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ABSTRACT 
 

In this paper, a unified method is developed for calculating the eigenvalues of the weighted 
adjacency and Laplacian matrices of three different graph products. These products have 
many applications in computational mechanics, such as ordering, graph partitioning, and 
subdomaining of finite element models. 
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1. INTRODUCTION 
 

Graph theory has a long history, and its applications in structural mechanics and in particular 
nodal ordering and graph partitioning are well documented in the literature, Kaveh [1-2]. 

Algebraic graph theory can be considered as a branch of graph theory, where eigenvalues 
and eigenvectors of certain matrices are employed to deduce the principal properties of a 
graph. In fact eigenvalues are closely related to most of the invariants of a graph, linking one 
extremal property to another. These eigenvalues play a central role in our fundamental 
understanding of graphs. There are interesting books on algebraic graph theory such as 
Biggs [3], Cvetković et al. [4], and Godsil and Royle [5]. 

One of the major contributions in algebraic graph theory is due to Fiedler [6], where the 
properties of the second eigenvalue and eigenvector of the Laplacian of a graph have been 
introduced. This eigenvector, known as the Fiedler vector is used in graph nodal ordering 
and bipartition, Refs. [7-9].  

General methods are available in the literature for calculating the eigenvalues of matrices, 
however, for matrices corresponding to special models, it is beneficial to make use of their 
extra properties. 

In this paper, a unified approach is developed for calculating the eigenvalues of the 
adjacency and Laplacian matrices of three different graph products. These methods have 
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many applications in computational mechanics, such as ordering, graph partitioning, and 
subdomaining finite element models, Kaveh and Rahami [10,11]. 

 
 

2. DEFINITIONS 
 

2.1 Definitions from Graph Theory 
A graph G(N,E) consists of a set of elements, N(G), called nodes and a set of elements, 
E(G), called edges, together with a relation of incidence which associates two distinct nodes 
with each edge, known as its ends. Two nodes of a graph are called adjacent if these nodes 
are the end nodes of an edge. An edge is called incident with a node if it is an end node of 
the edge. The degree of a node is the number of edges incident with the node. A subgraph 
Gi of a graph G is a graph for which N(Gi) ⊆ N(G) and E(Gi) ⊆ E(G), and each edge of Gi 
has the same ends as in G. A path of G is a finite sequence Pi = {n0, m1, n1, ..., mp, np} 
whose terms are alternately distinct nodes ni and distinct members mi of G for 1 ≤ i ≤ p, and 
ni-1 and ni are the two ends of mi. A cycle is a path (n0, m1, n1,..., mp, np) for which n0 = np 
and p ≥ 3; i.e. a cycle is a closed path. A cycle graph with n nodes is denoted as Cn. 

 
2.2  Eigenvalues and eigenvectors of matrix A  
Consider a graph with weights assigned to its nodes and edges. The nodal weight vector is,  
 
 NW = [nwi]; i = 1,2,…,n, (1) 
 
and edge weight vector is defined as: 

 
 EW= [ewij]; (i,j) = 1,,…,n, (2) 

 
The adjacency matrix A = [aij] n n×  of a weighted graph G, containing n nodes, is defined 

as: 
 

 



=
                  otherwise   0

n oadjacent t is n if    we
a jiij

ij
 (3)

 

 
For a non-weighted graph ewij should be replaced by unity. 

Consider the eigenproblem as  
 

 iii φµ=φA  (4) 
 

where µ i  is the eigenvalue and φi  is the corresponding eigenvector. Since A is a symmetric 
real matrix, all it’s eigenvalues are real and can be expressed as  

 
 µ ≤ µ ≤ ... ≤ µ ≤ µ1 2 −1n n  (5) 
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The largest eigenvalue µ n  is the root of the characteristic equation of A with multiplicity 
1. The corresponding eigenvector φn  is the only eigenvector with positive entries. This 
vector has attractive properties employed in geography and structural mechanics. 

Gould [12] appears to have introduced the first important application on using the 
properties of φn  in calculating the accessibility indices of cities. The city with the highest 
accessibility corresponds to the largest entry of φn .  

Grimes et al. [13] used the node with smallest accessibility as a pseudo-peripheral node 
corresponding to the node with least entry of φn . Kaveh [14] used the properties of φn  for 
complete nodal ordering.  

 
2.3 Eigenvalues and eigenvectors of matrix L 
The entries of the weighted Laplacian matrix L of a weighted graph is defined as: 

 
 L = D – A, (6) 

 
The entries of L are as follows: 
 

 











==

−=−

= ∑
=

                              otherwise                        0

                                    jifor           ewew

adjacent are n and n nodes if      ewew

l
iD

1j
iji

jijiij

ij  (7) 

 
In this relation ewij is the weight of the edge eij, and Di is the degree of the node ni. For a 

non-weighted graph, the degree matrix D = [dij] n n×  is a diagonal matrix of node degrees. 
Here, the ith diagonal entry dii is equal to the degree of the node i. Therefore, the entries of L 
are as: 

 

 







=

−
=

                        otherwise              0 
                              ji if      )deg(n

n oadjacent t is n node if               1
l i

ji

ij  (8) 

 
Consider the following eigenproblem: 
 

 Lvi = λi vi, (9) 
 

where λi is the eigenvalue and vi is the corresponding eigenvector. As for A, all the 
eigenvalues of L are real. It can be shown that matrix L is a positive semi-definite matrix 
with  
 
 0 = λ1 ≤ λ2 ≤ ... ≤ λn (10) 
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and 
 v1 1 1 1t = { , , ... , }    

 
The second eigenvalue λ2 and the corresponding eigenvector v2 has attractive properties. 

Fiedler [6] has investigated various properties of λ2. This eigenvalue is known as the 
algebraic connectivity of a graph, and the corresponding eigenvector v2 is known as the 
Fiedlers vector. 

Mohar [7] has applied (λ2,v2) to different problems such as graph partitioning and 
ordering. Paulino et al. [15] used v2 for element ordering and nodal numbering. 

Pothen et al. [16], Simon [17], Seale and Topping [18], and Kaveh and Davaran [19] and 
Kaveh and Rahimi Bondarabady [20-21] have used the properties of v2, for partitioning 
graphs. However, for calculating λ2 when the entire model is considered, a fair amount of 
computational time and storage space is required. In this paper, for regular structural models, 
this goal is achieved by a far simple and more efficient analytical method. 

 
 

3. GRAPH PRODUCTS 
 

3.1 Cartesian Product of Two Graphs 
Many structures have regular patterns and can be viewed as the Cartesian product of a 
number of simple graphs. These subgraphs, which are used in the formation of a model, are 
called the generators of that model. 

The simplest Boolean operation on a graph, is the Cartesian product K×H introduced by 
Sabidussi [22]. The Cartesian product is a Boolean operation G = K×H in which for any two 
nodes u = (u1,u2) and v = (v1,v2) in N(K)×N(H), the member uv is in E(G) whenever, 

 
 u1 = v1 and u2v2 ∈ E(H), (11a) 
or 
 u2 = v2 and u1v1 ∈ E(K). (11b) 

 
As an example, the Cartesian product of K = P2 and H = P3 is shown in Figure 1. 
 

(v   ,u   )1 2 (v   ,v   )

(u   ,w   )(u   ,v   )(u   ,u   )
u

v

u v w

1

1
1 1 1

11

2 2

2 2 2

2 2

=
2

(v   ,w  )

 

                                    K=P2            H=P3               G 

(a)                              (b) 

Figure 1. The Cartesian product of two simple graphs. 
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Example: In this example, the Cartesian product C7×P5 of the path graph with 5 nodes 
denoted by P5 and a cycle graph shown by C7 is illustrated in Figure 2.  

 

 

Figure 2. Representations of C7×P5 

 
3.2  Strong Cartesian Product of Two Graphs 
This is another Boolean operation, known as the strong Cartesian product. The strong 
Cartesian product is a Boolean operation G = K⊠H in which, for any two nodes u=(u1,u2) 
and v=(v1,v2) in N(K)×N(H), the member uv is in E(G) if : 
 
 u1 = u2 and v1v2 ∈ M(K) is in E(H), (12a) 
 
 v1 = v2 and u1u2 ∈ M(K) is in E(K), (12b) 
 
 u1u2 ∈ E(K) and v1v2∈E(H) (12c) 

 
As an example, the strong Cartesian product of K = P2 and H = P3 is shown in Figure 3. 
 

(v   ,u   )1 2 (v   ,v   )

(u   ,w   )(u   ,v   )(u   ,u   )
u

v

u v w

1

1
1 1 1

11

2 2

2 2 2

2 2

=
2

(v   ,w  )

 
                     K=P2            H=P3                                    G 

(a) Generators.                               (b) G = K⊠H. 

Figure 3. The strong Cartesian product of two simple graphs 
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Example: In this example, the strong Cartesian product P7⊠P5 of a path graph with 7 nodes, 
denoted by P7 , and the path graph P5, is illustrated in Figure 4.  
 

 

Figure 4. Strong product representation of P7⊠P5 

 
3.3  Direct Product of Two Graphs 
This is another Boolean operation known as the direct product introduced by Weichsel [23], 
who called it the Kronecker Product. The direct product is a Boolean operation G = K*H in 
which for any two nodes u=(u1,u2) and v=(v1,v2) in N(K)×N(H), the member uv is in E(G) if:  

 
 u1v1 ∈ M(K) and u2v2 ∈E(H). (13) 

 
As an example, the direct product of K=P2 and H=P3 is shown in Figure 5. 
 

(v   ,u   )1 2 (v   ,v   )

(u   ,w   )(u   ,v   )(u   ,u   )
u

v

u v w

1

1
1 1 1

11

2 2

2 2 2

2 2

=
2

(v   ,w  )

*

 
                           K=P2     H=P3                 G 

(a)                                    (b) 

Figure 5. The direct product of two simple graphs 

 
Example: The direct product P7∗P5 of the path graph P7 and path graph P5 is illustrated in 
Figure 6.  
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Figure 6. Direct product representation of P7∗P5 

 
3.4 Kronecker Product 
The Kronecker product of two matrices A and B, is the matrix we get by replacing the ij-th 
entry of A by aijB, for all i and j. 

As an example,  
 

 


















=







⊗









00dc
00ba
dcdc
baba

dc
ba

01
11

 (14) 

 
where entry 1 in the first matrix has been replaced by a complete copy of the second matrix. 

The Kronecker product has the property that if B, C, D, and E are four matrices, such 
that BD and CE exists, then: 

 
 (B⊗C)(D⊗E) = BD⊗CE. (15) 

 
Thus, if u and v are vectors of the correct dimensions, then: 
 

 (B⊗C)(u⊗v) = Bu⊗Cv. (16) 
 

If u and v are eigenvectors of B and C, with eigenvalues λ and µ, respectively, then, 
 

 Bu⊗Cv = λµu⊗v, (17) 
 
Whence u⊗v is an eigenvector of B⊗C with eigenvalue λµ.  
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4.  A UNIFIED APPROACH FOR EIGENVALUES  
OF GRAPH PRODUCTS 

 
Consider a block tri-diagonal matrix in the following form: 

 

 





































=

AB
BCB

BCB

.
.
BCB

BCB
BA

M
...

..
..

mn
, (18) 

 
where A, B and C are m×m matrix blocks. The matrix Mmn contains n blocks in each row 
and n blocks in each column. A matrix Mmn in the form of Eq. (18) will be denoted by  
Mmn = F(Am,Bm,Cm)mn. Now we study various forms of Mmn. 

 
4.1  FORM 1 (for adjacency matrices) 
This form corresponds to the adjacency matrices of three groups of graph products, namely 
Cartesian, Strong Cartesian and Direct products. Here, it is assumed that weights are 
associated with the nodes of the graph. 

In this form, 
 

 Mmn = F(Am,Bm,Am)mn, (19) 
where                                        
 
 Am = F(a,b,a)m and Bm = F(c,d,c)m . (20) 

 
The small characters are numbers, and the capital characters are matrices. 
Consider Tk = F(0,1,0)k with eigenvalues λk, and denote the unit matrix by Ik, where k is 

the dimension of the square matrices Tk and Ik. Using the properties of the Kroneker 
products from linear algebra, the matrix Mmn can be decomposed as: 

 
 

   .mnmnmn BTAIM ⊗+⊗=  (21) 
 
Substituting 
 

 )dc(  and   )ba( mmmmmm TIBTIA +=+= , (22) 
leads to: 
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 .dcba mnmnmnmnmn TTITTIIIM ⊗+⊗+⊗+⊗=  (23) 
 
Therefore: 
 

 λ = a + bλm + cλn + dλmλn. (24) 
 
For graph with no weights, the Cartesian product, strong Cartesian product and direct 

product have coefficients a, b, c and λ as provided in Table 1. 
 

Table 1.  The coefficients of λ. 

Type of Product a b c d λ 

Cartesian 0 1 1 0 λ = λm + λn 

Strong Cartesian 0 0 0 1 λ = λmλn. 

Direct 0 1 1 1 λ = λm + λn − λmλn. 

 
Path Graphs:  For a path graph Pm with m nodes, we have the following special case, 
 

 Mmn = F(Am,Bm,Am)mn, (25) 
 

where                              Am = F(0,b,0)m and Bm = F(c,d,c)m. (26) 
 

The matrix Mmn can be decomposed as: 
 

 
.dcb          

)dc(b          

mnmnmn

mmnmn

mnmnmn

TTITTI
TITTI

BTAIM

⊗+⊗+⊗=
+⊗+⊗=

⊗+⊗=
 (27) 

Therefore: 
 

 λ = bλm + cλn + dλmλn. (28) 
 
Cycle Graphs: For a cycle graph Cm, the matrix Mmn is a tri-diagonal matrix similar to 

that of the path graph, with the difference of Am and Bm having an entry p in the two corners 
as: 
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
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


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

=

**
***

***
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***
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**

p

p

F
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where p is a number. 

 
4.2 FORM 2 ( for Laplacian matrices) 
This form appears in Laplacian matrices of weighted graphs for Cartesian products, and 
strong Cartesian and direct products after addition of boundary edges, Ref. [11]. 

 
Path Graphs:  For a path graph we have: 
 

 Mmn = F(Am,Bm,Cm)mn, (30) 
 

where 
 Am = F(a1,b1,c1), Bm = F(a2,b2,c2), Cm = F(a3,b3,c3) (31) 

 
For this form we have A = B + C and ai = bi + ci (i=1,2,3). Assuming Tk = F(1,−1,2)k  

with λk being the eigenvalues of Tk, we have: 
 

 mnmnmn )()( BTBAIM −⊗++⊗=  (32) 
 

But (A+B)m = (a1+a2+b1+b2)Im – (b1+b2)Tm, and Bm = (a2+b2)Im – b2Tm. (33) 
 
Therefore,  
 

 mn2mn22mn21mn2121mn b)ba()bb()bbaa( TTITTIIM ⊗+⊗+−⊗+−+++=  (34) 
 

and 
 
 mn2n22m212121 b)ba()bb()bbaa( λλ+λ+−λ+−+++=λ  (35) 

 
For graph without weights, the Cartesian product, strong Cartesian product and direct 

product the coefficients Am, Bm, Cm and λ are provided in Table 2. 
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Table 2. The coefficients of λ. 

Product Am Bm Cm λ  

Cartesian F(2,–1,3) F(–1,0,–1) F(3,–1,4) λ = λm + λn  

Strong Cartesian F(3,–1,4) F(–1,–1,0) F(4,0,4) λ = 2λm + 2λn –λmλn. 

Direct F(5,–2,2) F(–2,–1,–1) F(7,–1,8) λ = 3λm + 3λn – λmλn. 

 
Note: For weighted graphs, the weight of the added boundary edge should be considered 

as the weight of the diagonal (bracing) edges. 
Cycle Graphs:  For cycle graphs, λm corresponding to a Tm contains additional entries –1 

in the two far corners. 
Once the eigenvalues are found, the corresponding eigenvectors can be calculated. 

However, this can be done much simpler considering that the eigenvectors of G are the 
Kronecker product of the eigenvectors of K and H, i.e. wk = ui⊗vj , where wk, ui and vj are 
the eigenvectors of G, K and H, respectively.  

 
Example: Consider the Cartesian product of P4 and P5. Let G = P4×P5 be a weighted graph 
with horizontal edges having weight 2 and the vertical ones with weight 4. In this case, the 
adjacency matrix A will have the following form: 

 
 Mmn = F(A5,B5,A5)54, A5 = F(0,2,0), B5 = F(3,4,3)5 

 
which is the same as Form I, and with λ4 and λ5 being taken as the eigenvalues of P4 and P5, 
respectively, we have 
 

 λ = 2λ5+3λ4+4λ5λ4;  λn = 2cos
1n

k
+
π  (k=1,…,n), 

and 
 

 λmin = −8.3182 and λmax = 8.3182. 
 
For the Laplacian matrix L, λ4 and λ5 correspond to the Laplacian of P4 and P5, and  
 

 λn = 2−2cos
n
kπ  (k=0,…,n−1) 

with 
 

 M54 = F(A5,B5,C5)54, A5 = F(5,−2,7)5, B5 = F(−3,0,−3)5, C5 = F(8,−2,10)5 
 
It can be observed that A5 = B5 + C5 and ai = bi + ci (for i=1,2,3), which are the properties 
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corresponding to Form II. Therefore: 
 

 λ=[(5)+(−3)+(−2)+(0)]−[(−2)+(0)]λ5−[(−3)+(0)]λ4+(0)λ5λ4=2λ5+3λ4 
 

leading to 
 

 λ2 = 2(0.3820) + 3(0) = 0.7639 
 
If one considers C5×P4, then λ5 corresponding to C5 should be employed. Then we will 

have numbers in the corner entries of the matrix and a similar method can be used. 
 For strong Cartesian product of P4 and P5, the adjacency matrix has Form I, however, 

for Laplacian matrix none of the forms discussed will be observed. For this case, edges are 
added to the boundary nodes (or the weights of the boundary edges are doubled) in order to 
construct regular graphs. After this operation, Form II is produced and the calculations are 
performed as before. For direct product, a similar operation can be employed for the 
Laplacian matrix L. 

In this paper, no comparison is made, since the present methods are applicable only to 
regular models. Due to the analytical nature of these approaches, the computational time is 
far less then the standard methods for calculating eigenvalues. For applications of the 
present methods, the reader may refer to Refences [11,24]. 

 
 

5. CONCLUDING REMARKS 
 

The unified method presented for calculating the eigenvalues of the adjacency and Laplacian 
matrices of three different graph products, provides an efficient approach for calculating the 
eigenvalues of adjacency and Laplacian matrices of weighted and non-weighted graphs. The 
eigensolution of graphs has many applications in computational mechanics. Examples of 
such applications are nodal and element ordering for bandwidth, profile and frontwidth 
optimization, graph partitioning, and subdomaining of finite element models [13-21]. The 
present forms are also effective tools for calculating eigenvalues and eigenvectors of 
matrices arising from numerical methods for differential equations applied to structural 
mechanics problems. Such applications are presented in Refs. [11,24]. 
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