf for problem 2 

 

Similarly, like problem 1, using SLOPE/W software, the value of factor of safety 

calculated from traditional limit equilibrium methods for Problem 2. Factor of safeties from 

different methods of Problem 2 are listed in Table 4. 

 

Table 4: Factor of safeties of problem 2 

 

Methods 

Ordinary 

Slice Method 

Bishop‟s 

Method 

Spencer‟s 

Method 

Morgenstern 

and Price 

Method 

Finite 

Element 

Method 

Factor of safety 1.128 1.293 1.275 1.275 1.23 

 
3.3 Problem 3 (A homogeneous slope including a free surface) 

In this section, the stability analysis of a single layered homogeneous, '' c  slope 

including a free surface is carried out. The geometry of the slope, finite mesh input, 

deformed mesh at failure, displacement vectors at failure diagrams are shown in Fig.15, 

Fig.16, Fig.17 and Fig.18 respectively. The material parameters for this particular slope 

are: ,5 200' c kPa , ,0 120  
3kN/m , 5.1' eE  2kN/m  and 3.0'  . The 

problem has been solved using the software provided in 4th edition of the book by Smith 

and Griffiths [19]. 
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Figure 15. Cross Section of Slope Problem 3 

 

 
Figure 16. Finite Element Mesh for Problem 3 

 

 
Figure 17. Displacement Vectors at Failure for Problem 3 

 

 
Figure 18. Deformed Mesh at Failure for Problem 3 
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The output result for problem 3 from finite element program is shown in TABLE 5. The 

Table indicates that six trial strength reduction factors were attempted ranging from 0.5 to 

1.1875. Each value represented a completely independent analysis in which the soil strength 

parameters were scaled by SRF as indicated in eqn. (2) and (3). It is possible that the gravity 

loads and global stiffness matrix are the same in each analysis and are therefore generated 

once only. The “iterations” column indicates the number of iterations for convergence 

corresponding to each SRF value. The algorithm has to work harder to achieve convergence 

as the “true” FOS is approached. When SRF=FOS=1.1875  1.19, there is a sudden increase 

in the dimensionless displacement (
2

max

' / HE  ), and the algorithm is unable to converge 

within the iteration limit of 1000. The obtained factor of safety value from this method is 

very close to the values obtained from those traditional limit equilibrium methods. 

Figure 19 shows a graph of data from TABLE 5. The graph of Figure 18, the displaced 

mesh plot of Figure 17 and vector plot of Figure 16 indicate both the factor of safety and the 

nature of failure mechanism for problem 3. 

 
Table 5: Finite element method results for problem 3 

Trial Factor Max Displacement Iterations 

0.5000 0.1918e+00 5 

1.0000 0.3178e+00 57 

1.1250 0.3693e+00 78 

1.1562 0.3853e+00 118 

1.1719 0.3942e+00 647 

1.1875 0.6303e+00 1000 

 

 
Figure 19. Maximum Displacement Vs Displacement 
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Table 6: Factor of safeties of problem 3 

 

Methods 

Ordinary 

Slice Method 

Bishop‟s 

Method 

Spencer‟s 

Method 

Morgenstern 

and Price 

Method 

Finite 

Element 

Method 

Factor of safety 1.172 1.182 1.202 1.181 1.19 

 
3.4 Problem 4 - rapid drawdown analysis of a homogenous slope 

In this section, the rapid drawdown analysis of a homogenous slope is carried out. The 

problem has been taken from slope-stab folder of software 4th ed of Smith and Griffiths 

(2004). The geometry of the slope, finite mesh input, deformed mesh at failure, 

displacement vectors at failure diagrams are shown in Fig. 20, Fig. 21, Fig. 22 and Fig. 23 

respectively. The material parameters for this particular slope are: ,37 8.13' c kPa ,

,0 2.18 3kN/m , 5.1' eE  2kN/m  and 3.0'  . 

 

 
Figure 20. Cross section of slope problem 3 

 

 
Figure 21. Finite element mesh for problem 3 
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Figure 22. Deformed mesh at failure for problem 3 

 

 
Figure 23. Displacement vectors at failure for problem 4 

 
The output result for Problem 3 from finite element program is shown in Table 7. The 

table indicates that six trial strength reduction factors were attempted ranging from 0.5 to 

1.5469. Each value represented a completely independent analysis in which the soil strength 

parameters were scaled by SRF as indicated in eqn. (2) and (3). It is possible that the gravity 

loads and global stiffness matrix are the same in each analysis and are therefore generated 

once only. The “iterations” column indicates the number of iterations for convergence 

corresponding to each SRF value. The algorithm has to work harder to achieve convergence 

as the “true” FOS is approached. When SRF=FOS=1.5469  1.55, there is a sudden increase 

in the dimensionless displacement (
2

max

' / HE  ), and the algorithm is unable to converge 

within the iteration limit of 500. The obtained factor of safety value from this method is very 

close to the values obtained from those traditional limit equilibrium methods. Fig. 24 shows 

a graph of data from Table 7.  

 

Table 7: Finite element method results for problem 3 

Trial Factor Max Displacement Iterations 

0.5000 0.5725E-01 41 

1.0000 0.6759E-01 38 

1.5000 0.9068E-01 113 

1.5312 0.9522E-01 269 

1.5469 0.9871E-01 500 
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Figure 24. Maximum displacement vs srf for Problem 3 

 

Using SLOPE/W software, the value of factor of safety calculated from traditional limit 

equilibrium methods for problem 3. For this particular problem, analysis is done for a) with 

rapid draw down case and b) without rapid draw down case. Factor of safeties from different 

methods of problem 3 are listed in Table 6. 

 
Table 8: Factor of safeties of problem 3 

Problems Methods 

  

Ordinary 

Slice 

Method 

Bishop‟s 

Method 

Spencer‟s 

Method 

Morgenstern 

and Price 

Method 

Finite 

Element 

Method 

Problem 3 

With rapid 

draw down 
1.597 1.956 1.961 1.960 1.55 

Without rapid 

draw down 
2.365 2.519 2.517 2.517 2.42 

 

The factor of safeties calculated using different limit equilibrium methods and finite 

element method are listed together in Table 7. For the rapid draw down case, it is observed 

that the calculated value of FOS is lowest which is not applicable for the other cases. For 

rapid draw down case, the pore pressures are computed for all the gauss points for the 

submerged elements and are subtracted from the normal stresses. The authors conclude that 

there is a overestimation of the subtracted pore water pressure because it is done for all the 

four Gauss points of the elements which are submerged. In case of limit equilibrium 

techniques, pore pressures are only subtracted for the portion of slices which are submerged. 

Because while estimating the FOS using FEM, the subtraction is carried out for all the single 

submerged elements, the overall subtracted value of pore water pressure is greater than that 

subtracted while using limit equilibrium techniques. This phenomenon leads to lower 
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estimation albeit more conservative estimation of FOS when the effect of rapid draw down 

is considered. 

 
Table 7: Summary of the results of all problems 

Problems 

Methods 

Ordinary 

Slice 

Method 

Bishop‟s 

Method 

Spencer‟s 

Method 

Morgenstern 

and Price 

Method 

Finite 

Element 

Method 

Problem 1 1.237 1.316 1.315 1.315 1.3 

Problem  2 1.128 1.293 1.275 1.275 1.23 

Problem 3 1.172 1.182 1.202 1.181 1.19 

Problem 4 

With rapid 

draw down 
1.597 1.956 1.961 1.960 1.55 

Without 

rapid draw 

down 

2.365 2.519 2.517 2.517 2.42 

 

 

4. CONCLUSION 
 

In the present work, limit equilibrium technique (ordinary slice method, Bishop‟s method, 

Spencer‟s method, Morgenstern-Price method) and finite element method have been used to 

the study different slope stability problems. Also, it is observed that ordinary slice method 

provides most conservative estimation of factor of safety values amongst all the limit 

equilibrium techniques considered in this paper. Therefore, any design of slopes carried out 

with ordinary slice method is likely to be always on the safer side. Other limit equilibrium 

methods like Ordinary Bishop's Method, Spencer's Method and Morgenstern and Price's 

method attempt to establish a more realistic estimation of interslice forces which may 

develop in reality. But they lead to somewhat higher estimation of factor of safety. The FOS 

values obtained using finite element method compare very well with that obtained from limit 

equilibrium methods. In finite element method, the FOS for critical slip surface is 

automatically obtained. In case of limit equilibrium methods, several slip surfaces should be 

analysed to find the critical slip surface. These types of trial and error calculations are not 

required with FEM to find out the critical slip surface because the failure occurs through the 

zone of weakest material properties and automatically the critical slip surface is determined. 

Furthermore, finite element method satisfies the equations of equilibrium and compatibility 

equations from theory of elasticity. Therefore, it serves as a more mathematically robust 

platform. Also, displacements, stress and strains at various nodes in the slope domain are 

also obtainable from finite element method. These are few of the additional benefits of using 

finite element method. 
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