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Abstract 
 

An efficient algorithm is presented for the formation of statical basis, corresponding to 
highly sparse flexibility matrices for structures. This is achieved by applying a modified ant 
colony optimization algorithm for the formation of localized self-equilibrating systems. The 
efficiency of the present algorithm is illustrated through simple truss examples. 
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1. Introduction 

 
The force method of structural analysis, in which the member forces are used as unknowns, 
is appealing to engineers, since the properties of members of a structure most often depend 
on the member forces rather than joint displacements.  

Four different approaches are adopted for the force method of structural analysis, which 
are classified as: 

 
1. Topological force methods,  
2. Algebraic force methods,  
3. Mixed algebraic-topological force methods,  
4. Integrated force method. 
 
Topological methods have been developed by Henderson [1] and Henderson and 

Maunder [2] for rigid-jointed skeletal structures. Development of general combinatorial 
approaches and methods suitable for computer programming are due to Kaveh [3-4]. 
Algebraic methods have been developed by Denke [5], Robinson [6], Top⎜u [7], Kaneko et 
al. [8], and mixed algebraic-topological methods have been used by Gilbert et al. [9], 
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Coleman and Pothen [10-11]. The integrated force method has been developed by Patnaik 
[12-13], in which the equilibrium equations and compatibility conditions are satisfied 
simultaneously in terms of the force variables. 

The force method of structural analysis requires the formation of a maximal set of 
independent self-equilibrating stress systems (S.E.Ss), known as a statical basis [14-15]. The 
elements of this basis form the columns of an ( )Sm γ×  matrix, B1, known as S.E.Ss-member 
incidence matrix referred to as self-stress matrix in this paper. 

The main difficulty in the application of the force method is the formation of a self-stress 
matrix B1 corresponding to a sparse flexibility matrix 11 BFBG m

t= , where mF  contains the 
flexibility matrices of the individual members of the structure in a block diagonal form. 

In this paper, the ant colony system (ACS) which is a variation of the ant colony 
optimization (ACO) is applied to overcome this problem.  

Heuristic algorithms, such as ant colony algorithms, have found many applications in 
optimization problems in the last decade. The power of these algorithms lies in their 
capability to converge to a good solution which does not depend on the specific search space 
to which they are applied. In this work, ant colony system is employed for the formation of 
sparse self-stress matrices. Though the method is quite general, however, for simplicity only 
pin-jointed truss structures are used as illustrative examples. 

 
 

2. Formulation of the Force Method 
 

Consider a structure S with M members and N nodes, which is ( )Sγ  times statically 
indeterminate. Select ( )Sγ  independent unknown forces as redundant. These unknown 
forces which can be selected from external reactions and or internal forces of the structure 
are denoted by 

 
( ){ }Sq,...,q,qq γ= 21                                                          (1) 

 
In order to obtain a statically determinate structure, known as the basic (released or 

primary) structure of S, the constraints corresponding to redundant forces are removed. 
Consider the joints loads as 

 
{ }npppp ,...,, 21=                                                          (2) 

 
where n is the number of the entries of the applied load vector. 

The stress resultant distribution r due to the given load p for a linear analysis by the 
force method can be written as 

 
qBpBr 10 +=                                                                (3) 

 
where B0 and B1 are rectangular matrices each having m rows and n and ( )Sγ  columns, 
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respectively. Here, m is the number of independent components for member forces. 
Since the overall flexibility matrix G of a structure is equal to 11 BFB m

t , for the sparsity 
of G one can select a statical basis corresponding to sparse self-stress matrix B1. 

The main objective of this paper is to find statical bases to ensure the formation of well-
conditioned flexibility matrices. For a discrete or discretized structure S, which is assumed 
to be statically indeterminate, let r denote the m-dimensional vector of generalized 
independent element forces and p be the n-vector of the nodal loads. The equilibrium 
conditions of the structure can then be expressed as pAr = , where A is an mn ×  
equilibrium matrix. 

For the formation of a S.E.S. no applied load is required, thus the above equilibrium 
conditions can be expressed as 

 
01 =AB                                                                   (4) 

 
This equation shows the linear dependence of the columns of the matrix A, which is an 
mn×  matrix with rank n. There are tnm =−  independent columns of B1 which satisfy Eq. 

(4), thus forming a set of S.E.Ss. 
There are many sets of S.E.Ss (statical bases) which satisfy Eq. (4). However, the main 

problem is to find a set corresponding to highly sparse B1 matrix. 
Let us denote the columns of matrix B1 by Si as 
 

],...,,...,,[ 211 tg SSSSB =                                                       (5) 
 
Suppose the first S.E.S. S1 is found, then it can be normalized by the following equation 
 

111 =Set                                                                    (6) 
 
where { }0 ... 0 ... 0  11 =e  is an 1×m  vector with 1 as first entry. The second column S2 can be 
normalized and must be independent of S1. These conditions are expressed as 

 
021 =Set                                                                  7(a) 

122 =Set                                                                  7(b) 
 
where { } 0 ... 0 ... 0 1 02 =e  is an 1×m  vector with 1 in the second position. Similar conditions 
can be written analogously for the remaining S.E.Ss. 
 
 

3. The Mathematical Model for Optimization 
 

In this section, first the mathematical programming is employed for selecting the column S2 
and then extended for the formation of the complete set of the S.E.Ss S1, S2,…,Sγ(S). 
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The first S.E.S. S1 is arbitrary and therefore should be chosen as simple as possible. Then 
the second S.E.S. S2 is selected satisfying the following conditions: 

 
02 =AS                                                                     8(a) 

021 =Set                                                                    8(b) 

122 =Set                                                                    8(c) 
 
The above relationships can be expressed as 
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where }10{2 =e . S2 should be find such that 2SZ =  becomes minimized. Here, 2S  
denotes the cardinality of S2 and it is equals to the number of non-zero entries of S2.  

This can now be generalized for the gth S.E.S. Sg, after all the previous S.E.Ss up to g−1 
are obtained. This can be stated as follows: 

Minimize the objective function of the form gSZ =  satisfying 
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where ...1} 0 ... 0 0{=ge  is a 1×g  vector, with 1 in the gth position. 

 
Therefore, by performing a series of operations similar to Eq. (10), t S.E.Ss forming a 

statical basis ],...,,...,,[ 211 tg SSSSB =  will be formed. It should be noted that for the last 
S.E.S., i.e. the tth system )nmt( −= , there is no choice. This is because the number of 
equations is equal to the number of variables, i.e. there are n original equations in the mn×  
matrix A, and tnm =−  orthogonalising equations, thus forming mtn =+  equations (with 
the number of variables being equal to m), leads to a unique solution for the last S.E.S.. 

The numbering of the members in the structureis important of and can be recognized by 
considering the additional equations used in the normalizing and orthogonalising. Here, the 
ant colony system is applied to choose the ordering of the members such that the resulting 
S.E.Ss correspond to highly sparse B1 matrices. 
 
 

4. Optimization by Ant Colony Systems 
 
A meta-heuristic algorithm based on the ants behavior was developed in early 1990s by 
Dorigo [16] and developed by other researchers, e.g. Dorigo and Gambardella [17]. This 
algorithm is called ant colony optimization (ACO) because it was motivated by ants social 
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behavior. Ant colony system (ACS) is a variation of the ACO which has proven to behave 
more robustly and provide far better results for some optimization problems. In this work, 
ACS is chosen as a suitable tool for finding sparse statical bases. A brief description of ACO 
is given in the next section, when describing the process of adapting ACS to the problem of 
finding sparse statical basis. 

The building blocks of these algorithms are cooperative agents called ants. These agents 
have simple capabilities, which make their behavior similar to real ants. Real ants are 
capable of finding the shortest path from food source to their nest or vice versa, by smelling 
pheromones which are chemical substances they leave on the ground while walking. Each 
ant probabilistically prefers to follow a direction rich in pheromone. Since pheromones do 
evaporate and loose strength over time, the final result is that more ants tend to pass over the 
shortest path and this path is visited more often as the amount of pheromone being laid 
increases. As an illustrative example, consider the sketch shown in Figure 1. First random 
decision when moving towards the food is shown in Figure 1(a), the second group returning 
to the nest is illustrated in Figure 1(b) and the number of dashed lines in Figure 1(c) is 
approximately proportional to the amount of pheromone deposited by ants. 

 

 
Figure 1. Ant technique to find optimum solution; (a) First random decision when moving 

towards the food  (b) Second group returning to the nest  (c) The amount of pheromone 
deposited 

 
 

5. ACS for the Formation of Sparse Statical Basis 
 

According to the proposed mathematical modeling, the pattern of numbering affects the 
results of selected S.E.Ss. This can be found out by considering the additional equations 
which are used in the process of normalization and orthogonalization. Taking 111 =Set , it is 
required to have a force equal to unity in the first element for S1. This element is called the 
Generator of S1. And according to 021 =Set  and 122 =Set , the first element in S2, which is 
the generator of S1, is zero, while the second element is one. This second element is known 
as the generator for the second column in the second S.E.S. S2. Therefore, for the gth S.E.S. 
Sg, the forces in the previous generators are zero while in its generator position it is equal to 
one. 
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As an example, consider a pin-jointed truss shown in Figure 2. This truss has 29 
members and 12 nodes, therefore its degree of static indeterminacy (DSI) is 
( ) 8312229 =+×−=γ S . 

 

 
Figure 2. A pin-jointed truss with 29 members and 12 nodes 

 
First, the generators are chosen based on members numbering as 

( )87654321 →→→→→→→ . For this selection, six S.E.Ss of the type presented in 
Figure. 3 are obtained and the two last S.E.Ss are illustrated in Figure. 4. 

 

 
Figure 3. The first six S.E.Ss based on ( )654321 →→→→→  as generators 
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Figure 4. The last two S.E.Ss based on ( )87654321 →→→→→→→  as generators 

 
In order to show the effect of different set of members as generators, another sequence of 

members is chosen in the second attempt as ( )1211654321 →→→→→→→ . The 
reason for doing this change is to get better results for the 7th and 8th S.E.Ss, while the first 
six S.E.Ss are identical to the previous set of member numbering (Figure. 3). The new 
results for the 7th and 8th S.E.Ss are shown in Figure. 5. Obviously, this system is sparser 
than the previous statical basis, resulting in a sparser flexibility matrix. 
 

 
Figure 5. The new result for the last two S.E.Ss based on  
( )1211654321 →→→→→→→  as generators 

 
Selection of a different set of generators as well as using a different order of members in 

this sequence can alter the results. In the previous set of generators, if the position of the 
member 2 is exchanged by the position of member 11, i.e. if the sequence 
( )1226543111 →→→→→→→  is used, then the 7th and 8th S.E.Ss will be as those 
illustrated in Figure 6, which is unsatisfactory. 

Therefore, each sequence of members as generators can be considered as a tour for an 
ant travel, and the best ant search for generators is the one which leads to sparser statical 
basis. The ant colony system which is applied to find the optimum solution is explained in 
the following section. 
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Figure 6. The new result for the last two S.E.Ss based on  

( )2126543111 →→→→→→→  as generators 
 
 

6. ACS Algorithm for the Formation of Sparse Statical Basis 
 
In order to apply the ACO algorithm to a specific problem, it is necessary to represent it as a 
set of different paths for ants to travel. In the problem of finding sparse statical basis, 
different sequence of members as generators is supposed as a tour for an ant to travel, 
therefore the cooperative ant agents search to find the best set of generators resulting in 
sparse statical basis. 

Since both the member numbering, and its order in the generator sequence are important, 
thus the pheromone amount is specified by two parameters ( )ijτ , where the i factor is as 
generator order in the set of generators and the j factor shows member number. As an 
example, 25τ  shows the amount of pheromone for selection of member number 5 as the 
second generator in the generators set. 

First m artificial ants are initially positioned on m members as primary generators, and 
then ACS algorithm is applied as follows: 

An ant k chooses the rth generator by applying the rule of the following equation: 
 

( )
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Where q is a random number uniformly distributed in [0..1], q0 is a parameter 10 0 ≤≤ q , and 
J is a random variable selected according to the probability distribution given in the 
following equation. 
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( )rLk  is the set of members that remain to be chosen by ant k as the rth generator and rsτ  
is the amount of pheromone deposited on the member number s as a candidate for the rth 
generator. It is assumed that there is an equal amount of pheromone 0τ , deposited initially 
on each member. rsη  is the corresponding heuristic value which remains constant 
throughout iterations and unlike pheromone amount this is not modified. Moreover, β  is a 
parameter for controlling the relative importance between τ  and η . 

After an ant chooses a member as a generator, the local updating rule on that chosen 
member is performed in order to shuffle the solution and prevent focusing on a specific 
solution. The local updating rule modifies the amount of member pheromone by 

 
( ) 01 τξτξτ ⋅+⋅−← rsrs                                                   (13) 

 
where 10 << ξ  is a parameter adjusting the pheromone previously deposited on rsτ . 

Once all the ants complete their own tour, the pheromone is updated for all the members 
according to the global updating rule. This pheromone updating is intended to allocate a 
greater amount of pheromone to shorter tours. The rule is given by the following equation: 

 
( ) rsrsrs τρτρτ Δ⋅+⋅−← 1                                                   (14) 

 
where 

( ) ( )
⎪⎩

⎪
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⎧ ∈=Δ

−

Otherwise
tourbestglobalsrifDgb

rs 0
,1

τ                                  (15) 

 
gbD  is the sparsity coefficient of the globally best tour (number of nonzero elements in the 

selected statical basis) and 10 << ρ  is the pheromone decay parameter. 
 
 

7. Finding a Lower Bound for Optimal Statical Basis Selection 
 

Heuristic optimization algorithms like ant colony optimization, seek good feasible solutions 
to optimization problems in circumstances where the complexities of the problem or the 
limited time available for solution do not allow exact solution, although these algorithms 
often show the capability of leading to the best optimal solution. 

In this section, an integer programming formulation is presented to evaluate the 
efficiency of the suboptimal solution which is obtained by the proposed ACS algorithm.  

In spite of the previous algebraic relations for controlling the independence of the 
S.E.Ss, in this formulation, the independence control of selected S.E.Ss is performed using a 
graph theoretical approach as follow: 

As before, the columns of the matrix B1 is shown by Si, 
 

],...,,...,,[ 211 γSSSSB g= .                                                    (16) 
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For each column of this matrix, the non-zero entries form a subgraph which corresponds 

to one S.E.S.. The underlying subgraph of a S.E.S. is called a γ-cycle [12] and denoted by 
Ck. 

The sequence of expansions is considered, where in each step one subgraph Ci is 
selected until the entire structure is formed as 

 
( )S

C...CCC
γ

→→→→
321

                                              (17) 
 

Where U
1

1

1 −

=

− =
k

i
i

)k( CC . In this sequence, in the kth step a subgraph kC  is added to )k(C 1−  

and it is called admissible if the following relationship holds: 
 

111 +=∪= −− )C()CC()C( )k(
k

)k(k γγγ                                        (18) 
 
This means that the degree of statically indeterminacy )(γ must only be increased by 

unity in each step of expansion. 
In what follows, the different constants and variables which are applied in the proposed 

integer programming formulation are defined and then the mathematical model is presented. 
Consider a structure S with M members and N nodes, and the corresponding graph model 

G=(V,E) with N nodes (vertices) and M members (edges)  
 

},,,,2,1{
},,,,2,1{

MeE
NvV

 ...  ...  
......

=
=

                                                      (19) 

 
For finding the kth S.E.S., which is added to )k(C 1−  in the expansion process of Eq. (17), 

the two parameters as below are defined: 
 

otherwise  0  and , subgraph in  is    edge if    1 1 )k(
SG Ci)i(M:Vi −=∈∀            20(a) 

otherwise  0  and ,subgraph in  is   vertex if    1 1 )k(
SG Ci)i(N:Ei −=∈∀           20(b) 

 
The two parameters, MSG and NSG, determine the nodes and members that exist in the 

previous selected S.E.Ss and it means the nodes and members which belong to the subgraph 
)k(C 1− . The total number of members in this subgraph is shown by Mt and the total number 

of nodes by Nt .  
The nodes and members which belong to the kth S.E.S., kC , are denoted by Mid and Nid 

parameters as below: 
 

otherwise  0  and , in  is   edge if   1 kid Ci)i(M:Vi =∈∀                        21(a) 
otherwise  0  and , in  is   vertex if     1 kid Ci)i(N:Ei =∈∀                      21(b) 
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The following is an integer linear programming formulation for finding the kth S.E.S. 

with minimum length. This procedure is repeated )1( −γ  times for finding the 2th up to thγ  
S.E.Ss. The first S.E.S. is arbitrary and therefore should be selected as simple as possible. In 
this formulation, )(iDeg  shows the degree of vertex i  and ),( jiAdj  denotes the jth adjacent 
node of vertex i . 
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The equilibrium condition is expressed in the constraint 22(b). By constraint 22(c), If 
)(iS , which shows the force in member i, is non-zero, then its corresponding parameter in 

the subgraph, )(iM id  will be 1. In this formulation, U is an upper bound for the forces in 
structure, which is assumed as a big number. Constraint 22(d) ensures that if a node is in the 
selected S.E.S., then its corresponding parameter in the subgraph, )(iNid  will be 1. The 
independence control is checked by constraint 22(e) and constraint 22(f) showing that each 
S.E.S should be have degree of statical indeterminacy equal to unity. 

Based on this formulation, for a structure with M members and N nodes, there is 
)242( ++ NM  constraints and )2( NM + variables, therefore its computational time that is 

obtained with LINGO solver, is extremely high for large examples. However, the 
corresponding result is only used to evaluate the efficiency of the suboptimal solution which 
is obtained by the proposed ACS algorithm. 
 
 

8. Numerical Results 
 
In this section, four examples are presented to verify the high performance of the proposed 
ACS algorithm, and provide a measure of its efficiency. This algorithm is coded by 
MATLAB, and is run on a personal computer PentiumI 4 CPU 3.40GHz, 1.00 GB of RAM. 
 

Example 1: Consider a truss as shown in Figure 7. This structure has 60 members and 25 
nodes, therefore its degree of static indeterminacy is . 
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Figure 7. A truss with 60 members and 25 nodes 

 
The set of  is chosen 

by the best ant as generators. The resulted sparse S.E.Ss are shown in Figure. 8. In this 
figure, the generator of each system is shown in bold red line. The total number of non-zero 
entries is 136 and the elapsed run time is less than one second. 
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Figure 8. The sparse statical basis selected by ACS 

 
The same S.E.Ss are selected by the proposed integer programming which is solved by 

LINGO. Since the concept of independence control is different, the order of above S.E.Ss is 
changed to 1, 2, 3, 4, 6, 9, 10, 5, 13, 11, 7, 12, 8. 

 
Example 2: Consider a truss with a cut-out at the middle as shown in Figure 9. This 

structure has 40 members and 16 nodes, therefore the corresponding degree of static 
indeterminacy is . 

 
Figure 9. A truss with a cut-out 

 
The set 19290421211173510313 →→→→→→→→→→  is chosen by the 

best ant as generators. The resulted sparse SESs are shown in Figure. 10. In this figure, the 
generator of each system is shown in bold line. The integer programming chooses the same 
statical basis, however, the order of S.E.Ss is as 1, 5, 3, 8, 6, 2, 7, 4, 10, 9, 11. The total 
number of non-zero entries is 90. The forces in the selected SESs are shown in Figure. 11. 
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Figure 10. The sparse statical basis selected by ACS 

 
Figure 11. The forces in the selected S.E.Ss 

 
Example 3: Consider a beam type truss with 10 bays as shown in Figure. 12. This 

structure has 92 members and 33 nodes, therefore its degree of static indeterminacy is equal 
to . 
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Figure 12. A beam type truss with 10 bays 

 
The proposed algorithm selected 20 S.E.Ss with 6 entries and 9 S.E.Ss with 8 entries. 

These two types of S.E.Ss are shown in Figure. 13. For this sparse basis, the total number of 
non-zero entries is 192. 

 
Figure 13. Forces in two types of sparse S.E.Ss for the beam type truss 

 
Example 4: In order to present the elapsed run time of the algorithm, a unit block 

consisting of 4 nodes and 6 members is considered and sample structures are composed of 
equal number of such a unit in x and y directions, as shown in Figure. 14.  

 

 
Figure 14. The geometry of sample structures 

 
Furthermore, the following parameters values are considered in the proposed ACS 

algorithm: 2=β , 1.0=ξ , 1.0=ρ  and 5.00 =q . For this type of structure, the sparse 
statical basis consist of two types, the square shape with diagonal members and the diamond 
shape with diagonal members. These two types of S.E.Ss are shown in Figure 15. 
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Figure 15. The underlying subtrusses of two types of localized S.E.Ss: square shape and 

diamond shape 
 

Figure 16 shows the variation of elapsed run time with versus the number of structure 
nodes, for these samples. 

 

 
Figure 16. The variation of elapsed run time versus the number of nodes 

 
For n=10 (the structure with 121 nodes and 420 members), a statical basis is selected by 

the best ant leading to the formation of a flexibility matrix G with 1733 nonzero entries. The 
pattern of G is shown in Figure 17.  

 

 
Figure 17. The pattern of the sparse flexibility matrix G, 

Obtained by the proposed ACS algorithm 
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9. Conclusions 

 
In this paper, an ant colony system is developed for the formation of sparse statical basis 
leading to sparse self-stress matrices, and correspondingly highly sparse flexibility matrices. 

In the present method, numbering the members of the structure is not important and the 
selected sparse statical bases do not depend on numbering pattern of the structures. An 
integer programming formulation is also presented to evaluate the efficiency of the solutions 
obtained by the proposed ACS algorithm. Though the method of this paper is quite general, 
however, for simplicity only pin-jointed truss structures are used as illustrative examples. 
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