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ABSTRACT 
 

Natural clay soils due to anisotropy have a different behavior from disturbed and remolded 

specimens. The Modified Cam Clay (MCC) model, as a fundamental critical state model, 

cannot capture this behavior with enough accuracy. However, anisotropic models that 

known as rotational hardening models can efficiently simulate the anisotropic behavior. 

Specifically, SANICLAY model, which has been recently developed, has a high accuracy in 

modeling of the anisotropy and thus is used in the present study. Here, a semi-explicit 

constitutive integration scheme is proposed and validated for the SANICLAY model. It is 

then implemented in FLAC software through a UDM subroutine. Several triaxial 

simmulations are carried out and the results are compared with the MCC model results. 

Advantages of the proposed integration method in terms of stability, accuracy and speed are 

discussed. 

 

 

Keywords: constitutive integration; semi-explicit scheme; SANICLAY; rotational 

hardening 

 

 

1. INTRODUCTION 
 

Soils in general, exhibit some degree of anisotropic behavior which may be quite 

considerable depending on their formation, composition, structure and prior loading history. 

Many natural soil deposits have a transverse isotropic structure in which the material 

properties are equal in all directions in the horizontal plane but are different from vertical 

direction which is the direction of the soil deposition. This type of anisotropy is also called 

cross anisotropy. Casagrande and Carillo [1] were the first who categorize anisotropy of 

soils into inherent and induced types. Inherent anisotropy is essentially related to the 

physical composition prior to any loading that is established during the natural deposition 
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and consolidation process. This anisotropy is generally obtained from the micro-structure 

(soil fabric, inter-particle bonding, and arrangement) of the soils, but may also be due to the 

macro-structure (fissures, joints, laminations, etc.). Induced anisotropy is a result of loading 

history and inelastic deformation in the post depositional stage. Whittle [2] discusses that 

“real” soils often contain some induced anisotropy as part of their stress history which 

makes the distinction between the inherent and induced anisotropy to be difficult. Another 

definition of anisotropy is given by Ladd et al. [3] in types of initial and evolving. Initial 

anisotropy is a combination of inherent anisotropy and anisotropic initial shear strength but 

the evolving anisotropy is same as the induced anisotropy defined by Casagrande and 

Carillo [1].  

Extensive research conducted by several investigators (e.g., [4-5]) has emphasized a need 

for considering the anisotropy of soils in the design and analyses of geotechnical structures. 

Over the past four decades, an increasing awareness of the importance of anisotropy of 

cohesive soils has led to considerable research including laboratory, field, theoretical and 

numerical studies. The improvement and development of professional testing devices and 

experimental techniques have also contributed to continuous and extensive research on soil 

anisotropy. Numerous experimental studies have been so far focused on the strength and 

stiffness anisotropy. These studies have been covered a wide range of tests including triaxial 

and biaxial compression and extension tests, simple, direct, and torsional shear tests on soil 

samples in drained and undrained conditions. Wide laboratory studies on the anisotropic 

behavior of Boston Blue Clay (BBC) have been done over the years by MIT researchers, e.g. 

[6]. Similar anisotropic tests on other types of clay have been carried out by other investigators 

[7-8]. According to these laboratory studies the degree of initial anisotropy significantly 

influences the pore water pressure and stress–strain–strength response of an anisotropically 

consolidated clay specimen under undrained shearing. All these experiments provide extensive 

evidence of the significance of initial anisotropy on the strength and deformation behavior of 

the soils. Experimental observations also indicate that for K0-consolidated clays the yield 

surface is oriented along a line close to the K0 line (e.g. [3] and [9]). 

In the numerical analyses of geotechnical problems, in which the soil has a significant 

degree of anisotropy, neglecting soil anisotropy may lead to an oversimplification and 

unrealistic soil response. Therefore, various constitutive models that consider soil anisotropy 

have been proposed over the past three decades. There are several approaches to simulate 

the soil anisotropy. One class of anisotropic plasticity model is based on the concept of 

multi-surfaces that are associated with a kinematic hardening rule to incorporate induced 

anisotropy [10-11]. Another approach is based on a multi-laminate framework [12-13] in 

which the induced anisotropy and the effect of rotation of principal stress axes are 

intrinsically taken into account without requiring additional material parameters. Inherent 

anisotropy can be included by introducing a structural variant. 

Rotational and in some cases distortional and mixed isotropic hardening laws have also 

been shown to be suitable candidates for modeling anisotropic behavior. By introducing a 

rotational hardening tensor in a general multiaxial formulation (or a scalar-valued rotational 

hardening variable in triaxial formulation), the rotation and/or distortion of the yield surface 

and plastic potential due to initial and induced anisotropy can be described. Many of the 

existing anisotropic models for cohesive soils are based on the framework of critical state 

soil mechanics [14-18]. 
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The simplest energetic extension of the Modified Cam clay (MCC) model [19] from 

isotropic to anisotropic behavior has been proposed by Dafalias [16]. Based on the rotational 

hardening law and plastic potential proposed by Dafalias [16] several anisotropic models 

have been introduced and developed [20-21]. The so called SANICLAY model [22] that 

refers to as “Simple ANIsotropic CLAY” is also an extension of the model proposed in [16] 

with a nonassociated flow rule. To consider an inherent anisotropy, Taiebat et al. [23] 

incorporated the destructuration theory within the SANICLAY framework. 

In the present work, SANICLAY is used to study the effect of anisotropy on the response 

of geotechnical structures founded on cohesive soils. The model is selected because of its 

simplicity and its capability to provide reasonably accurate response of clayey soils. The 

identification and determination of the model parameters may be the most critical factor 

affecting the selection of the model to be empliyed in practical problems. Most sophisticated 

models have a large number of parameters, some of which cannot be readily obtained from 

laboratory tests. SANICLAY model requires only three additional parameters over those 

needed by the MCC model that can calibrate with previous experimental test data. 

In Section 2, a brief description of the SANICLAY model is provided. Then, the 

proposed semi-explicit integration algorithm is presented in Section 3. Its implementation 

within FLAC software is also addressed in Section 4. Finally, Section 5 presents the 

numerical results obtained for several cases. 

 

 

2. DESCRIPTION OF THE CONSTITUTIVE MODEL 
 

SANICLAY is a nonassociated elastoplastic model that is constructed within the framework 

of critical state soil mechanics. Dafalias et al. [16] have described the model in a triaxial 

formulation where a step-by-step generalization of the model to a triaxial space has been 

given. Here, a brief description of the model in triaxial space is recapitulated. 

Formulation of the model is presented in the triaxial stress–strain space in terms of stress 

quantities 𝑝 = (𝜎𝑎 + 2𝜎𝑟)/3 and 𝑞 = (𝜎𝑎 − 𝜎𝑟) as well as strain quantities 𝜀𝑣 = (𝜀𝑎 + 2𝜀𝑟) and 

𝜀𝑞 = 2(𝜀𝑎 − 𝜀𝑟)/3 where subscripts a and r denote the axial and the radial directions of a 

triaxial sample, respectively. The stress ratio is denoted by η = q/p. 

 

2.1 Elastic response 

The conventional hypoelastic stress–strain relations in the rate form are given as: 

 

𝜀 𝑣
𝑒 =

𝑝 

𝐾
,    𝜀 𝑞

𝑒 =
𝑞 

3𝐺
 (1) 

 

where K and G are elastic bulk and shear moduli, respectively. The elastic bulk modulus can 

be obtained by 𝐾 = 𝑝(1 + 𝑒𝑖𝑛 )/𝜅, where ein is the initial value of void ratio and κ is the slope 

of swelling line in the e-ln(p) space. 

It is noted that natural cohesive soils may also exhibit anisotropy in their elastic response, 

i.e. cross-anisotropy after deposition and consolidation [24]. While elastically anisotropic 

behavior can be incorporated in the constitutive relation, it brings in more complexities to 

the model formulation with additional material parameters that may not be easily obtained. 
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Moreover, SANICLAY has been developed particularly to be used with normally 

consolidated or lightly over-consolidated cohesive soils where a modest increase in stress 

may cause yielding, and thus plastic deformations are likely to dominate for the problems of 

interest. 

 

2.2 Plastic potential and yield function 

In a triaxial stress space, the shape of plastic potential, shown in Fig. 1, is a rotated and 

distorted ellipse which can be described as [21]. 

 

𝑔 = (𝑞 − 𝑝𝛼)2 −  𝑀2 − 𝛼2 𝑝 𝑝𝛼 − 𝑝 = 0 (2) 

 

where α is a rotational hardening parameter that controls both the rotation and distortion of 

the plastic potential. Here, pα is the value of p at q = pα and should be set to satisfy the pair 

of p and q values at yield in Equation (2) and M is the critical state line slope in q-p space. 

Clearly, one must have  𝛼 < 𝑀  for real valued p and q in Equation (2). Note that 𝑀 =

𝑀𝑐 when the stress ratio 𝜂 = 𝑞/𝑝 > 𝛼 and 𝑀 = 𝑀𝑒  when the stress ratio 𝜂 = 𝑞/𝑝 ≤ 𝛼 [21]. 

The yield function postulates same form as that of the plastic potential function with 

rotational hardening parameter β, which is given as [21]: 

 

𝑓 = (𝑞 − 𝑝𝛽)2 −  𝑁2 − 𝛽2 𝑝 𝑝0 − 𝑝 = 0 (3) 

 

where p0 represents isotropic hardening parameter that is defined as the value of p at η = β 

and controls the size of the yield surface. Clearly, one must have  𝛽 < 𝑁 for real valued p 

and q in Equation (3). 

 

 

 
Figure 1. Yield surface and plastic potential surface in triaxial stress space. 
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2.3 Flow rule 

The corresponding equations for the volumetric and deviatoric plastic strain rates are given 

by a nonassociated flow rule as 

 

𝜀 𝑣
𝑝

=  𝐿  
 𝑔

 𝑝
,     𝜀 𝑞

𝑝
=  𝐿  

 𝑔

 𝑞
  (4) 

 

where 𝐿  is the loading index (or plastic multiplier). "   " denotes Macauley brackets, i.e.     

 𝐿  =  
𝐿   𝑓𝑜𝑟  𝐿 > 0

0   𝑓𝑜𝑟 𝐿 ≤ 0
 . Substitution of  equation (2) into (4) gives rise to 

 

𝜀 𝑣
𝑝

=  𝐿  
 𝑔

 𝑝
=  𝐿  𝑝 𝑀2 − 𝜂2 ,     𝜀 𝑞

𝑝
=  𝐿  

 𝑔

 𝑞
=  𝐿  2𝑝 𝜂 − 𝛼  (5) 

 

2.4 Hardening laws 

Here, evolution laws for the hardening parameters of the model, i.e. p0, α and β are 

presented. It is noted that pα serves only to adjust the size of g = 0; so that g goes through 

any point (p, q) on f = 0. The isotropic hardening which describes the classical evolution law 

of the yield surface is given by [21]. 

 

𝑝 0 =  𝐿  𝑝 0 =  𝐿   
1 + 𝑒𝑖𝑛

𝜆 − 𝜅
 𝑝0  

 𝑔

 𝑝
  (6) 

 

where λ is the slope of the normal compression line in the e-ln(p) space. The evolution of 

rotational hardening parameter of plastic potential α, which represents the degree of 

anisotropy, is defined by [21]. 

 

𝛼 =  𝐿  𝛼 =  𝐿   
1 + 𝑒𝑖𝑛

𝜆 − 𝜅
 𝐶  

𝑝

𝑝0
 

2

 
 𝑔

 𝑝
  𝜂 − 𝑥𝛼  𝛼𝑏 − 𝛼  (7) 

 

where C and x are model constants that control the rate of evolution of anisotropy and 

saturation limit of anisotropy, respectively, and αb
 is α-bounding that specifies the authorized 

boundary of rotational hardening of potential surface. Note that, if  𝜂/𝑥 > 𝛼, 𝛼𝑏  must equal to 

𝑀𝑐  and if 𝜂/𝑥 < 𝛼, 𝛼𝑏  must equal to 𝑀𝑒 . 

The evolution of rotational hardening parameter of yield surface β is given as [21]. 

 

𝛽 =  𝐿  𝛽 =  𝐿   
1 + 𝑒𝑖𝑛

𝜆 − 𝜅
 𝐶  

𝑝

𝑝0
 

2

 
 𝑔

 𝑝
  𝜂 − 𝛽  𝛽𝑏 − 𝛽  (8) 

 

where βb
 is β-bounding that specifies the authorized boundary of rotational hardening of yield 

surface. Note that, if  𝜂 > 𝛽, 𝛽𝑏
 must equal to 𝑁 and if 𝜂 < 𝛽, 𝛽𝑏

 must equal to −𝑁. 

 

2.5 Plastic multiplier and plastic modulus 
The plastic multiplier 𝐿  and plastic modulus Kp are obtained by standard methods of 
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plasticity by applying the consistency condition 𝑓 = 0 which states that the stress state must 

always lie on the yield surface. By appling 𝑓 = 0 to Equation (3) and in conjunction with 

Equations (6) and (8) we have 

 

𝐾𝑝 = − 
 𝑓

 𝑝0
𝑝 0 +

 𝑓

 𝛽
𝛽  = 𝑝  𝑁2 − 𝛽2 𝑝 0 + 2(𝑞 − 𝑝0𝛽)𝛽   (9) 

𝐿 =
1

𝐾𝑝
 
 𝑓

 𝑝
𝑝 +

 𝑓

 𝑞
𝑞  =

1

𝐾𝑝
𝑝  𝑁2 − 𝜂2 𝑝 + 2(𝜂 − 𝛽)𝑞   (10) 

 

where 𝑝 0 and 𝛽  are given in equations (6) and (8), respectively. 

 

 

3. SEMI-EXPLICIT INTEGRATION SCHEME 
 

To use the constitutive models in a nonlinear analysis of boundary value problems, the rate 

equations described in the previous section need to be numerically integrated over a time 

increment. The integration scheme and the corresponding algorithm control the accuracy, 

convergence, and stability characteristics of the solution. The integration schemes can be 

extensively classified into implicit and explicit, for which many different types are proposed. 

Both implicit and explicit integration schemes have been so far used to integrate constitutive 

models for soils and other materials. 

A comprehensive experssion on various implicit integration schemes for elastoplastic 

models can be found in [25], among others. Implicit integration schemes have successfully 

been used in integration of various constitutive models for soils [26-29]. It has been shown 

that with implicit integration schemes a quadratic convergence and unconditional stability 

for Newton–Raphson iterations can be achieved with the use of a material (consistant) 

Jacobian. Stability and quadratic convergence are guaranteed for classical plasticity models 

such as J2-plasticity. However, this may not be true for more complex models with high 

nonlinearities. The second derivatives of the yield and plastic potential functions are needed 

in the algorithm as well as for the construction of material Jacobian. It is often a lengthy and 

cumbersome procedure to obtain the closed-form derivatives for complex models, if they 

can be derived at all, and their implementation is not always straightforward. 

On the other hand, for the explicit integration schemes, higher-order derivatives of the 

yield and plastic potential functions are not needed and the implementation of the algorithms 

is generally straightforward. While their simplicity and general applicability seem to be 

attractive features, a major drawback of explicit integration schemes is that the algorithm is 

conditionally stable which means that an appropriate step size must be used to retain 

numerical stability. 

Here, we propose a so called semi-explicit integration scheme which is constructed based 

on the return mapping method [30]. It will be shown that the proposed method is quite 

simple as well as efficient when applied for the constitutive laws in SANICLAY model. The 

essential features of the integration scheme are highlighted and details of the integration 

algorithm are provided in the following sub-sections. 
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3.1 Integration algorithm 

In the semi-explicit integration scheme of return mapping method, the first step involves an 

elastic predictor in which a trial stress is calculated by assuming an elastic response, is given 

 

𝜎𝑖𝑗
trial = 𝜎𝑖𝑗

old + 𝐶𝑖𝑗𝑘𝑙
𝑒 Δ𝜀𝑘𝑙  (11) 

 

where 𝜎𝑖𝑗
old   is the previos step stress, 𝐶𝑖𝑗𝑘𝑙

𝑒  is the linear elastic material multiplier (Hooke‟s 

law) and Δ𝜀𝑘𝑙  is a strain increment. Deviator stresses can be define as 

 

𝑠𝑖𝑗
trial = 𝜎𝑖𝑗

trial −
1

3
𝜎𝑖𝑗

trial 𝛿𝑖𝑗  (12) 

 

where 𝛿𝑖𝑗  is a Kronecker delta. Stress invariants define as 

 

𝑝trial = −
1

3
𝜎𝑖𝑖

trial ,     𝑞trial =  
3

2
𝑠𝑖𝑗

trial 𝑠𝑖𝑗
trial  (13) 

 

This trial stress state may lie inside the yield surface, in which case, the response is 

elastic and the trial stress is the new stress state. However, if the trial stress lies outside the 

yield surface, the stress state must be corrected and brought back onto the yield surface in 

order to satisfy the consistency condition. Note that the yield surface in essence evolves due 

to the hardening. The flow rule defines the plastic strain rate. However, within a numerical 

scheme, this has to be handled with some appropriate assumptions so that the plastic strain 

increment can be determined. Here, we propose to use 

 

𝛥𝜀𝑝 = 𝛥𝐿 (
 𝑔

 𝜎
)trial  (14) 

 

so that, new stresses in the triaxial stress space are given as 

 

𝑝new = 𝑝trial − 𝐾Δ𝜀𝑣
𝑝

= 𝑝trial − 𝐾Δ𝐿  
 𝑔

 𝑝
 

trial

 (15) 

𝑞new = 𝑞trial − 3𝐺𝛥𝜀𝑞
𝑝

= 𝑞trial − 3𝐺𝛥𝐿  
 𝑔

 𝑞
 

trial

 (16) 

 

where the return mapping concept is adopted. These stresses must satisfy the yield function 

according to the consistency condition. Substituting equations (15) and (16) into equation 

(3) leads to a quadratic equation to be solved with respect to ∆L as 

 

𝑎Δ𝐿2 + 𝑏Δ𝐿 + 𝑐 = 0 (17) 

with 
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𝑎 = 9𝐺2   
 𝑔

 𝑞
 

trial

 

2

− 6𝛽𝐺𝐾  
 𝑔

 𝑝
 

trial

 
 𝑔

 𝑞
 

trial

+ 𝑁2𝐾2   
 𝑔

 𝑝
 

trial

 

2

 (18) 

𝑏 = −6𝐺𝑞trial  
 𝑔

 𝑞
 

trial

+ 2𝛽𝑞trial 𝐾  
 𝑔

 𝑝
 

trial

+ 6𝛽𝑝𝐺  
 𝑔

 𝑞
 

trial

+ 𝑁2𝑝0𝐾  
 𝑔

 𝑝
 

trial

− 𝛽2𝑝0𝐾  
 𝑔

 𝑝
 

trial

− 2𝑁2𝑝trial 𝐾  
 𝑔

 𝑝
 

trial

 

(19) 

𝑐 = (𝑞trial − 𝑝trial 𝛽)2 −  𝑁2 − 𝛽2 𝑝trial  𝑝0 − 𝑝trial   (20) 

 

Here, 

 

 
 𝑔

 𝑝
 ∶= 𝑝 𝑀2 − 𝜂2 ,      

 𝑔

 𝑞
 ∶= 2𝑝 𝜂 − 𝛼  (21) 

 

and it is assumed that the hardening parameters do not evolve during the updating process of 

stress state. Given the value of ∆L, pnew and qnew are calculated through equations (15) and 

(16) and thus stresses are obtained by 

 

𝜎𝑖𝑗
new = 𝑠𝑖𝑗

new + 𝑝new 𝛿𝑖𝑗  (22) 

 

where 

 

𝑠𝑖𝑗
new = 𝑠𝑖𝑗

trial 𝑞new

𝑞 trial   (23) 

 

Similarly, the plastic volumetric strain is given as 

 

Δ𝜀𝑣
𝑝

= Δ𝐿  
 𝑔

 𝑝
 

trial

 (24) 

 

Specific volume can also be calculated as 

 

𝑣new = 𝑣0(1 + Δ𝜀𝑣) (25) 

 

where Δ𝜀𝑣 = Δ𝜀𝑖𝑖  and 𝑣0 = 1 + 𝑒𝑖𝑛  is the initial value of specific volume. Bulk modulus is then 

updated through 

 

𝐾new =
𝑣new 𝑝new

𝜅
 (26) 

 

Isotropic hardening parameter is similarly updated as 
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𝑝0
new = 𝑝0

old + Δ𝐿  
𝑣new

𝜆 − 𝜅
 𝑝0

old  
 𝑔

 𝑝
 

trial

 (27) 

 

and rotational hardening parameter of potential surface is updated as 

 

𝛼new = 𝛼old + Δ𝐿  
𝑣New

𝜆 − 𝜅
 𝐶  

𝑝New

𝑝0
 

2

  
 𝑔

 𝑝
 

trial

  𝜂New − 𝑥𝛼old   𝛼𝑏 − 𝛼old   (28) 

 

Finally, for the rotational hardening parameter of yield suface, we have 

 

𝛽new = 𝛽old + Δ𝐿  
𝑣new

𝜆 − 𝜅
 𝐶  

𝑝new

𝑝0
 

2

  
 𝑔

 𝑝
 

trial

  𝜂new − 𝛽old   𝛽𝑏 − 𝛽old   (29) 

 

The way adopted to update the hardening parameters makes the integration scheme explicit. 

 

 

4. NUMERICAL IMPLEMENTATION 
 

The above mentioned constitutive integration of SANICLAY model is implemented in the 

commercial finite difference software (2D) FLAC with the User-Defined Constitutive 

Models UDM provided in FLAC. Although an extended version of the MCC model is 

available in FLAC, for proper comparison of the two models, the MCC model is also 

implemented with UDM using a similar semi-explicit integration algorithm. The details of 

the implementation of MCC model follow that of the SANICLAY model with a few 

changes according to the constitutive laws. The implemented MCC model is validated 

against in-built MCC model within the FLAC for several drained and undrained triaxial 

compression tests with various OCRs. 

 

 

5. SIMULATION RESULTS AND DISCUSSIONS 
 

SANICLAY requires a calibration of eight constant model parameters (see Table 1). The 

first five parameters are same as those in the MCC model and are easily calibrated using the 

data obtained from standard laboratory tests. The calibration of the last three parameters (N, 

x and C) can also be done by adopting the procedure proposed in [21]. SANICLAY model is 

calibrated for LCT based on the experimental data presented by Gens [7]. The calibrated 

values of the eight parameters for SANICLAY are represented in Table 1. 

 

5.1 Undrained shearing 
First, the data of undrained triaxial compression (CK0UC) and extension tests (CK0UE) on 

K0-consolidated specimens of LCT with OCR = 1, 2, 4 and 7 are considered. Simulations 

are carried out using the SANICLAY and MCC models and the results are presented within 

q- p space which are normalized by 𝜎𝑚𝑎𝑥
𝑎𝑥𝑖𝑎𝑙  as the maximum axial (vertical) stress of the 

preceding consolidation path. Moreover, results are presented by plotting variations of q vs 

εaxial. 
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Table 1: Calibrated parameters for LCT [21] 

Value Description of role Parameter 

1.18 Value of stress ratio at critical state in compression 𝑀𝑐  

0.86 Value of stress ratio at critical state in extension 𝑀𝑒  

0.063 Compressibility of normally consolidated clay 𝜆 

0.009 Compressibility of over-consolidated clay 𝜅 

0.2 Elastic Poisson‟s ratio 𝜈 

0.91 Shape of the yield surface 𝑁 

1.56 Saturation limit of anisotropy (under path with constant stress ratio) 𝑥 

16 Rate of evolution of anisotropy 𝐶 

 

The stress–strain response and the stress paths obtained using the SANICLAY model for 

several values of OCRs are shown in Fig. 2. As discussed in [21], the model simulations are 

comparable to the experimental data by Gens [7]. It is illustrated that the SANICLAY model 

shows reasonable agreement for normally consolidated specimens (OCR=1) with the 

experiments. 

To emphasize the significant capabilities brought in by the anisotropic model, the same 

experiments are simulated by using the MCC model. The simulation results are shown in     

Fig. 3. The severe limitation of the predictive capability of the MCC model in modeling the 

response of an anisotropic soil is clear from these results in which shear strength is 

overestimated for triaxial extension tests. Moreover, the  MCC model lacks the essential 

ingredients to account for softening during undrained shear loading (after the initial 

anisotropic consolidation) which many cohesive soils exhibit. 

 

 
Figure 2. Comparison of SANICLAY simulations with experimental data for undrained triaxial 
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are abbreviations for experimental compression and extension tests, respectively; while S-TC 
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Figure 3. Comparison of MCC simulations with experimental data for undrained triaxial tests on 

K0-consolidated samples of LCT with various OCR values (Gens [7]). See caption of Fig. 2 for 

definitions of abbreviations 

 

 
 

Figure 4. Comparison of SANICLAY simulations with experimental data for undrained triaxial 

tests on anisotropically consolidated samples of LCT and OCR = 1, (Gens [7]). TC-Kc and    

TE-Kc are abbreviations for the experimental compression and extension tests, respectively; 

while SC-Kc and SE-Kc are for the simulation of compression and extension tests, respectively 
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(CAUE) on anisotropically consolidated samples of LCT with OCR = 1. The comparison of 

simulation and experimental test is made in the q- p space normalized by pmax, i.e. the 

maximum mean effective stress of the preceding consolidation path. The various tests are 

differentiated in terms of the value of the consolidation stress ratio Kc = σr,c/σa,c, i.e. the ratio 

of the radial effective stress over its axial effective stress during consolidation. For example, 

the TC and TE tests with Kc = 0.5 correspond to the CK0UC and CK0UE tests for OCR = 1 

of Fig. 2. As expected, the best agreement between the simulations and experiments is 

obtained for Kc = 0.5, because these two tests were used for the calibration of SANICLAY 

as discussed in [21]. Generally, the performance of the model improves as the Kc approaches 

the value 0.5. 

 

5.2 Drained shearing 
To complete the validation/verification of the proposed integration scheme, the drained 

triaxial compression (CK0DC) tests on K0-consolidated specimens of LCT with OCR = 1, 

1.5, 2, 4 and 7 are illustrated in Fig.5. In particular, Fig.5 (a) makes the comparison in terms 

of the shear stress–strain response, while Fig.5 (b) does the same in terms of the volumetric 

strain εv. It is seen that the shear stress–strain response is better simulated than the 

volumetric strain for all values of OCR. More specifically, the model simulates successfully 

the 𝑞/𝜎𝑚𝑎𝑥
𝑎𝑥𝑖𝑎𝑙 − 𝜀𝑎𝑥𝑖𝑎𝑙  response, with the an exception of the softening response for OCR = 7. 

Moreover, the volumetric εv strain is successfully simulated, specially for high OCRs (i.e. 

OCR = 4–7). 

 

 
 

Figure 5. Comparison of SANICLAY simulations with experimental data for drained triaxial 

tests on K0-consolidated samples of LCT and various OCR values (Gens [7]). DT an 

abbreviation for experimental drain tests and DS are for simulation of drain tests 
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Fig.6 compares the data and the simulations for drained triaxial compression (CADC) tests 

on anisotropically consolidated samples of LCT with OCR = 1. In particular, Fig. 6 makes 

the comparison in the known two-plot format of Fig. 5. The various tests are differentiated 

in terms of the value of the consolidation stress ratio Kc = σr,c/σa,c, as was done in Fig. 4 for 

the undrained tests. It is demonstrated that the volumetric strain εv increases with the value 

of Kc, and this is thoroughly captured by the model. Furthermore, note that the 𝑞/𝜎𝑚𝑎𝑥
𝑎𝑥𝑖𝑎𝑙 −

𝜀𝑎𝑥𝑖𝑎𝑙  simulations become better as the value of Kc approaches the Kc = 0.5, similar to 

undrained cases (see Fig. 4). 

 

 
Figure 6. Comparison of SANICLAY simulations with experimental data for drained triaxial 

tests on anisotropically consolidated samples of LCT and OCR = 1, (Gens [7]) 

 

 

6. CONCLUSIONS 
 

In this paper, a semi-explicit integration scheme for the SANICLAY model has been 

presented and validated. Accuracy and efficiency of the proposed algorithm have been 

evaluated by comparing the results obtained for several drained/undrained 

compression/extension triaxial simulations having different OCRs with the experimental 

data. The results have also compared with the results obtained through the MCC model. The 

proposed semi-explicit algorithm does not require any iteration while integration process; 

however, it has an adequate accuracy and efficiency in solving the boundary value problems. 

 

 

REFERENCES 
 

1. Casagrande A, Carillo N. Shear failure of anisotropic materials, Journal of the Boston 

Society of Civil Engineers, 31(1944) 74-87. 

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2


a
(%)

q
/

a
x
ia

l

m
a
x

 

 

DT-Kc=0.5

DT-Kc=0.67

DT-Kc=1

DS-Kc=0.5

DS-Kc=0.67

DS-Kc=1

0 2 4 6 8 10 12 14

-2

-1

0

1

2

3

4

5

6


a
(%)


v
(%

)

(a) (b) 



A. Shirmohammadi, M. Hajialilue Bonab and S. Soleymani Shishvan 

 

56 

2. Whittle AJ. A Constitutive Model for Over consolidated Clays with Application to the 

Cyclic Loading of Friction Pile, Sc.D. Thesis, MIT, Cambridge, MA, 1987. 

3. Ladd C, et al. Stress-deformation and strength characteristics, Proceedings of the 9th 

International Conference Soil Mechanics and Foundation Engineering, Tokyo, 1977. 

4. Chen FH, Snitbhan N, Fang HY. Stability of slopes in anisotropic, non-homogenous 

soils, Canadian Geotechnical Journal, 12(1975) 145-52. 

5. Levadoux JN, Baligh MM. Pore pressure during cone penetration in clays, Report No. R. 

80-15, 310, Department of Civil Engineering, MIT, 1980. 

6. Sheahan TC. An Experimental Study of the Time-Dependent Undrained Shear Behavior 

of Re-Sedimented Clay Using Automated Stress Path Equipment, Sc.D. Thesis, MIT, 

Cambridge, MA, 1991. 

7. Gens A. Stress-Strain and Strength of a Low Plasticity Clay, Ph.D. Thesis, Imperial 

College, London University, 1982. 

8. Nishimura S, Minh NA, Jardine RJ. Shear strength anisotropy of natural London clay, 

Geotechnique, 57(2007) 49-62. 

9. Tavenas F, Leroueil S. Effects of stresses and time on yielding of clays, Proceedings of 

the 9th International Conference of Soil Mechanics Foundations Engineering, Tokyo, 

1977. 

10. Mroz Z, Norris VA, Zienkiewicz OC. An anisotropic hardening model for soils and its 

application to cyclic loading, International Journal for Numerical and Analytical 

Methods in Geomechanics, 2(1978) 203-21. 

11. Pietruszczak S, Mroz Z. On hardening anisotropy of K0-consolidated clays, International 

Journal for Numerical and Analytical Methods in Geomechanics, 7(1983) 19-38. 

12. Pande GN, Sharma KG. Multilaminate model of clays-A numerical evaluation of the 

influence of rotation of principal stress axes, International Journal for Numerical and 

Analytical Methods in Geomechanics, 7(1983) 397-418. 

13. Schweiger HF, et al. A multi-laminate framework for modeling induced and inherent 

anisotropy of soils, Geotechnique, 59(2009) 87-101. 

14. Sekiguchi H, Ohta K. Induced anisotropy and time dependence in clays, Proceedings of 

the 9th ICSMFE on Constitutive Equations for Soils (Specialty Session 9), Tokyo, 

JSSMFE, 1977. 

15. Hashiguchi K. An expression of anisotropy in plastic constitutive equations of soils, 

Proceedings of the 9th ICSMFE, Constitutive Equations for Soils (Specialty Session 9), 

Tokyo, JSSMFE, 1977. 

16. Dafalias YF. An anisotropic critical state soil plasticity model, Mechanics Research 

Communications, 13(1986) 341-7. 

17. Anandarajah A, Dafalias YF. Bounding surface plasticity 3: Application to anisotropic 

cohesive soils, Journal of Engineering Mechanics (ASCE), 112(1986) 1292-318. 

18. Whittle AJ, Kavadas MJ. Formulation of MIT-E3 constitutive model for 

overconsolidated clays, Journal of Engineering Mechanics (ASCE), 120(1994) 173-98. 

19. Roscoe KH, Burland JB. On the generalized Stress-Strain Behavior Of „Wet‟ Clay, in 

Engineering Plasticity, eds. Backhaus G, Cambridge University Press, Cambridge, 1968. 

20. Wheeler SJ, et al. An anisotropic elastoplastic model for soft clays, Canadian 

Geotechnical Journal, 40(2003) 403–18. 



MODIFIED EXPLICIT SCHEME OF RETURN MAPPING INTEGRATION ... 

 

57 

21. Dafalias YF, Manzari MT, Papadimitriou AG. SANICLAY: Simple anisotropic clay 

plasticity model, International Journal for Numerical and Analytical Methods in 

Geomechanics, 30(2006) 1231-57. 

22. Dafalias YF, Taiebat M. Anatomy of rotational hardening in clay plasticity, 

Geotechnique, 63(2013) 1406-18. 

23. Taiebat M, Dafalias YF, Peek R. A destructuration theory and its application to 

SANICLAY model, International Journal for Numerical and Analytical Methods in 

Geomechanics, 34(2010) 1009-40. 

24. Graham J, Houlsby GT. Anisotropic elasticity of a natural clay, Geotechnique, 33(1983) 165-

80. 

25. Ortiz M, Simo JC. An analysis of a new class of integrations algorithms for elasto-plastic 

constitutive relations, International Journal for Numerical and Analytical Methods in 

Geomechanics, 23(1986) 353-66. 

26. Gens A, Potts DM. Critical state models in computational geomechanics, Engineering 

Computations, 5(1987) 178-97. 

27. Hashash YMA, Whittle AJ. Integration of the modified Cam-clay model in non-linear 

finite element analysis, Computer Methods in Applied Mechanics and Engineering, 

14(1992) 59-83. 

28. Manzari MT, Prachathananukit R. On integration of a cyclic soil plasticity model, 

International Journal for Numerical and Analytical Methods in Geomechanics, 25(2001) 

525-49. 

29. Rouainia M, Wood DM. Implicit numerical integration for a kinematic hardening soil 

plasticity model, International Journal for Numerical and Analytical Methods in 

Geomechanics, 25(2001) 1305-25. 

30. Simo JC, Hughes JTR. General return mapping algorithms for rate-independent 

plasticity, Constitutive Laws for Engineering Materials: Theory and Applications, eds. 

Desai CS, Krempl E, Kiousis PD, Kundu T, Elsevier Publishing Co, New York, 1987. 


