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ABSTRACT 
 

This article presents a heuristic particle swarm ant colony optimization algorithm to solve 
engineering optimization problems. Although PSO has simple principle and ease to be 
implemented and can eventually locate the desired solution, however, its practical use in 
solving engineering optimization problems is severely limited by the high computational 
cost of the slow convergence rate. Here, ant colony and harmony search principles are 
employed to speed up local search and improve precision of the solutions. A modified 
feasible-based mechanism is described which handles the problem-specific constraints. 
Benchmark optimization problems are used to illustrate the reliability of the proposed 
algorithm. 
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1. INTRODUCTION 
 

Many engineering design problems can be formulated as constrained optimization problems. 
Generally, a constrained optimization problem can be described as follows 
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(objective function); min,ix  and max,ix  are the minimum and the maximum permissible 
values for the ith variable, respectively; ng is the number of inequality constraints and nh is 
the number of equality constraints. In a common practice, equality constraint hk ({x}) = 0 
can be replaced by an inequality constraint |hk ({x})|−ε ≤0 where ε  is a small tolerant 
amount. 

Heuristic methods are quite suitable and powerful for obtaining the solution of 
engineering optimization problems. These methods do not require the derivatives of the 
objective function and constraints. Having in common processes of natural evolution, these 
algorithms share many similarities: each maintains a population of solutions which are 
evolved through random alterations and selection. The differences between these procedures 
lie in the representation technique utilized to encode the candidates, the type of alterations 
used to create new solutions, and the mechanism employed for selecting new patterns [1]. 

Particle Swarm Optimization (PSO) is a relatively new heuristic approach utilized for 
engineering optimization problems due to its simple principle and ease of implementation 
[2]. The PSO algorithm is initialized with a population (swarm) of random potential 
solutions (particles). Each particle iteratively moves across the search space and is attracted 
to the position of the best fitness historically achieved by the particle itself (local best) and 
by the best among the neighbors of the particle (global best), [3]. 

Although PSO does eventually locate the desired solution, however, its practical use in 
solving engineering optimization problems is severely limited due to the high computational 
cost of the slow convergence rate [4]. The convergence rate of PSO is also typically slower 
than those of local direct search techniques (e.g., Hooke and Jeeves method [5] and Nelder–
Mead simplex search method), as they do not utilize much local information to determine 
the most promising search direction [6]. In actuality, PSO had difficulties in controlling the 
balance between exploration (global investigation of the search place) and exploitation (the 
fine search around a local optimum), [7]. In order to deal with the slow convergence of PSO, 
various hybrid methods are developed [8-16]. Adding some abilities of one method to the 
PSO algorithm improves the performance of the resulted algorithm. Recently, heuristic 
particle swarm ant colony optimization (HPSACO) [1,17] is proposed by the authors. 
HPSACO utilizes a particle swarm optimization with passive congregation (PSOPC) 
algorithm as a global search, the idea of ant colony approach (ACO) worked as a local 
search and the harmony search (HS) utilized to handle the boundary constraints. 

The most common approach adopted to deal with constrained search spaces is the use of 
penalty functions. Despite the popularity of penalty functions, these require a careful fine 
tuning of the penalty factors that accurately estimates the degree of penalization to be applied 
in order to approach efficiently to the feasible region [18]. Therefore, several other techniques 
have been incorporated to handle the constraints. The feasible-based constrained approach is 
one of the powerful and reliable approaches used by many researchers [19]. In this paper, the 
problem-specific constraints are handled by using a modified feasible-based mechanism. 
HPSACO is utilized for solving engineering problems. The ACO and HS principles are used in 
the HPSACO as a helping factor to guide the exploration and to increase the control of 
exploitation. HPSACO utilizes an efficient terminating criterion considering exactitude of the 
solutions. Simulation results and comparisons based on various constrained engineering design 
problems demonstrate the reliability of the algorithm.  
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2. A BRIEF INTRODUCTION TO THREE META-HEURISTIC 
ALGORITHMS 

 
2.1 Particle swarm optimization 
The pseudo-code of the PSO algorithm can be summarized as follows [3]: 

 
Step 1: Initialization. Initialize an array of particles with random positions and their 
associated velocities. 
Step 2: Local best updating. Evaluate the fitness function of the particles and update local 
best position k

iP  according to the best current value of the fitness function. 
Step 3: Global best updating. Determine the current global minimum fitness value among 
the current positions and update k

gP , the global best position. 
Step 4: Solution construction. Change the velocities and move each particle to the new 
position considering the related velocity. 
Step 5: Terminating criterion controlling. Repeat Steps 2–4 until a terminating criterion is 
satisfied. 
 
2.2 Ant colony optimization 
The general procedure of the ACO algorithm manages the scheduling of four steps [20]: 
 
Step 1: Initialization. Initialize the ACO parameters and the initial positions of the ants. 
Step 2: Solution construction. Each ant constructs a complete solution to the problem 
according to a probabilistic state transition rule. The state transition rule depends mainly on 
the state of the pheromone and visibility of ants.  
Step 3: Pheromone updating rule. When every ant has constructed a solution, the intensity 
of pheromone trails on each edge is updated by the pheromone updating rule.  
Step 4: Terminating criterion controlling. Steps 2 and 3 are iterated until a terminating 
criterion. 
 
2.3 Harmony search algorithm 
The HS optimization procedure consists of the following steps [21]: 
 
Step 1: Initialization. Initialize the optimization operators of HS algorithm includes the 
harmony memory (HM), the harmony memory size (HMS), the harmony memory 
considering rate (HMCR), and the pitch adjusting rate (PAR).  
Step 2: Solution construction. Generate A new harmony vector from the HM, based on 
memory considerations, pitch adjustments, and randomization.  
Step 3: Harmony memory updating. If a new harmony vector is better than the worst 
harmony in the HM, judging in terms of the objective function value, the new harmony is 
included in the HM and the existing worst harmony is excluded from the HM.  
Step 4: Terminating criterion controlling. Repeat steps 2 and 3 until the terminating 
criterion is satisfied. 
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3. A MODIFIED FEASIBLE-BASED MECHANISM 
 

The aim of constraint optimization is to search for feasible solutions with better objective 
values. }{x  is a feasible solution if it satisfies all the problem-specific constraints and the 
limits of the variables. Due to the simplicity, the penalty function method has been 
considered as the most popular technique to handle problem-specific constraints. However, 
since the objective function and the constraint violation are simultaneously considered in the 
penalty function, the performance of this kind of approach is significantly affected by the 
penalty factors while determining the suitable penalty factors is usually difficult. 

In this paper, a modified feasible-based mechanism is used to handle the problem-
specific constraints which can be described as follows: 
 
Level 1: Any feasible solution is preferred to any infeasible solution. 
Level 2: Infeasible solutions containing slight violates of the constraints (from 0.01 in the 
first iteration to 0.001 in the last iteration) are considered as feasible solutions. 
Level 3: Between two feasible solutions, the one having better objective function value is 
preferred. 
Level 4: Between two infeasible solutions, the one having smaller sum of constraint 
violation is preferred. This sum is calculated as 
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By using feasible-based rule in the first and fourth levels, the search tends to the feasible 

region rather than infeasible region, and in the third level the search tends to the feasible 
region with good solutions [9]. For most of the engineering optimization problems, the 
global minimum locates on or close to the boundary of a feasible design space. Applying the 
level 2, the particles can approach to the boundaries and can fly to the global minimum with 
a high probability. 

 
 

4. A HEURISTIC PARTICLE SWARM ANT COLONY OPTIMIZATION 
ALGORITHM 

 
The heuristic particle swarm ant colony optimization (HPSACO), a hybridized approach 
based on HS, PSO and ACO, is described in this section.  
 
4.1 Combining PSO with ACO 
The method based on hybrid PSO and the ACO, is called particle swarm ant colony 
optimization (PSACO), which has been originally introduced by Shelokar et al. [10] for 
solving the continuous unconstrained problems and recently utilized for the design of 
structures by the authors [12,13]. We have applied PSOPC instead of PSO to improve the 
performance of the new method. The relation of standard deviation in ACO stage is different 
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from that of Ref. [10], and the inertia weight is changed in PSOPC stage. 
The implementation of PSACO algorithm consists of two stages [12]. In the first stage, it 

applies PSOPC, while ACO is employed in the second stage. ACO works as a local search. 
Through updating process in the PSOPC stage, each particle moves by adding a change 
velocity 1+k

iV  to the current position k
iX as follows 
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where ω  is an inertia weight to control the influence of the previous velocity; r1, r2 and r3 
are three random numbers uniformly distributed in the range of (0,1); c1 and c2 are two 
acceleration constants; c3 is the passive congregation coefficient. 

The ACO stage handles M ants equal to the number of particles in PSOPC, and each ant 
generates a solution around k

gP  which can be expressed as 
 

 ),( σk
g

k
i PNZ =  (5) 

 
where, k

iZ  is the solution constructed by ant i in the stage k, ),( σk
gPN denotes a random 

number obtained by Gaussian function with mean value k
gP  and variance σ , where 

 
 ησ ×−= )( minmax xx  (6) 
 
η  is the step size. The ACO stage of the algorithm is based on a continuous ant colony 
optimization (ACOR) which was introduced by Socha and Dorigo [22]. They have 
considered a weighted sum of several one-dimensional Gaussian functions. Here, since ACO 
works as an auxiliary tool to guide the exploration and to increase the control in 
exploitation, we utilize a simple Gaussian functions. The Gaussian functions with mean k

gP  
can be considered as a continuous pheromone. In ACO algorithms, the probability of 
selecting a path with more pheromone is greater than other paths. Similarly, in the Gaussian 
functions, the probability of selecting a solution in the neighborhood of k

gP  is greater than 
the others.  

Finaly, between k
iZ and k

iX , the best one based on the value of the objective function is 
is selected as the current position of particle i. 
4.2 HS Added to PSACO 
The heuristic particle swarm ant colony optimization algorithm (HPSACO) is resulted from 
combining PSACO and HS [1]. A particle in the search space may violate either the 
problem-specific constraints or the limits of the variables. Here, the harmony search-based 
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approach is employed to deal with this problem. According to this mechanism, any 
component of the solution vector (particle) violating the variable boundaries can be 
regenerated as 
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where jiX ,  is the jth component of the particle i; The HMCR varying between 0 and 1 sets 

the rate of choosing a value in the new vector from the historic values stored in the k
iP , and 

(1−HMCR) sets the rate of randomly choosing one value from the possible range of values. 
The pitch adjusting process is performed only after a value is chosen from k

iP .  
 

4.3 Terminating Criterion 
The necessity for an exact definition of the terminating criterion in heuristic algorithms is 
vital. The following terminating criterion is considered to fulfill this goal. This terminating 
criterion is defined by using a pre-fixed value denoted by A* which is considered as the 
required exactitude of the solutions with a reverse relation [23]. According to this criterion, 
if in an iteration of search process, the absolute value of the component i in all of the 
particles' velocity vectors is less than A*/2, continuation of the search process can not change 
the amount of variable i; then the variable i reaches an optimum value and can be deleted 
from the virtual list of design variables. When this list is emptied, the search process stops. 
With these alterations, the number of iterations decreases [1]. 

 
 

5. OPTIMAL DESIGN OF THE ENGINEERING PROBLEMS 
 

Several well-studied engineering design problems taken from the optimization literature are 
used to show the efficiency of the proposed approach. These examples have been previously 
solved using a variety of other techniques, which is useful to show the validity and 
effectiveness of the proposed algorithm. For each example, 30 independent runs are carried 
out using the HPSACO and compared to other algorithms. 

For the HPSACO algorithm, a population of 50 individuals consisting of 25 particles and 
25 ants are used; the value of constants c1 and c2 are set to 0.8 and the passive congregation 
coefficient c3 is taken as 0.6. The value of inertia weight decreases linearly from 0.9 in the 
first iteration to 0.4 in the last iteration. The amount of step size (η) in ACO stage is 
recommended as 0.01, [12]. HMCR is set to 0.95 and PAR is taken as 0.10, [1]. 
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Figure 1. Tension/compression spring 

 
5.1 A Tension/Compression String Design Problem 
This problem consists of minimizing the weight of a tension/compression spring subject to 
constraints on shear stress, surge frequency and minimum deflection as shown in Figure 1. 

The design variables are the mean coil diameter D (=x1); the wire diameter d (=x2) and 
the number of active coils N (=x3). The problem can be stated as: 
Cost function 
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Variable regions 
 205.0 1 ≤≤ x , 3.125.0 2 ≤≤ x , 152 3 ≤≤ x  (10) 

 
This problem has been solved by Belegundu [24] using eight different mathematical 

optimization techniques (only the best results are shown). Arora [25] also solved this 
problem using a numerical optimization technique called a constraint correction at the 
constant cost. Coello [26] as well as Coello and Montes [27] solved this problem using GA-
based method. Additionally, He and Wang [11] utilized a co-evolutionary particle swarm 
optimization (CPSO). Recently, Montes and Coello [28] and Kaveh and Talatahari [29] used 
evolution strategies and an improved ant colony optimization to solve this problem, 
respectively. Table 1 presents the best solution of this problem obtained using the HPSACO 
algorithm and compares the HPSACO results with solutions reported by other researchers. 
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Table 2 shows the statistical simulation results. From Table 1, it can be seen that the best 
feasible solution obtained by HPSACO is better than those previously reported.

  
 

Table 1. Optimum results for the tension/compression spring design 

 Optimal design variables  

fcost x3(N) x2(D) x1(d) Methods 

0.0128334 14.250000 0.315900 0.050000 Belegundu [24] 

0.0127303 9.185400 0.399180 0.053396 Arora [25] 

0.0127048 11.632201 0.3516610.051480 Coello [26] 

0.0126810 10.8905220.363965 0.051989 Coello & Montes [27] 

0.0126747 11.2445430.357644 0.051728 He & Wang [11] 

0.012698 11.3979260.355360 0.051643 Montes & Coello [28] 

0.0126432 11.000000 0.361500 0.051865 Kaveh & Talatahari [29] 

0.0126391 11.609791 0.351062 0.051432 Present work 

 

Table 2. Statistical results of different methods for the tension/compression spring 

Std Dev Worst Mean Best Methods 

N/A N/A N/A 0.0128334 Belegundu [24] 

N/A N/A N/A 0.0127303 Arora [25] 

3.9390e-5 0.012822 0.0127690.0127048Coello [26] 

5.9000e-5 0.0129730.0127420 0.0126810 Coello & Montes [27] 

5.1985e-5 0.0129240.012730 0.0126747 He & Wang [11] 

9.6600e-4 0.16485 0.013461 0.012698 Montes & Coello [28] 

3.4888e-5 0.012884 0.012720 0.0126432 Kaveh & Talatahari [29] 

2.1825e-5 0.0127370.012657 0.0126391Present work 
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5.2 Welded Beam Design Problem 
The objective is to find the minimum fabricating cost of the welded beam subjected to 
constraints on shear stress (τ), bending stress (σ), buckling load (PC), end deflection )(δ , 
and side constraint. There are four design variables, namely )( 1xh = , )( 2xl = , )( 3xt =  and 

)( 4xb = , as shown in Figure 2. 
The mathematical formulation of the cost function })({cost xf , which is the total 

fabricating cost mainly comprised of the set-up, welding labor, and material costs, is as 
follows: 

 

Figure 2. Welded beam structure 

Cost function: 
 )0.14(04811.010471.1})({ 2432

2
1cost xxxxxxf ++=  (11) 

 
Constraint functions 
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Variable regions 

 
 2,1.0 41 ≤≤ xx , 10,1.0 32 ≤≤ xx  (13) 

 
The welded beam structure is a practical design problem that has been often used as a 

benchmark problem for testing different optimization methods. Deb [30], Coello [26] and 
Coello and Montes [27] solved this problem using GA-based methods. Radgsdell and 
Phillips [31] compared optimal results of different optimization methods that were 
mainly based on mathematical optimization algorithms. These methods, are APPROX 
(Griffith and Stewart’s successive linear approximation), DAVID (Davidon–Fletcher–
Powell with a penalty function), SIMPLEX (Simplex method with a penalty function), 
and RANDOM (Richardson’s random method) algorithms. Also, He and Wang [11] 
using CPSO, Montes and Coello [28] employing evolution strategies and the Kaveh and 
Talatahari [29] using the ACO solved this problem. The comparison of results, are 
shown in Table 3. The statistical simulation results are summarized in Table 4. From 
Table 4, it can be seen that, the standard deviation of the results by HPSACO in 30 
independent runs is very small. 
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Table 3. Optimum results for the welded beam design 

 Optimal design variables 

fcost x4(b)  x3(t) x2(l) x1(h) 
Methods 

     Regsdell & Phillips [31] 

2.3815 0.2444 8.2915 6.2189 0.2444 APPROX 

2.3841 0.2444 8.2915 6.2552 0.2434 DAVID 

2.5307 0.2796 7.7512 5.6256 0.2792 SIMPLEX 

4.1185 0.6600 5.0853 4.7313 0.4575 RANDOM 

2.433116 0.253300 8.178900 6.173000 0.248900 Deb [30] 

1.748309 0.210000 8.997500 3.420500 0.208800 Coello [26] 

1.7282260.206480 9.020224 3.471328 0.205986 Coello & Montes [27] 

1.728024 0.205723 9.048210 3.544214 0.202369 He & Wang [11] 

1.737300 0.206082 9.0375003.612060 0.199742 Montes & Coello [28] 

1.724918 0.205731 9.036683 3.471131 0.205700 Kaveh & Talatahari [29] 
1.724849 0.205765 9.036805 3.469875 0.205729 Present work 

 

Table 4. Statistical results of different methods for the welded beam design 

Std Dev Worst Mean Best Methods 

N/A N/A N/A 2.3815 Regsdell & Phillips [31] 

N/A N/A N/A 2.433116 Deb [30] 

0.011220 1.785835 1.771973 1.748309 Coello [26] 

0.074713 1.993408 1.792654 1.728226 Coello & Montes [27] 

0.012926 1.782143 1.748831 1.728024 He & Wang [11] 

0.070500 1.994651 1.813290 1.737300 Montes & Coello [28] 

0.009200 1.775961 1.729752 1.724918 Kaveh & Talatahari [29] 

0.008254 1.759522 1.727564 1.724849 Present work 
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Figure 3. Schematic of pressure vessel 

 
5.3 A Pressure Vessel Design Problem 
A cylindrical vessel is capped at both ends by hemispherical heads as shown in Figure 3. 
The objective is to minimize the total cost, including the cost of material, forming and 
welding, Kannan and Karmer [33]: 
 
 3

2
14

2
1

2
32431cost 84.191661.37781.16224.0})({ xxxxxxxxxxf +++=  (14) 

 
where 1x  is the thickness of the shell (Ts), x2 is the thickness of the head (Th), x3 is the inner 
radius (R) and x4 is the length of cylindrical section of the vessel, not including the head (L). 
Ts and Th are integer multiples of 0.0625 inch, the available thickness of rolled steel plates, 
and R and L are continuous.  

The constraint functions can be stated as follows 
 

00193.0})({ 311 ≤+−= xxxg   

000954.0})({ 322 ≤+−= xxxg   

0000,296,1
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34
2
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Variable regions 
 

99,0 21 ≤≤ xx ,  200,10 43 ≤≤ xx  (16)

 
The approaches applied to this problem include a branch and bound technique [32], an 

augmented Lagrangian multiplier approach [33], genetic adaptive search [34], a GA-based 
co-evolution model [26], a feasibility-based tournament selection scheme [27], a co-
evolutionary particle swarm optimization [11], an evolution strategy [28] and an improved 
ant colony optimization [29]. The best solutions obtained by the above mentioned 
approaches are listed in Table 5, and their statistical simulation results are shown in Table 6. 
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Table 5. Optimum results for the pressure vessel 

 Optimal design variables  

fcost x4(L)  x3(R) x2(Th) x1(TS) Methods 

8129.1036 117.70100 47.7000000.625000 1.125000 Sandgren [32] 

7198.0428 43.690000 58.2910000.625000 1.125000 Kannan & Kramer [33] 

6410.3811 112.67900 48.3290000.500000 0.937500 Deb & Gene [34] 

6288.7445 200.00000 40.3239000.437500 0.812500 Coello [26] 

6059.9463 176.65405 42.0973980.437500 0.812500 Coello & Montes [27] 

6061.0777 176.74650 42.0912660.437500 0.812500 He & Wang [11] 

6059.7456 176.64051 42.0980870.437500 0.812500 Montes & Coello [28] 

6059.7258176.63775 42.0983530.437500 0.812500 Kaveh & Talatahari [29] 

6059.0925176.57322 42.1035660.437500 0.812500 Present work 

 

Table 6. Statistical results of different methods for the pressure vessel 

Std Dev Worst Mean Best Methods 

N/A N/A N/A 8129.1036 Sandgren [32] 

N/A N/A N/A 7198.0428 Kannan & Kramer [33] 

N/A N/A N/A 6410.3811 Deb & Gene [34] 
7.4133 6308.1497 6293.8432 6288.7445 Coello [26] 

130.9297 6469.3220 6177.2533 6059.9463 Coello & Montes [27] 

86.4545 6363.8041 6147.1332 6061.0777 He & Wang [11] 

426.0000 7332.8798 6850.0049 6059.7456 Montes & Coello [28] 
67.2418 6150.1289 6081.7812 6059.7258 Kaveh & Talatahari [29] 
41.6825 6135.3336 6075.2567 6059.0925 Present work 

 
From Table 5, it can be seen that the best solution found by HPSACO is better than the 

best solutions found by other techniques. From Table 6, it can be observed that the average 
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searching quality of HPSACO is better than those of other methods. 
5.4 A Pressure Vessel Design Problem 
As the final example, a four-storey, two-bay frame is selected from [35]. The frame has 15 
nodes and 20 elements constructed from I-beam sections and the elements are grouped into 
five different dimensional sets. The objective is to minimize the weight of the frame through 
finding the optimum cross-section dimensions b, h, tw and tf for each group of elements. 
Since there are four design variables for each group, 20 sizing variables are considered. The 
material density is 7850 kg/m3 and the Young’s modulus is 210 kN/mm2. The frame 
dimensions, configuration, loading, and grouping of the members are shown in Figure 4.  

 

 

Figure 4. A four-storey, two-bay steel frame 

 
The objective is to minimize the weight of the frame. This optimum design also has to 

satisfy the stress and the displacement constraints. Therefore, the problem can be stated as: 
 

Cost function 

 ∑
=

⋅+⋅⋅=
20

1
cost ).2(})({

i
fwi tbthLxf γ  (17) 

 
Design constraint functions 

 
0})({ max ≤−σσ x , 0})({ max ≤− δδ x  
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0.1/3.0 ≤≤ hb , 10.0/03.0 ≤≤ btw , 10.0/03.0 ≤≤ ht f  (18)

Variable regions 
 

306 ≤≤ b , 5.27.0 ≤≤ ft , 607.0 ≤≤ h , 5.24.0 ≤≤ wt  (19)

 
where the maximum allowable stress ( maxσ ) is 160 MPa and the only displacement 
constraint is the maximum top storey sway ( maxδ ) limited to 2.0 cm.  

Table 7 gives the best solution vectors and the corresponding weight using the proposed 
method, and compares the obtained results in this research with the outcomes of the 
harmony search and a hybrid harmony search algorithm (HHSA), Ref. [34]. An optimal 
structural weight of 3,564.25 kg is achieved by the HPSACO algorithm while it was 3,733.9 
kg and 3,845.2 kg for HS and HSSA, respectively. The optimum result is obtained after 
approximately 10,500 fitness function evaluations which is less than 41,000 function 
evaluations for the HSSA. 

 

Table 7. Optimum results of the HPSACO algorithm for the four-storey, two-bay steel frame 

5 4 3 2 1 Group no. 

12.07308 10.97384 12.46830 9.996847 15.02268 b 

1.266929 1.703614 1.207647 2.163955 1.295927 tf 

41.4340 36.8659 39.7650 33.3357 43.0489 h 

0.40000 0.40000 0.40000 0.61512 0.45767 tw 

1.993 Max. displacement (cm) 

70.879 Max. stress (MPa) 

3,564.25 Weight for HPSACO (kg) 

3,733.9 Weight for HS (kg) [35] 

3,845.2 Weight for HHSA (kg) [35] 

 
 

6. CONCLUSIONS 
 

Heuristic algorithms are suitable tools to determine the optimum solutions of the engineering 
problems. However, their applications are limited by the high computational cost of the slow 
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convergence rate. This paper tackles two major problems of optimization. The first problem 
is the relative deficiency of the global optimization method in refining optimum solutions 
with relatively small computational overhead. The second problem tackled arises from the 
arbitrary selection of penalty coefficients in constraint optimization. In order to deal with the 
deficiency of the global optimization methods, a hybrid algorithm based on the particle 
swarm optimization with passive congregation (PSOPC), the ant colony algorithm (ACO), 
and the harmony search (HS) approach, so-called HPSACO, is developed. HPSACO utilizes 
a PSOPC algorithm as a global search, and the idea of the ACO functions as a local search, 
and updating the positions of the particles is performed by a pheromone-guided mechanism. 
The HS-based approach is utilized to handle the boundary constraints. These principles are 
used in the HPSACO as helping factors to guide the exploration and to increase the control 
of the exploitation. 

In the HPSACO algorithm, a modified feasible-based mechanism is presented to handle 
the problem-specific constraints. Using this mechanism, the particles can approach to the 
boundaries and can fly to the global minimum with a high probability. The harmony search 
strategy is utilized to handle the variable limits. According to this mechanism, any 
component of the solution vector violating the variable boundaries can be regenerated from 
the harmony memory.  

The efficiency of the algorithm is demonstrated using several test problems and its 
performance is compared to those of the other conventional methods. The results reveal that 
HPSACO not only decreases the computational cost, but it is a reliable and efficient 
algorithm and the hybrid approach is a powerful tool for obtaining optimum solutions not 
only in terms of the quality of the solutions but also in terms of the accuracy. 
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