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ABSTRACT 
 

This paper describes a study conducted to determine the surface shape of membrane 
structures with fixed edges. Results obtained experimentally by taking coordinate 
measurements in three dimensions from scale down physical models are compared with 
computed values based on the formulation of the force density method for determining the 
surface shape. A program in C++ is developed in order to assist in the computation. It is 
observed that the results under minimal surface conditions are in close agreement and the 
formulation can thus be applied practically to predict the surface shape of membrane 
structures. 

 
 

1. INTRODUCTION 
 

Membrane structures refer to those structures of which the main structural components are 
thin sheets of membrane made of resin coated fabrics. Design of membrane structures 
typically involves three stages i.e. form finding, cutting pattern determination and structural 
analysis. Form finding is a process to predict the membrane shape or the behavior of the 
membrane shape when subjected to a given boundary or loading condition. 

The variety of possible shapes applicable to the design of large span membrane structures 
demand new ideas in structural analysis. Generally, forces and deformations are evaluated 
based on a known shape or form. However, in membrane structures the shape or form is an 
unknown entity prior to computation except in a few simple cases. Thus, the search for a 
suitable shape plays an important role since it influences to a great extent the forces and 
deformations in the unloaded and loaded condition. 

There are quite a number of experimental techniques used in form finding involving 
direct physical measurements of the surface on scale models. Materials such as tulle, 
spandex, thin rubber sheet, cloth and even soap film have been used to construct models. 
Models using soap film will form the so called minimal or equivalently equally stressed 
surface. Such surfaces are frequently used in the design of membrane structures. However, 
the drawback of soap film models is that the surfaces formed are extremely if not impossible 
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to measure using conventional techniques. Photographs are normally taken in order to 
reconstruct the surface for further numerical work. On the other hand, models built using 
materials such as tulle or thin rubber sheet can be measured more easily. In general, by using 
these materials the models have to be constructed by combining several pieces of flattened 
sheets and subsequently stretching the combined pieces used. The outcome of the surface 
formed is therefore very much dependant on the cutting pattern of the flattened pieces of 
material used. The experimental method of determining surfaces helps in visualizing the 
problem but suffers a severe disadvantage when compared to the numerical method. The 
number of variants in a physical model is very limited and measurement data has to be 
processed to digital format prior to further computational work and for display using an 
interactive system. 

Numerical methods are highly suitable for form finding of membrane structures since 
they allow an unlimited number of shape variants, boundary and loading conditions. The 
formulation presented herein was developed by Schek [1] and is based on the concept of 
minimal surface and does not take into account any external loading. This situation is 
applicable to suspension type structures whereby the stresses induced in the membrane are 
equal in all directions and only one minimal surface is generated in the state of equilibrium. 
Structures whose membrane are under unequal stresses are problematic. They tend to from 
folds and are strained more at the points, which are subjected to high loads until they tear or 
adopt forms that deviate strongly from the original cutting pattern. The shape without 
minimal surface will deform unduly under external loading and can be subjected to severe 
flapping. Thus, correctly stressed structures exhibit almost equal stresses in all directions 
and therefore forming one minimal surface. Minimal surface structures are the least 
problematic with respect to cutting patterns and also the most resistant to deformation. 

 
 

2. FORCE DENSITY METHOD 
 

This method is based on the notion that in the state of equilibrium, one system of linear 
equations can be obtained to represent the shape for equilibrium. This system is constructed 
using the force-length ratios (f/l) or namely, force-densities in the branches of a membrane 
structure’s network. Single quantity of force-densities is prescribed for each branch, and a 
unique result for the appropriate state of equilibrium can be obtained by solving this system 
of linear equations. 

Schek [1] suggested that several different shapes can be computed and displayed in a 
short time, by varying the prescribed value of force-densities in each branches. Thus the 
opinion that the computation of general shape of membrane structures is only possible by 
trial and error methods can no longer be accepted. 

 
 

3. FORMULATION 
 

A vector, a can be represented by a one-column-matrix and it correlates with a diagonal 
matrix A in the following way, e.g. 
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A network is constructed using some branches and nodes, as shown in Figure 1. 
 

 

Figure 1. Branch-node network 

 
Nodes can be divided into two categories, namely “free” and “fixed”, Schek [1]. In 

branch-node numbering, it is advisable to number the free points followed by the fixed 
points. 

 
If, 

 ns = total number of points 
 

then, 
 ns = n + nf 
where,  

 
 n = total number of free points 
 nf  = total number of fixed points 

 
Each branch in the branch-node network has two matched node number, i(j) and k(j). 

Therefore, a usual branch-node matrix, Cs is defined by 
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where, 

 
 i, k = node number, 
 j = branch number.  

 
Applying the above to the network in Figure 1, the branch-node matrix can be written in 

the following form, 
 

 1 2 3 4 5 6 7 8 9 

1 1 0 0 0 0 –1 0 0 0 
2 0 1 0 0 0 0 –1 0 0 
3 0 0 1 0 0 0 0 –1 0 
4 0 0 0 1 0 0 0 0 –1 
5 1 0 0 –1 0 0 0 0 0 
6 1 –1 0 0 0 0 0 0 0 
7 0 1 –1 0 0 0 0 0 0 
8 0 0 1 –1 0 0 0 0 0 
9 0 0 0 1 –1 0 0 0 0 
10 1 0 0 0 –1 0 0 0 0 
11 0 1 0 0 –1 0 0 0 0 
12 0 0 1 0 –1 0 0 0 0 
   C     Cf  

Figure 2. Typical branch-node matrix 

 
Hence, 

 fs CCC +=  
 

where, 
 

 C = Branch-node matrix for free points, 
 Cf = Branch-node matrix for fixed points. 

 
q is the force-density vector for the branch node network, and Q is the diagonal force-
density matrix in equation (1) and (2). 

 
 sLq 1−=  (4) 

 
where, 
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 L = branch length matrix, 
 s = branch internal-force vector. 

 
The solution for the branch-node network is given below, 
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For simplification, 
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Therefore, for equilibrium state, 
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where, 

 
 x, y, z = free nodes coordinate vector, 
 xf, yf, zf = fixed nodes coordinate vector, 
 px, py, pz = external force vector on each free nodes respectively. 

 
From equation (6), given the positions of the fixed points, external loads and a set of 

prescribed force densities, the shape generated under equilibrium is given by the free point 
coordinates, 
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The solution for equation (7) is unique for the prescribed force-densities. Variation in 

vector q will result in a variation in the state of equilibrium. Thus the force densities are 
suitable for network description parameters. This set of equation will be utilized to predict 
the coordinates of the membrane surface. 
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4. PROGRAMMING STRUCTURE 
 

The choice of programming language is governed by the built-in features or tools provided, 
so as to perform the required computational work efficiently. Additionally, the language 
chosen should also be able to support future modification easily which are necessary when 
other parameters are to be considered. These parameters may well include different 
boundary conditions, high points and supports. The utilities such as matrix solver and 
Window's graphic user interface (GUI) which are incorporated into C++ [3], makes it the 
logical choice for programming the formulation mentioned earlier. 

Relevant information must be provided in order to start the form-finding process. The 
information required includes interconnection condition, force densities of the branches, the 
external force acting onto the structure and fixed point or fixed boundary, as illustrated in 
Figure 3. 

Several computer programs were written and computer aided analysis tools were used to 
complete the form-finding process [2]. These includes, 

 
4.1 Formation of Branch-node and Force Density Matrix 
The program written will form the branch-node and force density matrixes. A sub-routine is 
written by using the result from equation (3). If the connection between the branch and node 
is provided, the sub-routine will then check the condition of the connection provided and 
form the branch-node matrix accordingly. 

A sub-routine is also written to generate the force density matrix. Generally, a targeted 
force density in all branches for the structure has to be selected for the analysis. 

 
4.2 Formation of Fixed Point Coordinate Matrix 

The program written will help the user in determining three extra fixed points on each 
fixed boundary. A sub-routine is written to calculate the respective fixed point. The method 
used here is direct interpolation. In such case, the coordinate difference between two given 
fixed support is divided evenly into four parts, which will generate the coordinates of three 
intermediate fixed points. 

 
4.3 Free Point Determination 
The mathematical software MATLAB, is used to determine nine free points in the next step. 
Equation (7) is used and three matrixes (x, y and z respectively), which provide the 
information of the free point coordinates are generated. 

 
4.4 Display of Equilibrium Shape 
The display of the equilibrium shape is made possible using the plotting software SURFER. 
MATLAB generates the free point and fixed point coordinate matrices and then store them 
into the SURFER directory. Using the appropriate menu in SURFER, the membrane surface 
can be visualized either as a three-dimensional or a contour plot. 
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Figure 3. Form finding process [1] 

 
 

5. MODEL CONSTRUCTION 
 

The models used in this investigation were constructed using thin rubber sheets and 
restrained all along the four edges by plywood forming a box-like shape. Each model 
consists of two high points and two low points forming a shape which was frequently 
adopted for membrane structures when they were firstly introduced. 

During the process of model construction, extreme care was exercised so as to avoid 
having a model without minimal surface. In order to avoid this, all stresses in the stretched 
rubber sheet must be equal in all directions. This was achieved by drawing some circles on 
the sheet before stressing as shown in Figure 4. Subsequently, the shape of the circles was 

Start form finding 

Form the branch-node matrix 

Input fixed points and loads

Input force densities

Form the general Gaussian transformation D, 
prepare the right-hand sides of (6), compute 

the inverse of D 

Compute the equilibrium shape with (7) and 
determine the x, y, z coordinates 

Output equilibrium shape by using suitable software to plotter or display, 
analyze

Input network interconnections

Changes in the interconnections? 

Changes in the force densities? 

Changes in the fixed points or load? 

End of form finding. 

Yes 

Yes 

Yes 
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checked after the stressing process and it was assumed that the stresses were equal in all 
directions if the shape of the circle remained perfectly round as shown in Figure 5. Under 
such a situation, the minimal surface was formed. 

 

  

Figure 4. Before stressing Figure 5. After stressing 

 
 

6. CASE STUDY [2] 
 

Results from the computer program written based on the force density formulation are 
compared with measured values obtained from scale models. The basic model with a base 
dimension of 300mm by 300mm, comprised of two high points and two low points with 
fixed edges. In order to obtain variation in the shape of the membrane surface, differences in 
height at the high and low points were introduced. For the purpose of this case study, results 
from three constructed models with different profiles obtained by varying the height of the 
low and high points are presented. 

 
6.1 Model 1 
For Model 1, the high and low points were maintained at the same height but a height 
difference of 100mm was introduced between them. Upon examining the contour plots as 
shown in Figure 6, the theoretical and experimental results matched very well especially at 
the four corners, i.e. the area marked as A, B, C and D. In particular, the region around the 
low points at levels below 190 mm and the high points at levels above 225 mm, the contours 
are indistinguishable. However, the right center region marked as E at levels around 
210.0mm, the deviation between the results becomes significant. This may be due to the 
errors occurring while measurements were taken and factors such as incorrect penetration of 
the measuring head onto the membrane at point E, inaccuracy of the measuring machine and 
human factor such as eyesight. Since this model was the first to be built, the lack of care and 
skill exercised while measuring proved to be vital for purpose of accuracy. The contours at 
the center for Model 1 reflect a different pattern for the theoretical and measured plots. This 
is due to the entire area being very close to the contra-flexure point, which is highly 
sensitive to the measuring technique. 
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6.2 Model 2 
For Model 2, a height difference of 50mm between the two low points was introduced while 
maintaining the high points at the same height. The height between the high points and the 
lowest point was 100mm. Upon examining the contour plots as shown in Figure 7, the 
theoretical and experimental results also matched very well. The contours are almost 
indistinguishable at the four corners, i.e. the area marked as A, B, C, D and the center 
region, marked as E. Overall, the contours obtained from this model gave the best results in 
terms of the proximity of the theoretical and experimental values. This is due to the well 
built model whereby the membrane was stressed evenly. 

 
6.3 Model 3 
For Model 3, a height difference of 25 mm was introduced between the two low points and 
two high points. Consequently a height difference of 75mm was obtained between the 
lowest and highest point of the model, as shown in Figure 8. The general trend in which the 
two contour plots were almost indistinguishable especially at the four fixed point regions 
marked as A, B, C and D were observed. A slight deviation in the experimental and 
predicted contour plots occurred at the center region. This is due to the fact that this region 
is located near the contra-flexure point and errors during measuring contributed to the 
divergence. 

Furthermore, the three dimensional side views of both the theoretical and experimental 
results for all the models considered were very similar in profile. Typically this is shown in 
Figure 9 for the results obtained from Model 1. Therefore, it can be concluded that the 
results are in close agreement with each other. 

 

 

Figure 6. Contour plots for model 1 
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Figure 7. Contour plots for model 2 

 

Figure 8. Contour plots for model 3 
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Figure 9. 3D side view for model 1 

 
 

7. CONCLUSIONS 
 

In this study, it can be concluded that the numerical form finding technique using force 
density method with network analogy can be used to determine the surface shape of the 
structure with certain constraints. 

The constraints are: - 
 
1. Applicable to structure with fixed boundaries and uniform force density. 
2. No consideration of external force. 
3. Limited to four-point structure only. 
 
Several conclusions can be derived from the observations and results from this 

investigation. 
 
1. The experimental contours are almost indistinguishable with the theoretical 

contours. All the contours formed by the experimental results almost coincided 
with the contours of the numerical results. The numerical results give the predicted 
surface shape of the membrane structure. 

2. The measured values obtained experimentally are in random order and can be 
situated at any location in the structure. Thus, no comparison can be made from 



T.S. Loong, H. Abdul Razak, Z. Ismail and C.K. Keong 12 

three coordinates measured at a particular point on the model. Therefore, the 
comparison between theoretical and experimental results can only be based on the 
contour plots. Under such circumstances, the results obtained were satisfactory 
with respect to the quality and accuracy of the measuring technique. 

3. The experimental results have shown an almost identical profile in three-
dimensional view when compared to the numerical results. A very smooth 
curvature is formed in all the constructed models.  

4. The good experimental and theoretical agreement obtained in this study showed 
that the prediction of the surface shape based on minimal surface can be applied to 
a membrane structure. A minimal surface can be formed only if the structure is in 
the state of equilibrium and this is reflected well in the surface shape of the models 
constructed. Therefore, the shape of any membrane structure within the constraints 
of the assumptions made in the formulation can be predicted using the computer 
program developed herein. 
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