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ABSTRACT 
 

This paper reports on optimal design of reinforced concrete cantilever retaining walls of a 

given height under static and earthquake loading conditions utilizing Colliding Bodies 

Optimization (CBO) and Democratic Particle Swarm Optimization (DPSO). The design is 

based on ACI 318-05. Two theories known as Coulomb and Rankine have been applied for 

estimating earth pressures under static loading condition and Mononobe-Okabe method have 

been applied for estimating earth pressures under dynamic loading condition. The objective 

function is the cost of materials used in retaining walls. This function is minimized subjected 

to the considered constraints. A numerical example is optimized to illustrate the 

performance of the CBO and DPSO algorithms compared with Particle Swarm Optimization 

(PSO) and Improved Harmony Search (HIS) algorithms. 

 

Keywords: Colliding bodies optimization; democratic particle swarm optimization; reinforced 

concrete cantilever retaining wall; coulomb and rankin theory; mononobe-okabe method. 

 

 

1. INTRODUCTION 
 

Earth retaining structures are designed and constructed to provide lateral support to vertical 

slopes of soils. These structures are constructed for a variety of applications, most 

commonly in the construction of roads, canals, bridge abutments, transportation systems and 

other constructed facilities. Some examples of these structures are cantilever and gravity 

retaining walls. Cantilever retaining walls are constructed of reinforced concrete. These 

structures consist of a relatively thin stem and a base slab. The base is also divided into two 

parts, the heel and toe. The heel is the part of the base under the backfill and the toe is the 

other part of the base. 
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In order to obtain a design with economic cost in minimum time, optimization methods 

must be used. Some studies have been made in this field by Dembicki and Chi [1], Keskar 

and Adidam [2], Saribas and Erbatur [3], Rhomberg and Street [4], Basudhar and Lakshman 

[5], Sivakumar and Munwar [6], and Yepes [7]. In recent years Kaveh and Shakouri [8] 

employed harmony search algorithm for optimization of cantilever retaining walls, and 

Kaveh and Behnam [9] used Charged System Search algorithm for optimization of 

cantilever retaining walls. In both of these works the wall designed under static loading 

condition utilizing Coulomb theory. 

Recently, two new techniques known as Democratic Particle Swarm Optimization and 

Colliding Bodies Optimization are developed for optimization problems. Democratic 

Particle Swarm Optimization is proposed by the work of Kaveh and Zolghadr [10] in order 

to improve the exploration capabilities of the PSO and thus to address the problem of 

premature convergence. Colliding Bodies Optimization algorithm, proposed in the work of 

Kaveh and Mahdavi [11-12], is based on collision between two objects in one-dimension, in 

which one object collide with other object and they moves toward minimum energy level. 

This algorithm was enhanced by Kaveh and Ilchi Ghazaan [13]. DPSO can alleviate the 

premature convergence of the PSO by enhancing the performance of the algorithm in two 

ways: 1) helping the agents to receive information about good regions of the search space 

other than those experienced by themselves and the best particle of the swarm and 2) letting 

some bad particles take part in the movement of the swarm and thus improving the 

exploration capabilities of the algorithm. In this new technique a term is added to velocity 

vector of PSO which represents the democratic effect of the other particles of the swarm on 

the movement on the desired particle. In CBO algorithm, each CB is considered as an object 

with a specified mass and velocity before the collision. After collision occurs, each CB 

moves to a new position according to the new velocity. This process is repeated until a 

termination criterion is satisfied and the optimum CB is found.  

In this study, the DPSO, CBO, IHS and PSO algorithms are used to determine the 

optimum design of reinforced concrete cantilever retaining walls. The objective function 

considered is taken as the cost of structure. This function is minimized subjected to strength 

and stability constraints. The design is performed under static loading condition utilizing 

Rankine and Coulomb theories, and under different earthquake loading conditions utilizing 

Mononobe-Okabe method. A numerical example is presented in order to illustrate the 

performance of the present algorithms. 

 

 

2. DPSO ALGORITHM 
 

The method consists of five basic steps. Detailed explanation of these steps can be found in 

the work of Kaveh and Zolghadr [10] which are summarized in the following: 

Step 1. Select the value of the DPSO parameters.  

Step 2. Select random values for particles. In this study, each particle has seven variables 

including: thickness of top stem )1(T , the thickness of key and stem )2(T , the toe width 

)3(T , the heel width )4(T , the height of top stem )5(T , the footing thickness )6(T , and the 

key depth )7(T  selected randomly between the lower limit and upper limit of each variable. 
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Step 3. The algorithm calculate required reinforcement for these dimensions and then 

checks the wall for stability and strength constraints if these dimensions satisfy these 

constraints the objective function will be calculated otherwise the penalty function will be 

calculated and multiply to objective function to penalize it. 

Step 4. Calculate vector iD  which represents the democratic effect of the other particles 

of the swarm on the movement of the i th particle to achieve jid , (the j th variable of the 

vector D for the i th particle) which is required for next step. 
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Step 5. Update particles’ velocities by the use of jid ,  then update the particles’ positions 

for the next iteration of the search. 
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where, k

jiv ,
 is the velocity or the amount of change of the design variable j  of particle i , 

k

jix ,
is the current value of the j th design variable of the i th particle, k

jixlbest ,
 is the best 

value of the design variable j  ever found by i th particle, k

jixgbest ,
 the best value of the 

design variable j  experienced by the entire swarm so far, r1 and r2 are two random numbers 

uniformly distributed in the range (1,0), c1 and c2 are two parameters representing the 

particle's confidence in itself and in the swarm, respectively. Parameter c3 is for controlling 

the weight of democratic vector. Here,   is the inertia weight for the previous iteration's 

velocity and it can be set in order to control the exploration of the algorithm. The   

parameter is used to avoid divergence behavior. 

Step 6. Repeat Steps 3 to 5 until the termination criterion is satisfied. Therefore we can 

find the optimum objective function without any penalties. 
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3. CBO ALGORITHM 
 

The method consists of three levels and each level has some steps. Detailed explanation of 

these steps can be found in the work of Kaveh and Mahdavi [11-12]. The levels can briefly 

be outlined as follows: 

 

Level 1: Initialization 

Step 1. The initial positions of CBs (thickness of top stem )1(T , the thickness of key and 

stem )2(T , the toe width )3(T , the heel width )4(T , the height of top stem )5(T , the 

footing thickness )6(T , and the key depth )7(T ) are determined with random initialization 

of a population of individuals in the search space: 

 

nixxrandxxi ,...,2,1                ),( minmaxmin

0   (6) 

 

where, 0

ix  determines the initial value vector of the i th CB. minx and maxx  are the minimum 

and the maximum allowable values vectors of variables; rand is a random number in the 

interval [0,1]; and n is the number of CBs and in this paper it is set to 30. 

 

Level 2: Search 

Step 1. The magnitude of the body mass for each CB is defined as: 
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where, )(ifit  represents the objective function value of the agent i ; n  is the population size. 

Obviously a CB with good values exerts a larger mass than the bad ones. Also, for 

maximizing the objective function the term 
)(

1

ifit
 is replaced by )(ifit . 

Step 2. The arrangement of the CBs objective function values is performed in ascending 

order. The sorted CBs are equally divided into two groups: 

(1) The lower half of CBs (stationary CBs); These CBs are good agents which are 

stationary and the velocity of these bodies before collision is zero. Thus: 

 

2
,...,1                   ,0

n
ivi   (8) 

 

(2) The upper half of CBs (moving CBs): These CBs move toward the lower half. Then 

the better and worse CBs of each group will collide together. The change of the body 

position represents the velocity of these bodies before collision as: 
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where iv and ix are the velocity and position vector of the i th CB in this group, respectively; 

2

n
i

x


 is the i th CB pair position of ix  in previous group. 

Step 3. After the collision, the velocity of bodies in each group is evaluated using Eq. 

(10), Eq. (11) and the velocities before collision. The velocity of each moving CB after the 

collision is: 
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where, iv and iv'  are the velocity of the i th moving CB before and after the collision, 

respectively; im  is the mass of the i th CB; 

2

n
i

m


is mass of the i th CB pair. Also, the 

velocity of each stationary CB after the collision is: 
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where, 

2

n
i

v


and iv'  are the velocity of the i th moving CB pair before and the i th stationary 

CB after the collision, respectively; im  is mass of the i th CB; 

2

n
i

m


is mass of the i th 

moving CB pair. As mentioned previously,   is the coefficient of restitution (COR) and for 

most of the real objects, its value is between 0 and 1. It defined as the ratio of the separation 

velocity of two agents after collision to the approach velocity of two agents before collision. 

In the present algorithm, this index is used to control of the exploration and exploitation rate. 

For this goal, the COR is decreases linearly from unit to zero. Thus,   is defined as: 

 

max

1
iter

iter
  (12) 

 

where, iter is the actual iteration number and maxiter  is the maximum number of iterations. 

Step 4. New positions of CBs are obtained using the generated velocities after the 

collision in position of stationary CBs. 

The new positions of each moving CB is: 
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Where, new

ix  and iv'  are the new position and the velocity after the collision of the i th 

moving CB, respectively; 

2

n
i

x


 is the old position of the i th stationary CB pair. Also, the 

new positions of stationary CBs are obtained by: 
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where, new

ix  , ix  and iv' are the new position, old position and the velocity after the collision 

of the i th stationary CB, respectively. rand is a random vector uniformly distributed in the 

range (-1,1) and the sign ‘‘°’’ denotes an element-by-element multiplication. 

 

Level 3: Terminating criterion control 

The optimization is repeated search level steps until a termination criterion, specified as 

the maximum number of iteration, is satisfied. 

 

 

4. DESIGN VARIABLES OF THE PROBLEM 
 

The continuous design variables utilized in this study are illustrated in Fig. 1. These 

variables are about dimensions of the wall which consist of the thickness of top stem )1(T , 

the thickness of key and stem )2(T , the toe width )3(T , the heel width )4(T , the height of 

top stem )5(T , the footing thickness )6(T , and the key depth )7(T . 

 

5. OBJECTIVE FUNCTION 
 

By minimizing a suitable cost function, we can reach to an optimum solution for a concrete 

cantilever retaining wall. In this problem similar to Kaveh and Shakouri Mahmud Abadi [8] 

and Kaveh and Behnam [9] the objective function is considered as following: 

 

)43()21( CCWCCVQ steelconc   (15) 

 

By considering )21( CCQQ  , it is converted to: 

 

)
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where concV and steelW are the volume of concrete and the weight of reinforcement steel in 
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the unit of length ( ftft 3
or mm3

, ftlb or mkg ), 1C  and 2C  are the cost of the concrete 

and steel ( lb$  or kg$ ), 3C  and 4C  are the cost of concreting and erecting reinforcement 

( lb$  or kg$ ). 

 

 
Figure 1. The design variables of cantilever retaining wall 

 

 

Experience show the value of 
21

43

CC

CC




is in the range of 0.035 to 0.045. The constraints of 

this problem are considered as following:  

 

5.1)( goverturninFS  (17) 

5.1)( slidingFS  (18) 

2)capacity bearing( FS  (19) 

1)( nbu MM   (20) 

1)( nvu VV   (21) 

 

Eq. (17) and Eq. (18) refer to the constraints which are about stability of the cantilever 

retaining wall, and Eq. (20) and Eq. (21) refer to the constraints which are about shear and 

flexural strength. AASHTO [14] permits the factors of safety against sliding and overturning 

failure under dynamic loading condition reduced to 75% of the factors of safety used for the 

static loading designs. 
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6. OPTIMUM DESIGN PROCESS 
 

The DPSO and CBO algorithms initiate the design process by selecting random values from 

design variables upper and lower band for the thickness of top stem )1(T , the thickness of key 

and stem )2(T , the toe width )3(T , the heel width )4(T , the height of top stem )5(T , the 

footing thickness )6(T , and the key depth )7(T .Then both of the algorithms check the wall 

for stability and if the dimensions satisfy stability criteria, the algorithms calculate the required 

reinforcement and check the strength. The design process of DPSO algorithm consists of 9 

steps while the CBO algorithm consists of 7 steps. Both of them are explained as follow: 

 

DPSO algorithm: 

Step 1. Select the value of the DPSO parameters ( ,1c ,2c ,3c  , number of population) 

Step 2. Create particles as number of population. 

Step 3. Initialize particles’ positions (values for thickness of top stem ( 1T ), thickness of 

key and bottom stem ( 2T ), toe width ( 3T ), heel width ( 4T ), height of top stem ( 5T ), 

footing thickness ( 6T ) and key depth ( 7T ) are chosen) and velocities. 

Step 4. Calculate objective function for each particle. 

Step 5. The algorithm checks the wall for stability and if these dimensions satisfy the 

stability criteria, the algorithm calculates the required reinforcement and checks the strength 

otherwise the objective function will be penalized. 

Step 6. Evaluate objective functions to update local and global best and global worst. 

Step 7. Calculate the vector iD  which represents the democratic effect of the other 

particles of the swarm on the movement of the i th particle. 

Step 8. Update particles’ velocities and positions. 

Step 9. Repeat steps 4 to 8 until the terminating criterion is satisfied. 

 

CBO algorithm: 

Step 1. Initialize an array of CBs with random positions (each array of CBs consists of 

values for thickness of top stem ( 1T ), thickness of key and bottom stem ( 2T ), toe width      

( 3T ), heel width ( 4T ), height of top stem ( 5T ), footing thickness ( 6T ) and key depth ( 7T
) and calculate their associated values of the objective function. The n the algorithm checks 

the wall for stability and if these dimensions satisfy the stability criteria, the algorithm 

calculates the required reinforcement and checks the strength otherwise the objective 

function will be penalized. 

Step 2. Compare the value of the objective function for each CB, and sort them in an 

increasing order. 

Step 3. CBs are divided into two equal groups: (i) stationary group, (ii) moving group. 

Then, the pairs of CB are defined for collision. 

Step 4. The value of mass and velocity of each CB for each group are evaluated before 

the collision. 

Step 5. The value of velocity of each CB in each groups are evaluated after the collision. 

Step 6. The new position of each CB is calculated. 

Step 7. Repeat step 2 to 6 until a terminating criterion is satisfied. 
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7. NUMERICAL EXAMPLE 
 

The process of optimization is described in Section 6. For this purpose a computer program 

is written in Matlab for analysis, design and optimization. The design is performed under 

static and dynamic loading condition. The analysis and design are in the form of a function 

which is called by the optimization program. 

The features of two backfills are defined in Table 1, and design is based on 1.0m wide 

strip of the retaining wall. The static design is performed for both F1 and F2 backfills, 

utilizing Rankine and Coulomb theories. The design under dynamic loading condition is 

performed for F1 backfill, utilizing Mononobe-Okabe method. This method performs the 

analysis and design of retaining walls by pseudo-static approach in which the transient 

earthquake force and static thrust are simultaneously imposed on the retaining wall as an 

equivalent static force. The value of horizontal and vertical acceleration coefficients, hk  and 

vk , are defined in Table 2. Critical sections are illustrated in Fig. 2. Ground water level is 

assumed to be below the foundation level of the wall and therefore not affecting the soil 

properties. The total height of stem is constant and equal to 6.1 m . Surcharge load is 10
2mkN . The 28 days concrete cylinder strength is 25 MPa , Rebar yield stress is 300 MPa , 

and the allowable soil pressure is taken as 300aq 2mkN  (3
2cmkg ). The ph  is equal to 

zero. Upper and lower bounds for the design variable are shown in Table 3. A schematic 

view of a concrete retaining wall is illustrated in Fig. 3. The parameters of PSO [15, 16, 17, 

18], IHS [19], DPSO and CBO algorithms are taken as: 

 

7.0 ,c1=c2=2, 5.0 ,c3=5.5, HMCR=0.85, 35.0min PAR , 99.0max PAR , 

HMS=30, n=30 

 
Figure 2. Critical Sections 
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Figure 3. Schematic view of a reinforced concrete cantilever retaining wall 

 
Table 1: Types of the backfills considered in the present work 

Type of 

back fill 
Description 

Density 
3mkN  

Internal friction 

angle )(  

Cohesion
2mkN  

F1 Coarse granular fills (GW,GP) 22 35 0 

F2 

Granular soils with more than 

12% of fines (GW, GS, SM, SL) 

and fine soils with more than 

25% of coarse grains (CL-ML) 

20 30 15 

 

Table 2: The value of horizontal and vertical acceleration coefficients 
Value of vertical and horizontal 

acceleration coefficients ( vk , hk ) 
Case number 

3.0,0  hv kk Case 1 

3.0,15.0  hv kk Case 2 

3.0,3.0  hv kk Case 3 

15.0,0  hv kk Case 4 

15.0,075.0  hv kk Case 5 

15.0,15.0  hv kk Case 6 
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Table 3: Lower and Upper bound for design variables 

Design 

variables 

Thicknes

s of the 

top stem 

Thickness of 

the key and 

bottom stem 

Toe 

width 
Heel width 

Height of the 

top stem 

Footing 

thickness 
Key depth  

( 1T ) ( 2T ) ( 3T ) ( 4T ) ( 5T ) ( 6T ) ( 7T ) 

Upper bound 0.3m 0.3m 0.45m 1.8m 1.5m 0.3m 0.2m 

Lower bound 0.6m 0.6m 1.2m 3m 6.1m 0.9m 0.9m 

 

Optimum design results of each soil type under static and dynamic loading condition are 

presented in Tables 4 to 9.  

The shear and stability capacity ratios are defined as: 

 

factorsafyExisting

factorsafyAllowable
RatioCapacityStability

  

  
    (29) 

forceshearAllowable

forceshearExisting
RatioCapacityShear

  

  
    (30) 

 

These ratios have been calculated in four critical sections under different earthquake 

loading conditions and the results are presented in Table 10. In one cell of this table, the 

written capacity ratio is greater than 100%. For instance, the greatest numeral is 100.01%. 

However, this error is negligible, because the corresponding error of this numeral is 0.0001.  

 
Table 4: Optimum results for back fill F1 utilizing Rankine theory 

Algorithm 1T
 2T

 3T
 4T

 5T
 6T

 7T
 1As

 2As
 3As

 4As
 

DPSO 
33 
cm

 

59 
cm  

120 
cm  

257 
cm  

150 
cm  

32 
cm  

20 
cm  

13.39 
2cm  

33.29 
2cm  

19.76 
2cm  

12.94 
2cm  

CBO 
30 
cm

 

59 
cm  

120 
cm  

248 
cm  

150 
cm  

31 
cm  

20 
cm  

17.43 
2cm  

33.04 
2cm  

21.33 
2cm  

12.53 
2cm  

 

Table 5: Optimum results for back fill F2 utilizing Rankine theory 

Algorithm 1T
 2T

 3T
 4T

 5T
 6T

 7T
 1As

 2As
 3As

 4As
 

DPSO 
31 
cm  

60 
cm  

118 
cm  

284 
cm  

210 
cm  

35 
cm  

20 
cm  

14.27 
2cm  

30.12 
2cm  

16.06 
2cm  

14.29 
2cm  

CBO 
30 
cm  

60 
cm  

120 
cm  

251 
cm  

194 
cm  

30 
cm  

23 
cm  

11.74 
2cm  

30.12 
2cm  

22.33 
2cm  

11.66 
2cm  
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Table 6: Optimum results for back fill F1 utilizing Coulomb theory 

Algorithm 1T
 2T

 3T
 4T

 5T
 6T

 7T
 1As

 2As
 3As

 4As
 

DPSO 
31 
cm  

60 
cm  

118 
cm  

185 
cm  

150 
cm  

33 
cm  

23 
cm  

12.18 
2cm  

25.66 
2cm  

14.68 
2cm  

13.44 
2cm  

CBO 
33 
cm  

58 
cm  

119 
cm  

182 
cm  

183 
cm  

32 
cm  

22 
cm  

14.07 
2cm  

25.16 
2cm  

14.70 
2cm  

12.51 
2cm  

 
Table 7: Optimum results for back fill F2 utilizing Coulomb theory 

Algorithm 1T
 2T

 3T
 4T

 5T
 6T

 7T
 1As

 2As
 3As

 4As
 

DPSO 
34 
cm  

59 
cm  

118 
cm  

215 
cm  

150 
cm  

30 
cm  

22 
cm  

13.38 
2cm  

32.16 
2cm  

42.10 
2cm  

11.66 
2cm  

CBO 
31 
cm  

60 
cm  

120 
cm  

216 
cm  

150 
cm  

31 
cm  

21 
cm  

14.09 
2cm  

31.58 
2cm  

38.54 
2cm  

12.04 
2cm  

 
Table 8: Optimum results under dynamic loading condition utilizing CBO algorithm 

 
Optimal dimensions ( 2cm ) and reinforcement ( cm ) 

Case1 Case2 Case3 Case4 Case5 Case6 

1T
 32 31 31 32 31 31 

2T
 60 60 59 60 60 60 

3T
 

49 48 49 46 46 45 

4T
 300 300 297 273 269 267 

5T
 

153 150 150 156 151 151 

6T
 

53 52 53 53 53 52 

7T
 

21 20 20 20 20 20 

1As
 12.42 12.21 12.22 12.49 12.11 12.11 

2As
 44.52 43.9 43.86 39.89 39.10 37.92 

3As
 

30.91 30.94 30.38 24.68 22.56 22.14 

4As
 22.52 22.15 22.35 22.33 22.33 21.84 

 

Table 9: Optimum results under dynamic loading condition utilizing DPSO algorithm 

 
Optimal dimensions ( 2cm ) and reinforcement ( cm ) 

Case1 Case2 Case3 Case4 Case5 Case6 

1T
 32 33 31 33 33 33 

2T
 60 60 59 60 60 60 

3T
 

50 49 49 46 48 45 

4T
 291 300 298 274 262 262 
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5T
 

170 150 150 150 175 150 

6T
 

56 53 53 54 53 53 

7T
 

21 20 20 24 20 25 

1As
 15.2 13.48 12.42 12.75 14.96 13.06 

2As
 44.86 44.14 44.13 40.09 39.33 38.57 

3As
 

28.34 30.59 29.84 24.31 22.64 22.54 

4As
 24.07 22.44 22.85 22.78 22.46 21.39 

 
Table 10: Capacity assessment with capacity ratio 

Algorithm Case 
Shear Capacity (%) Stability Capacity (%) 

A:A B:B C:C D:D Sliding Bearing Overturning 

CBO 

1 11.98 66.51 80.64 100 57.98 100.01 47.94 

2 11.78 66.37 84 100 56.53 99.33 47.31 

3 11.67 66.46 81.5 99.70 56.81 99.80 47.77 

4 12.30 66.45 78.82 100 51.23 99.98 48.54 

5 11.90 66.48 79.56 99.84 50.67 99.66 48.38 

6 11.97 66.38 84.76 100 49.85 98.29 47.46 

DPSO 

1 13.88 66.37 69.72 99.36 59.21 100 50 

2 10.83 67.72 84.38 100 56.81 99.33 47.16 

3 11.59 66.62 79.05 97.86 56.81 100 47.77 

4 11.29 66.56 77.85 98.44 49.78 100 48.38 

5 14.15 66.67 80.78 100.01 50.37 99.33 49.50 

6 11.02 67.16 78.52 99.25 49.24 99.80 48.38 

 

 

8. RESULTS AND DISCUSSION 
 

The design historic under static loading condition for two types of backfills by applying 

Rankine and Coulomb methods is shown in Figs. 4-7. Fig. 8 depicts the design historic 

under earthquake loading condition for F1 backfill by applying Mononobe-Okabe method 

for Case 2. As these figures show the CBO and DPSO algorithms find better fitness for 

design and in initial steps their rapid convergence and downfall illustrate the power of these 

algorithm in evaluating more solutions and exploration. After initial steps the exploitation 

part of optimization process begins and finally the minimum solution is found. Fig. 9 and 

Fig. 10 depict the effect of vertical and horizontal acceleration coefficients on the objective 

function. Based on these figures, by increasing hk  the objective function increases it means 

that a more vigorous cantilever retaining wall is needed, But by increasing vk , the inverse of 

this state happens. Table 10 depicts that the most important controlling factor among the 

stability capacity ratios is bearing capacity of the soil under the toe region and among the 

shear capacity ratios is shear capacity in the toe region. 
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Figure 4. Design history for backfill F1 utilizing Rankine Method 

 
Figure 5. Design history for backfill F2 utilizing Rankine Method 
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Figure 6. Design history for backfill F1 utilizing Coulomb Method 

 

 

 
Figure 7. Design history for backfill F2 utilizing Coulomb Method 
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Figure 8. Design history for Case 2 utilizing Mononobe-Okabe method 

 

 

Figure 9. Effect of vk and hk on the objective function in CBO algorithm 

 

 

Figure 10. Effect of vk and hk on the objective function in DPSO algorithm 
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9. CONCLUDING REMARKS 
 

In this study the optimization is performed by DPSO, CBO, IHS and PSO algorithms to 

provide a design of reinforced concrete cantilever retaining walls under static and different 

earthquake loading conditions which not only satisfies the stability and strength constraints, 

but also is economical. The design under earthquake loading condition indicates that the 

bearing capacity of soil under the toe region and the shear strength of critical section in the 

toe region are the design controlling factors. The effect of horizontal and vertical 

acceleration coefficients on objective function has also been studied. The results depict that 

the vertical acceleration coefficient has a reverse effect on the design of the retaining walls 

while the increase of horizontal acceleration coefficient leads to an increase in the 

dimensions of the retaining walls. 

 

 

APPENDIX A: DEFINITIONS OF SYMBOLS 
 

  Angle of friction between the wall and soil 

i  Slope of the backfill with respect to the horizontal 

vk  Vertical acceleration coefficient  

hk  Horizontal acceleration coefficient 

tt  Top stem thickness 

tb Bottom stem and key thickness 

HT Top stem height 

HB Bottom stem height 

LT Toe length 

LH Heel length 

L Total length of the base of the footing 

hf Footing thickness 

b  Density of the backfill 

  Internal friction angle of the backfill 

  Slope of the back of the wall with respect to the vertical 

  Base friction coefficient 

c  Density of the concrete 

twW ,  Weight of the top stem 

bwW ,  Weight of the bottom stem 

bW  Weight of the fill on the heel 

sW  Surcharge weight 

hk Key depth 

kp Soil over toe 

C1 Cost of the concrete 

C2 Cost of the steel 
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C3 Cost of the concreting 

C4 Cost of the erecting reinforcement 

F1,F2 Considered cases for sensitivity study 

T1,…T7 The selected variables 

 

 

APPENDIX B: ANALYSIS AND DESIGN OF CONCRETE CANTILEVER 

RETAINING WALL 
 

The content of this section is based on Refs. [8] and [20] to [22]. 

 

A1. Active and Passive Earth Pressure  

The active and passive earth pressure coefficients under static loading condition are 

computed using the Rankine and Coulomb earth pressure theories. The details of the 

Rankine and Coulomb earth pressure are shown in Fig. A1(a),(b) respectively. 
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The active and passive earth pressure coefficients under dynamic loading condition are 

computed using Mononobe-Okabe method. The dynamic active and passive earth pressures 

),( PEAE PP  are shown in Fig. A1(c), (d), respectively. 
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











 

v

h

k

k

1
tan 1  (A-7) 

g gravity,  todueon accelerati

componenton accelerati earthquake horizontal
hk  (A-8) 

g gravity,  todueon accelerati

componenton accelerati earthquake vertical
vk  (A-9) 

AEvAE KkHP )1(
2

1 2    (A-10) 

PEvPE KkHP )1(
2

1 2    (A-11) 

 

H=Height of the backfill 

 =Density of the backfill 

The active force AEP acts at H from the bottom of the base slab, given by: 

 

AE

AEa

P

HP
H

P

H

)6.0)(()
3

( 

  (A-12) 

 

Where: 

 

aAEAE PPP   

aP =Coulomb active earth pressure 

 

 
 

(a) (b) 
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(c) 

 

 
(d) 

Figure A1. Details for a) Rankin earth pressure b) Coulomb earth pressure c) dynamic active 

earth pressure d) dynamic passive earth pressure 

 

A.2 Stability Control 

 

All the loads acting on the reinforced concrete cantilever retaining wall are shown in Fig. 

A2. 
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Figure A2. Loads in cantilever retaining wall 

 

Check for Overturning: 
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Where:  

 

 OM
= sum of the overturning moments  

 RM
= sum of the resisting moments  

Check for sliding along the base: 

 




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F
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d

R
sliding


'

)(
 (A-14) 

 

Where: 

 

 'RF
= sum of horizontal resisting forces 

 dF
= sum of horizontal driving forces 

Check for bearing capacity failure: 
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max

)capacity bearing(
q

q
FS u

 
(A-15) 

Where: 

uq
= Ultimate bearing capacity 

maxq
= Maximum bearing pressure 

AASHTO [12] permits the value of uq used for static loading designs to be increased by 

33% for the seismic loading conditions, in the other word: 
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A3. Strength Control 

 

Check the flexure and shear capacities in critical sections: 

 

1)( nbu MM 
 

(A-19) 

1)( nvu VV   (A-20) 

 

Where uM  and uV  are the ultimate moment and shear in critical sections. The required 

area cross section of rebar is calculated as follow: 
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Where d and B are the effective depth and length of the critical section. 



CBO AND DPSO FOR OPTIMUM DESIGN OF REINFORCED CONCRETE ... 

 

 

773 

REFERENCES 
 

1. Dembicki E, Chi T. System analysis in calculation of cantilever retaining wall, 

International Journal for Numerical and Analytical Method in Geomechanics, 13(1989) 

599-610. 

2. Keskar AV, Adidam SR. Minimum cost design of a cantilever retaining wall, The 

Indian Concrete Journal, Bombay, India, (1989) 401-5. 

3. Saribas A, Erbatur F. Optimization and sensitivity of retaining structures, Journal of 

Geotechnical Engineering, 8(1996) 649-56. 

4. Rhomberg EJ, Street WM. Optimal design of retaining walls, Journal of Structural 

Division, ASCE, 107(1981) 992-1002. 

5. Basudhar, PK, Lakshman B. Optimal cost design of cantilever retaining walls, IGC, 

Chennai, India, (2006) pp. 14-16. 

6. Sivakumar B, Munwar B. Optimum design of cantilever retaining walls using target 

reliability approach, International Journal of Geomechanics, 8(2008) 240-52. 

7. Yepes V, Alcala J, Perea C, Gonzalez-Vidosa F. A parametric study of optimum earth-

retaining walls by simulated annealing, Engineering Structures, 30(2008) 821-30. 

8. Kaveh A, Shakouri Mahmud Abadi A. Harmony search based algorithm for the 

optimum cost design of reinforced concrete cantilever retaining walls, International 

Journal of Civil Engineering, No. 1, 9(2011) 1-18.  

9. Kaveh A, Behnam AF. Charged System Search algorithm for the optimum cost design 

of reinforced concrete cantilever retaining walls, Arabian Journal of Science and 

Engineering, 38(2013) 563-70. 

10. Kaveh A, Zolghadr A. Democratic PSO for truss layout and size optimization with 

frequency constraints, Computers and Structures, 130(2014) 10-21. 

11. Kaveh A, Mahdavi VR. Colliding bodies optimization: A novel meta-heuristic method, 

Computers and Structures, 139(2014) 18-27. 

12. Kaveh A, Mahdavi VR. Colliding bodies optimization method for optimum discrete 

design of truss structures, Computers and Structures, 139(2014) 43-53. 

13. Kaveh A, Ilchi Ghazaan M. Enhanced colliding bodies optimization for design problems 

with continuous and discrete variables Advances in Engineering Software, 77(2014) 66-

75. 

14. American Association of State Highway and Transportation Officials (AASHTO), 

Standard Specifications for Highway Bridges, 17th Edition, Washington D.C, 2002. 

15. Kaveh A. Advances in Metaheuristic Algorithms for Optimal Design of Structures, 

Springer, Switzerland, 2014. 

16. Kennedy J, Eberhart R. Particle swarm optimization, in Proceedings of IEEE 

International Conference on Neural Networks (ICNN '95), IEEE Service Center, Perth, 

Western Australia, 4(1995) pp. 1942-1948.  



A. Kaveh and N. Soleimani 

 

 

774 

17. Eberhart RC, Shi Y. Particle swarm optimization: Developments, applications, and 

resources, Proceedings of 2001 Congress on Evolutionary Computation, IEEE Press, 

Piscataway, N.J, (2001) pp. 81-86.  

18. Bergh F, Engelbrecht AP. A study of particle swarm optimization particle trajectories, 

Information Sciences, 176(2006) 937-71.  

19. Mahdavi M, Fesanghary M, Damangir E. An improved harmony search algorithm for 

solving optimization problems, Applied Mathematics and Computation, 188(2007) 

1567-79. 

20. ACI Committee 318: Building Code Requirement for Structural Concrete (ACI 318-05) 

and Commentary (318R-05), American Concrete Institute, Farmington Hills, Mich., 

2005. 

21. Das BM. Principles of Foundation Engineering, 5th Edition, Brooks/Cole, a Division of 

Thomson Learning Inc, 2004. 

22. Das BM. Principles of Soil Dynamics, PWS-KENT Publishing Company, Boston, 

Massachusetts, 1993. 


