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ABSTRACT 
 

Construction planners often face the challenge of optimum resource utilization to 
compromise between different and usually conflicting aspects of projects. Time, cost and 
quality of project delivery are among the crucial aspects of each project. Emergence of new 
contracts that place an increasing pressure on maximizing the quality of projects while 
minimizing its time and cost, requires the development of models considering quality in 
addition to time and cost which has modeled extensively. In this paper, a new metaheuristic 
multi-colony ant algorithm is developed for the optimization of three objectives time-cost-
quality as a trade-off problem. An example is analyzed to illustrate the capabilities of the 
present method in generating optimal/near optimal solutions. The model is also applied to 
two objective time-cost trade-off problem, and the results are compared to those of the 
existing approaches. 
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1. INTRODUCTION 
 

The traditional time-cost trade-off problem has been the subject of intensive research since 
the development of the Critical Path Method (CPM) in the late 1950s. Construction planners 
face the challenge of optimum resource utilization to compromise between different aspects 
of projects, especially time and cost. Recent contracts consider the quality performance of 
projects in addition to time and cost. These new and emerging contracts impose an 
increasing pressure on decision makers in the construction industry to search for an 
optimal/near-optimal resource utilization plan that minimizes the construction cost and the 
time, while maximizing its quality. This creates new and pressing need for advanced 
resource utilization models that are capable of optimizing the multiple and conflicting 
objectives of construction time, cost and quality. El-Rayes et al. [1]. 

If durations of the activities are compressed, the cost will increase due to more resources 
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allocated to their rapid accomplishment. On the other hand, using fewer resources will result 
in extended duration of activities. In addition to time and cost of activities, every resource 
utilization option will yield a specific performance quality. Trade-off between these 
conflicting aspects of project is a challenging job and as such planners are faced with 
numerous possible combinations for project delivery. As an example, the number of possible 
combinations in a project with 18 activities and 4 possible resource utilization options for 
each activity will be more than 6 billion. A novel searching tool would then be worthwhile 
for comprehensive yet efficient time-cost-quality trade-off problem. 

Variety of methods has been used for modeling bi-objective Time-Cost Trade-off 
Problems (TCTP). Existing models can be classified as heuristic approaches and 
mathematical programming methods (Feng et al. [2]) Considering the objective of models 
these methods may also be categorized as shown in Table 1. The weaknesses of the 
heuristics and mathematical methods are widely documented in the literature (e.g. Zheng et 
al. [3]), but the major deficiency with most of the mathematical models is their inability to 
handle more than one objective. In addition, these methods often employ the hill climbing 
algorithms, which has only one randomly generated solution exposed to some kind of 
variation to create a better solution. 

 

Table 1. Existing models for construction trade-offs classified by their objectives 

Minimize project 
time and/or 

improve resource 
utilization 

Time-cost trade-off 
for nonrepetitive 

construction 

Minimize time 
and/or cost for 

repetitive 
construction 

Minimizing time 
and/or cost while 

maximizing 
quality 

Easa 1989 

Chan et al. 1996 

Hegazy 1999 

Gomar et al. 2002 

Burns et al. 1996 

Feng et al. 1997 

Li and Love 1997 

Maxwell et al. 1998 

Li et al. 1999 

Feng et al. 2000 

Zheng 2004 

Zheng et al 2005 

Elrayes and 
Moselhi 2001 

Hegazy and 
Ersahin 2001 

Hegazy and 
Wassef 2001 

Leu and Hwang 
2001 

Bubu and Suresh 
1996 

Khang an Myint 
1999 

Elrayes and Kandil 
2005 

 

  

There have been extensive studies on time-cost trade-off problem but except two 
mathematical approaches used by Bubu et al. [4] and then by Khang et al. [5] there has been 
no proper approach for such three objective time-cost-quality trade-off problem until 2005 
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when El-Rayes et al. [1] reported their research in this field using multi-objective genetic 
algorithm. In this paper, a new metaheuristic approach is applied for optimization of three 
objective time-cost-quality problem based on multi-colony ant algorithm. Pareto archiving is 
introduced which is very efficient in developing the Pareto front in multi-objective 
problems. 

 
 

2. MULTI-OBJECTIVE ANT COLONY OPTIMIZATION ALGORITHM  
 
In this section a Multi-Objective Ant Colony Optimization (MOACO) algorithm is 
presented. 
 
2.1 Ant Colony Optimization Algorithms 
In recent years, evolutionary and meta-heuristic algorithms have been extensively used as 
search and optimization tools in various problem domains, including science, commerce, 
and engineering. Ease of use, broad applicability, and global perspective may be considered 
as the primary reason for their success. Ant colony optimization algorithms are inspired by 
the fact that ants are able to find the shortest route between their nest and a food source, 
even though they are almost blind (Dorigo et al. [6]). Researchers have reported the 
robustness of ACO and their capacity to efficiently search for and locate an optimum/near 
optimum especially in discrete optimization problems. 

In general, ACO algorithms employ a finite size of artificial ants with defined 
characteristics which collectively search for good quality solutions to the problem under 
consideration. Starting from an initial state, selected according to some case-dependent 
criteria, each ant builds a solution which is similar to a chromosome in a genetic algorithm. 
While building its own solution, each ant collects information on its own performance and 
uses this information to modify the representation of the problem, as seen by the other ants 
(Dorigo et al.[6]). The ant's internal states store information about the ant’s past behavior, 
which can be employed to compute the goodness/value of the generated solution. Artificial 
ants are permitted to release pheromone while developing a solution or after a solution has 
fully been developed, or both. The amount of pheromone deposited is made proportional to 
the goodness of the solution an artificial ant has developed (or is developing). Rapid drift of 
all the ants towards the same part of the search space is avoided by employing the stochastic 
component of the choice decision policy and the pheromone evaporation mechanism. In 
order to simulate the pheromone evaporation, the pheromone persistence coefficient (ρ) is 
defined which enables greater exploration of the search space and minimizes the chance of 
premature convergence to suboptimal solutions. A probabilistic decision policy is also used 
by the ants to direct their search towards the most interesting regions of the search space. 
The level of stochasticity in the policy and the strength of the updates in the pheromone trail 
determine the balance between the exploration of new points in the state space and the 
exploitation of accumulated knowledge(Dorigo et al. [6]). 

Let )(tijτ  be the total pheromone deposited on path ij at time t, and )(tijη  be the heuristic 
value of path ij at time t according to the measure of the objective function. Transition 
probability from node i to node j at time period t may be defined as (Dorigo et al. [7]): 
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Where α and β are parameters that control the relative importance of the pheromone trail 
versus a heuristic value. Let q be a random variable uniformly distributed over [0, 1], and q0 
∈  [0, 1] be a tunable parameter. The next node j that ant k chooses to go is (Dorigo et al. 
[6]): 
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Where J = a random variable selected according to the probability distribution of )(tpij . The 
pheromone trail is changed globally. Upon completion of a tour by all ants in the colony, the 
global trail updating is done as follows: 

 
 ijij

iteration
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Where 0 ≤  ρ ≤  1; ρ = evaporation (i.e., loss) rate, the symbol ⎯⎯ ⎯←iteration is used to show the 
next iteration and ijτ∆ represents the updating value of  
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Where Q is a constant, representing the amount of pheromone an ant put on the path after an 
exploitation, and f(k) is the value of objective in each iteration.  

 
2.2 Multi-objective optimization 
Many problems of the real-life are optimization of more than one objective function at the 
same time. The fact of optimizing several objectives simultaneously has made the problem 
solving more complicated in multi-objective optimization. The existence of many multi-
objective problems in the real-world, their intrinsic complexity and the advantages of 
metaheuristic procedures to deal with them has strongly developed this research area in the 
last few years (Gandiblex et al. [8]; Goldberg [9]). 

Some researchers have designed genetic algorithms to deal with multi-objective 
optimizations in construction such as mentioned time-cost trade-off problems and they have 
adapted genetic algorithms for optimizing construction bi-objective time and cost, but there 
has been little or no reported application of ACO to multi-objective construction problems.  
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2.3 Pareto front 
As mentioned, the goal of multi-objective optimization problems is to find the best 
compromise between multiple and conflicting objectives. Considering all objectives in these 
problems there will be more than one solution that optimizes simultaneously all the 
objectives and there is no distinct superiority between these solutions. Usually there is not a 
single best solution being better than the remainder with respect to every objective. 
Therefore we face with a set of solutions which are better than remainder solutions called 
Pareto front. Among the feasible solutions, solutions belonging to Pareto front are known as 
nondominated solutions, while the remainder solutions are known as dominated. Since none 
of the Pareto set solutions is absolutely better than the other nondominated solutions, all of 
them are equally acceptable as regards the satisfaction of all the objectives.  

 
 

3. DESCRIPTION OF THE PROBLEM AND FORMULATION 
 

In the present problem each activity has some options for resource utilization and the goal is 
finding the optimal/near optimal ways of project completion in the search space of whole 
possible combinations of these resource utilization options to activities. In order to apply ACO 
algorithm to a specific problem, the problem should be represented as graph or similar 
structure easily covered by ants, as shown in Figure 1. In which a project with N activities and 
K resource utilization options is characterized. The horizontal axis represents the activity 
number and the vertical axis the resource utilization numbers. The path of arrows represents a 
typical solution which may be selected by ants (see Figure 1). For more illustration and future 
reference a vector is defined for each possible solution that demonstrates the options of 
resource utilization for all of the activities respectively. For example mentioned vector for the 
route identified in Figure 1 will be V= [2, 3, 1, k, k, …, 3]. 

 

 

Figure 1. Graph representation of problem for a project with N activities and K resource 
utilization options 
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The problem mainly concentrates on selecting appropriate options for every activity to 

obtain the objective of time, cost and quality of a project. The objective of time may be 
expresses as 
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Where )(k

it represents the duration of activity i when performing the kth option; and 
)(k

ix stands for the index variable of activity i when performing the kth option. If =)(k
ix 1 

then the activity i perform the kth option, while =)(k
ix  0 means not. The sum of index 

variables of all options should be equal to 1. kL means the activity sequence on the kth path, 
and }{ kkkk iniiL ,...,2,1=  where ijk represents the sequence number of activity j on the kth 
path. L  stands for the set of all paths of a network, and }{ mkLL k ,...,2,1== , where m 
symbolizes the number of all paths of a network. In other words, for each combination of 
selected options for activities, mentioned equation will calculate sum of the activity 
durations on the critical path of the project’s network. 

The total cost of a project consists of two parts: direct cost and indirect cost. Direct cost 
is determined as sum of the direct cost of all activities within a project network. On the other 
hand, indirect cost is composed of the expenditure on management during project 
implementation, which depends heavily upon the project duration, i.e. the longer the 
duration, the higher the indirect cost.  

In a real construction project, it is feasible to evaluate indirect cost per time unit to 
calculating the total cost. Subsequently, Eq. (2) can be forwarded to compute the total cost 
of a project:  
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Where )(k

idc  direct cost of activity i under the kth option, which equals to the quantities of 

the activity multiplied by its price; =)(k
iic indirect cost per time unit of activity under the kth 

option, which can be generated by experts through estimation or derived from division of the 
indirect cost of budget report according to contractual duration; and A = set of activities in a 
network.  

Quantifying the construction quality as a function of different resource utilizations is a 
challenging work because of difficulty in measuring the impact of these strategies of 
performing activities on the quality of activities. Moreover, it is a complicated work to 
evaluate the proportion of the individual activities quality performance on total quality level 
of the project. Some indicators have been investigated and identified in recent studies that 
were aimed at developing quality-based contractor prequalification systems (Anderson and 
Russell [10]; Minchin and Smith [11]). The identified quality indicators were derived from 
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performance based models that correlate the long-term performance of the end product of 
each activity to its quality indicators. The objective of quality may be evaluated with 
following function: 
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Where =k

liQ , performance of quality indicator (l) in activity (i) using resource utilization (k); 

=liwt , weight of quality indicator (l) compared to other activities in the project (El-Rayes 
[1]). Aggregation of the estimated quality for all the considered activities to provide an 
overall quality at the project level is done by Eq. (3). 

 
 
4. PROPOSED MULTI COLONY ANT ALGORITHM FOR TIME-COST-

QUALITY TRADE-OFF 
 

In the proposed Non-dominated Archiving ACO (NA-ACO) algorithm, for each objective a 
colony of agents is assigned. All the colonies have the same number of ants. All the ants in 
one colony try to find a solution at the same time according to the assigned objective. 
Solutions found for one objective in one cycle are not evaluated in the corresponding 
colony. The produced solutions are transferred to the next colony to be evaluated according 
to the assigned objective and the global trail of that colony is updated. The new solutions 
found based on the new pheromone trail in the second colony are transferred to the third 
colony. This process (finding set of solutions in each colony and having the following 
colony to use these produced solutions for updating) continues up to a predefined iteration 
called cycle iteration. In this step, the values of the objectives are calculated according to the 
generated solutions of third colony and the nondominated ones are moved to the external set 
called Archive. After the completion of a cycle, the global pheromone trails of all colonies 
are set to the initial value of 0τ . In the next step, the second cycle is started and at the end of 
the cycle, derived nondominated solutions are moved to the same Archive. The dominated 
solutions of Archive are moved out and another pheromone updating is done for all colonies 
according to the existing solutions in archive. The whole process is repeated until all the 
nondominated solutions (Pareto set) of archive satisfying all the constraints or a 
predetermined number of iterations is met. The solutions of Archive are the final Pareto 
answers of the multiobjective optimization problem. To achieve better distributed Pareto 
solutions, in each step, all the produced solutions are evaluated according to the all three 
objectives and the nondominated ones are moved to the archive. If there is any solution 
which is dominated with newly arrived solutions, they will move out. 

 
 

5. CASE STUDY 
 

In order to illustrate the concept and performance of the proposed algorithm, a test project 
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with detailed information as shown in Table 2 is used as a case study. The example was 
originally introduced by Feng et al. [12] and then the same used by Zheng et al. [13] for 
stochastic construction time-cost trade-off analysis. Table 2 includes the related data on 
different resource utilizations and their corresponding time, cost and quality. The project has 
an indirect cost equal to $500/day. Originally the example did not contain the information 
about quality level of resource utilization options. Herein they are presented based on the 
quality indicators and mentioned procedures. Results reported by Zheng [13] for multi-
objective modified adaptive weighting approach (MAWA) is used by means of validation 
the results provided by the current approach. 

The proposed Multi-Colony Ant Algorithm was fed with the project data as shown in 
Table 2. The number of ants in each colony, number of cycle iteration and number of total 
iteration are set to 50, 20 and 60, respectively. Other parameters of algorithm are set 
to 0,2,97.0 === βαρ and the Q parameter for the colonies of time, cost and quality is 
equal to 10, 10000, 0.0005. 

 

Table 2. Detalied data of the example 

Activity Preceding 
activity 

Resource 
options 

Duration
(days) 

Cost 
(dollars) 

Activity 
weight (%) 

Quality 
(%) 

1  1 14 23,000 8 98 
  2 20 18,000  89 
  3 24 12,000  84 

2 1 1 15 3,000 6 99 
  2 18 2,400  95 
  3 20 1,800  85 
  4 30 1,200  70 
  5 60 600  59 

3 1 1 15 4,500 14 98 
  2 22 4,000  81 
  3 33 3,200  63 

4 1 1 12 45,000 19 94 
  2 16 35,000  76 
  3 20 30,000  64 

5 2,3 1 22 20,000 17 99 
  2 24 17,500  89 
  3 28 15,000  72 
  4 30 10,000  61 

6 4 1 14 40,000 19 100 
  2 18 32,000  79 
  3 24 18,000  68 

7 5,6 1 9 30,000 17 93 
  2 15 24,000  71 
  3 18 22,000  67 
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Running the model using mentioned data resulted in selection of 103 nondominated 
solutions (Pareto optimal). Each solution contains a specific optimum way of project 
delivery. The set of solutions provides an optimal trade-off between time, cost and quality. 
Accordingly, sample of selected solutions are shown in Table 3. 

 

Table 3. Sample of 15 pareto optimal solutions from 103 selected nondominated solutions 

Resource options for activities 
Solution Time 

(days) 
Cost 
($) 

Quality 
(%) 

1 2 3 4 5 6 7 

1 60 155,500 92 1 1 1 2 1 1 1 

2 61 142,500 86 1 1 1 3 1 2 1 

3 62 163,000 95 1 1 1 1 2 1 1 

4 63 131,000 84 1 1 1 2 2 3 1 

5 65 162,400 95 1 2 1 1 2 1 1 

6 66 128,500 82 1 1 1 2 3 3 1 

7 67 127,300 83 1 3 1 3 1 3 1 

8 68 118,500 77 1 1 1 3 4 3 1 

9 71 117,900 77 1 2 1 3 4 3 1 

10 74 112,500 73 1 1 1 3 4 3 2 

11 78 107,500 76 3 1 1 3 4 3 1 

12 87 150,200 93 3 4 1 1 2 1 1 

13 92 98,300 70 3 3 1 3 4 3 3 

14 126 104,600 73 3 5 1 3 2 3 3 

15 132 95,800 63 3 5 3 3 4 3 3 

 
Results of the present approach for time-cost trade-off problem are compared to those 

reported by Zheng et al. [13]. The number of ants in each colony, number of cycle iteration 
and number of total iteration are set to 20, 10 and 30, respectively. Algorithm’s parameters 
for time-cost trade-off problem are set to 0,2,97.0 === βαρ  and the Q parameter for 
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the colonies of time, cost and quality is equal to 10, 10000, 0.0005. Running the model using 
mentioned parameters and detail data of the example led to the selection of 12 nondominated 
solutions. These data in addition to the reported results of Zheng [13] are shown 
comparatively in Table 4. 

 

Table 4. Comparison of the results generated by MAWA model (Zheng, 2005) with the proposed 
MOACO model 

50-MAWA* 100-MAWA* 30-MOACO 
Solution Time 

(days) 
Cost 
($) 

Time 
(days) 

Cost 
($) 

Time 
(days) Cost ($) 

1 61 173,000 61 173,000 61 173,000 

2 63 164,000 62 172,000 62 171,000 

3 67 157,000 63 162,500 63 162,500 

4 68 152,500 66 161,500 66 161,500 

5 74 150,500 67 157,000 67 157,000 

6 77 150,400 68 152,500 68 152,500 

7 78 146,500 74 149,500 74 149,500 

8 90 143,900 77 149,000 77 149,000 

9   78 146,500 78 146,500 

10   84 143,500 84 143,500 

11   87 143,000 87 143,000 

12     60 173,500 

*This model is based on adaptive weighting method and genetic algorithm with 50 population size  
and 50,100 generations respectively. 

 
This comparison not only confirms the present model’s capability in generating the set of 

nondominated solutions but also yields one more nondominated solution as well as 
dominating one of the 100-MAWA solutions with only 30 total iterations. 

 
 

6. CONCLUSIONS 
 

A Multi-Objective Ant Colony Optimization is developed to analyze the advanced time-
cost-quality trade-off problem. The model is capable of compromising between important 
aspect of construction projects meaning that minimizing time and cost of projects while 
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maximizing its quality. The efficiency of the proposed algorithm is verified by an example 
which confirms the capability of model in considering quality and generating Pareto 
optimal. Moreover, the model was used to optimize time-cost trade-off for the same example 
and compared to the results of the example modeled by MAWA approach (Zheng [13]) 
which validated the capabilities of the present model. The present algorithm provides an 
attractive alternative for the solution of the construction multi-objective optimization 
problems. 
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NOTATION 
 

The following symbols are used in this paper: 
=T  Total duration of project; 
=)(k

it  The duration of activity i when performing the kth option; 

=)(k
ix  The index variable of activity i when performing the kth option; 
=kL  The activity sequence in the kth path; 
=L  The set of all paths of a network; 

m = Number of all paths of a network; 
C = Total cost of project; 

=)(k
idc  Direct cost of activity i under the kth option; 

=)(k
iic  Indirect cost per time unit of activity under the kth option; 

A = Set of activities in a network; 
=TQ  Total Quality performance of project; 
=k

liQ ,  Performance of quality indicator (l) in activity (i) under the kth option; 

=liwt ,  Weight of quality indicator (l) compared to other activities in the project; 

=)(tpij  Transition probability from node i to node j; 

=)(tijτ  The heuristic value of path ij at time t according to the measure of the objective 
function; 

=)(tijη  The heuristic value of path ij at time t according to the measure of the objective 
function; 

=βα ,  Parameters thet control the relative importance of the pheromone trail versus a 
heuristic value; 
q= Random variable uniformly distributed over[0 ,1], and q0 ∈[0 , 1] be a tunable 
parametr; 
j = The node which will be chosen by ant k; 
l =  The allowed paths for ant k; 
J= Random variable selected according to the probability distribution of )(tpij ; 
=ρ  Evaporation rate; 
=∆ ijτ  The updating value of edge (i,j); 

Q = Constant representing the amount of pheromone an ant put on the path after an 
exploration; 
f(k)= The value of objective in each iteration; 

=0τ  Initial value of pheromone trails of all three colonies. 


