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ABSTRACT

This paper develops a reliability-based computational methodology for modeling non-
stationary random critical earthquake loads on structures using the site response spectra. 
The power spectral density function and the envelope parameters of the ground acceleration 
are taken to be unknown and are computed such that the structural reliability index is 
minimized subjected to constraints reflecting known knowledge on the site seismicity. 
Specifically, bounds on the total energy, zero-crossing rate and entropy rate of the 
earthquake signal and positivity requirements are considered. These constraints are derived 
from the site response spectra. The formulation combines methods of structural reliability 
analysis, response surface fitting, FORM and nonlinear programming. Numerical 
illustrations on reliability-based critical earthquake inputs for elastic and inelastic frame 
structures are presented.

Keywords: Critical earthquake; random processes; structural reliability; FORM, response 
surface; nonlinear optimization

1. INTRODUCTION

Earthquake ground motions exhibit large variability in terms of their frequency of 
occurrence, time, location, and several other parameters such as magnitude, intensity, 
duration, peak values of ground acceleration, velocity and displacement, frequency content 
and amplitude. In some situations, the available seismic data is scarce, inhomogeneous or 
insufficient. In this context, the method of critical earthquake load modeling provides a 
framework to deal with seismic safety assessment of engineering structures under partially 
specified earthquake loads. Takewaki [1,2], Abbas and Manohar [3] and Abbas [4,5] 
provide an overview of this method. The unknown information on the input is computed by 
solving an inverse dynamic problem such that the structure performance is minimized. At 
the same time, the earthquake load satisfies bounds that reflect known characteristics of 
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recorded ground motions. The resulting earthquake input is termed ‘critical’ since it 
produces the least structural performance and thus provides an idea about the worst case 
scenario that can happen to the structure.

The method of critical excitations was introduced to earthquake engineering by Drenick 
[6], Shinozuka [7] and Iyengar [8]. Drenick [9] expressed the future earthquake acceleration 
as a linear summation of past recorded accelerograms with unknown coefficients. He 
computed the critical acceleration by maximizing the structure response subjected to a 
bound on the acceleration energy. Abbas and Manohar [3] represented the ground 
acceleration as a Fourier series modulated by an enveloping function, thus ensuring 
convergence and orthogonality in the basis functions. The set of past recorded ground 
motions were used instead in quantifying the constraints imposed on the earthquake load, 
and, also, in defining the parameters of the envelope function.

Iyengar and Manohar [10] developed non-stationary random critical earthquake 
excitations for linear multi-degree-of-freedom (MDOF) structures. The input was 
constrained to the average total energy and the structure response variance was maximized. 
Several improvements to this method were introduced by Iyengar [11], Manohar and Sarkar 
[12], Takewaki [13] and Abbas and Manohar [3]. In most of these studies, the earthquake 
load is assumed to be a Gaussian random process of zero mean and the structure behavior is 
considered to be linear. The response process is thus Gaussian and is characterized by its 
variance (mean is zero). The critical earthquake loads were thus computed by maximizing 
the response variance. For nonlinear systems, this approach is not applicable since the 
response of nonlinear systems is non-Gaussian (even if the input is Gaussian) and mean is 
nonzero. Therefore, critical excitations that maximize the structure response variance are of 
limited significance. Takewaki [14] modeled critical random earthquake excitations for 
elastic-plastic structures using equivalent linearization.

The development of reliability-based critical earthquake loads for linear systems was 
carried out by Abbas [4], Sarkar [15], Saikat and Manohar [16] and Abbas and Manohar 
[17]. The study by Abbas and Manohar [18] extends the formulation to nonlinear structures 
with cubic force-displacement relation. The modeling of critical seismic loads for 
parametrically excited structures was studied by Abbas and Manohar [19].

This paper develops a reliability-based methodology to estimate non-stationary random 
critical earthquake loads on structures using response spectra. The structural response 
process in this case has non zero mean and non-stationary variance. To derive critical 
seismic inputs for this problem one approach is to maximize both the mean and variance of 
the structural response following previous studies. An alternative approach pursued in this 
paper is to maximize the failure probability of the structure. This approach is easier to 
implement than the bi-objective optimization and is also more comprehensive because it 
accounts for randomness in the structural system parameters. This paper uses the site design 
response spectrum in quantifying the constraints. The proposed methodology is more 
practical since it is easier to find a response spectrum for the site rather than detailed 
information on past recorded ground motions. Furthermore, the study accounts for 
uncertainties in the PSD and the envelope functions of the earthquake load by treating these 
parameters as unknowns. Numerical examples on modeling reliability-based random non-
stationary critical earthquake loads on elastic and inelastic frame structures are provided.
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2. RELIABILITY-BASED CRITICAL EARTHQUAKE LOADS FOR ELASTIC 
STRUCTURES USING THE SITE RESPONSE SPECTRA

2.1 Dynamic analysis of elastic MDOF structures under earthquake loads
The equation that governs the relative displacement response u(t) for an elastic N degree-of-
freedom system is given by:

.)()()()( g{1}MuKuCuM tuttt   (1)

Here, M, C, K are, respectively, the mass, damping and stiffness matrices of the 
discretized N degree-of-freedom structure, {1} is a column vector of ones and )(g tu  is a 

stochastic process representing the earthquake acceleration. Assuming that the system starts 
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where, nnn  ,, are the damping ratio, natural frequency, participation factor for the nth 

mode, respectively and   is the matrix of mode shapes. The ith displacement response can 
be shown to be given by:
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Here, )(thj is the jth impulse response function. The determination of the displacement 

response ui(t) is often carried out by numerical integration of Eq. (3). Additionally, the 
series representation of the displacement response u(t) needs to be truncated and this will be 
demonstrated in the numerical example. Referring to Eq. (3) the displacement random 
process has a zero mean if )(g tu has a zero mean. Furthermore, the response variance of the 

ith displacement component is given as:
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Here, <.> denotes the mathematical expectation and the evaluation of the above 
expression will be demonstrated in the next section.
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2.2 Problem statement and solution
Reliability assessment of elastic MDOF structures governed by equations of motion as Eq. 
(1) or (2) requires the specification of the structure parameters (M, C and K) and the 
acceleration ).(g tu We assume that the structure parameters are known while only partial 

information on the earthquake acceleration is available. To proceed further, we model the 
ground acceleration )(g tu  of Eq. (1) as a non-stationary Gaussian random process given by:

          ).()()( gg twtetu   (5)

Here, e(t) is the envelope function that imparts non-stationarity to the ground 
acceleration and )(g tw is the stationary acceleration. In the present study, e(t) is expressed  

as a Gamma model given by:
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where 21 , are the parameters of the envelope function that control the non-stationarity 

trend of the ground acceleration )(g tu and td is the earthquake duration. The envelope 

function as per the above definition has a peak value of unity. Furthermore, the acceleration 
)(g tw is represented as
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where, iA , iB , i = 1,2,…, Nf, are 2Nf normal random variables of zero mean and variances 
2
i and ,i fNi ,...,2,1 are set of Nf frequencies to be selected to span satisfactory the 

frequency range ( c0 , ) of the ground acceleration ).(g tu  Additionally, the random 

variables iA , iB , i = 1,2,…, Nf  are taken to be independent and satisfy the conditions:
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Here, <.> indicates the mathematical expectation and ij is the Kronecker delta function 

( jiji ijij  for 0andfor ;1  ). Under these conditions, the ground acceleration 

)(g tw is a stationary Gaussian random process of zero mean. The auto-correlation and the 

one-sided power spectral density (PSD) functions for )(g tw can be shown to be given by:
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According to the representation of the random process )(g tw in Eq. (7) and from Eqs. (5) 

and (6), the ground acceleration )(g tu has zero mean, random amplitude and phase angle of 

22
ii BA   and )/(tan 1

iii AB at the ith frequency, respectively and a peak amplitude 

of .
1

22



fN

i
ii BA It may be recalled here that the amplitude of the ground acceleration 

)(g tu depends on three parameters, namely, the source properties, the path effects and the 

soil profile effects. From Eq. (4) and the second part of Eq. (9), the structure response 
variance can be shown to be given as:
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The acceleration )(g tw  is characterized in terms of the PSD function as follows:
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The moments E0 and E2 represent energy measures for ).(g tw  The total energy of the 

random process )(g tu is given as:
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The energy quantities E0 and E2 define the zero crossing rate of the earthquake 
acceleration )(g tu  which is given by:
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The uncertainty of the random process )(g tu  can be characterized by the entropy rate of 
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the PSD function )(G as follows [20]:
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The use of entropy rate in quantifying uncertainty of stochastic processes is well 
established in the literature, see for example the book by Kapur [21]. Here, it may be noted 
that, for a given frequency range ( c0 , ), and for a given total average power, it can be 

shown that a band limited white noise would possess the highest entropy rate, and, 
conversely, a narrow band signal would possess the least entropy rate [22]. A realistic 
ground motion, however, is unlikely to be an ideal band limited white noise or an ideal 
narrow band signal. The entropy rate associated with realistic ground motion is expected to 
be bounded between that of an ideal band limited white noise and of an ideal narrow banded 
signal. Thus, realistic models for critical seismic inputs can be obtained by requiring that 
these inputs possess entropy rates that are actually observed in recorded ground motions. 
Manohar and Sarkar [12] and Abbas and Manohar [3] have used the entropy rate as a 
constraint on the critical earthquake signal. These authors showed that the inclusion of the 
entropy rate in deriving critical earthquake acceleration is crucial in producing realistic 
seismic excitations. The development of critical earthquake loads for elastic structures 
based on the response spectrum is provided in the next section.

2.3 Estimation of critical earthquake excitations using site response spectrum
To assess the reliability of MDOF systems governed by equations of motion such as Eq. (1) 
we first introduce a performance function as follows [23]:

          ,),( SRSR g (15)

where R is the resistance (capacity) of the structure at a certain point and S is the demand 
(load effect), both corresponding to some response quantity (e.g. displacement, stress, etc.) 
due to the seismic load. 0),( SRg defines the unsafe region, 0),( SRg defines the safe 
region and 0),( SRg  represents the limit state surface that separates safe and unsafe zones. 
Since the earthquake load is a function of time, the structural response is also a time-
dependent quantity and thus Eq. (15) can be rewritten as:
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Here, ))(,,( g0 tutxS  is the response or a transformation of it at point 0x  and time .t

The probability of failure ]0)([  XgPPf and t
NN BBBAAAR ],...,,,,...,,,[
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the set of basic random variables including the structural resistance R and excitation 
parameters ., ii BA  The envelope parameters 21 ,  are treated as unknown deterministic 
variables in the present study. The performance function defined above is an implicit 
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nonlinear function of the vector of random variables X. Approximation for the distribution 
of the second quantity on the right side of Eq. (16) is limited to simple cases (e.g. linear 
structural behavior and stationary Gaussian inputs). For more general problems, 
approximate numerical methods, such as, Monte Carlo simulation (MCS) or response 
surface methods can be employed in evaluating the structure reliability. In the present study, 
we restrict to the latter alternative since MCS requires more computational time. 
Specifically, we adopt the response surface method as developed by Bucher and Bourgund 
[24]. The implicit performance function of Eq. (16) is replaced by an explicit quadratic 
surface near the design point. The shortest distance from the origin to this surface provides a 
measure of the structural reliability in terms of the Hasofer-Lind reliability index. The 
details of the response surface method are provided in the next section.

The problem of deriving the optimal earthquake loads for elastic structures can be stated 
as computing the optimal PSD function )(G and the envelope parameters 21 , such that 
the structure reliability index is minimized subjected to constraints as follows:
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The constraints listed above include bounds on the average energy, zero crossing rate and 
amount of disorder of the ground acceleration. The constraints contain also lower and upper 
bounds on the parameters of the enveloping function which has not been considered in 
earlier studies. Making use of the expression for the PSD function )(G of Eq. (9), the 
optimization formulation in Eq. (17) can be rewritten as:
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The decision variables for this optimization problem are .,,,...,, 21
22

2
2
1 f

 N The 

solution to this constrained nonlinear optimization problem is solved using sequential 
quadratic programming (SQP) method as will be demonstrated in the numerical examples.

As mentioned in the Introduction section, earlier models of seismic critical earthquake 
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loads assume the availability of a set of past recorded ground motions which is used in 
quantifying the constraint bounds W00 and, HnE  . However, it is easier and more reliable 

to find a response spectrum specified for a given location rather than complete information 
on past recorded earthquake accelerations. In fact, most seismic codes specify design 
response spectrum based on site soil conditions of the region. In the present study we 
assume that the knowledge on the seismicity of the site considered is limited to a smooth 
design response spectrum. In fact, the characteristics of earthquake ground accelerations are 
implicitly contained in the design response spectrum of the site [25,26]. We propose that the 
available design response spectrum be used in generating a set of ground accelerations that 
are used for quantifying the constraint limits that the future earthquake needs to satisfy. The 
subject of simulating earthquake accelerations compatible with a specified design response 
spectrum is well established in the literature. See, for example, references [27-29].

The given spectrum is used to generate compatible ground accelerations. In the 
simulation process the procedure proposed by Deodatis [29] is adopted. The simulation 
process starts by reading the data of the target design response spectrum (TDRS) and the 
modulating function A(t). The non-stationary acceleration )(tx to be simulated is expressed 

as a product of a stationary acceleration )(tv  and an envelope function A(t). This 

representation is similar to the representation of the non-stationary random process )(g tu of 

Eq. (5). In other words, we simulate samples of the random accelerations )(tv and )(tx
Once the TDRS is defined, a sample of )(tv is generated starting from the PSD function of a 
white noise random process of intensity G0. Subsequently, a sample of the non-stationary 
acceleration )(tx is computed by multiplying the sample of )(tv by the modulating function 

A(t). The response spectrum of the acceleration )(tx is then computed for the same 
frequency range of the target design response spectrum. The PSD function of the stationary 
process )(tv is updated by a frequency factor that equals the ratio of the spectrum of the 

TDRS and that of the ground acceleration )(tx New samples of the ground accelerations 

)(tv and )(tx are then generated. The algorithm iteratively updates the PSD function of the 
stationary acceleration and a new sample of the non-stationary acceleration is produced. No 
explicit convergence criterion is enforced. A few iterations are seen to be adequate to 
produce a ground acceleration history that matches the given TDRS.

The quantification of the constraint limits 
00 , nE and WH of Eq. (18) is performed 

based on numerical analysis of the set of simulated ground accelerograms. The constraint 
parameter 0E is taken as the maximum value across the set of simulated accelerations. The 

parameters W0 and Hn  are taken as the average quantities across the ensemble.

3. THE USE OF RESPONSE SURFACE METHOD AND FORM FOR THE 
RELIABILITY ANALYSIS

The performance function of Eq. (16) is implicitly defined in the space of 2Nf+1 random 
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variables denoted collectively by the vector .],...,,,,...,,,[
ff 2121

t
NN BBBAAARX As 

mentioned in the previous section, the envelope parameters are treated as deterministic 
quantities. The first step in implementing the response surface method for reliability 
computation consists of transforming the basic random variables X into a vector of standard 
normal random variables denoted by Y. The response surface method pursued here replaces 
the implicit performance function in Eq. (16) by an approximate quadratic surface [24]:
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Here Nrv= 2 Nf +1 is the number of basic random variables on which the performance 
function depends and a, bi, ci, i = 1,2,…, Nrv are the unknown deterministic parameters to be 
determined. The form of the response surface adopted in the above equation does not 
consider the cross quadratic terms. The inclusion of these terms would lead to considerable 
increase in the computational effort although the framework of solution remains essentially 
the same. This aspect is examined later in the numerical examples. It must be noted also that 
the problem of determination of the reliability index HL  constitutes a constrained nonlinear 
optimization problem [30]. This optimization problem, in turn, is embedded into the 
optimization problem associated with the determination of the critical earthquake load. 
Consequently, the algorithm proposed in the present study for computing the critical 
earthquake loads, consists of two optimization routines. The outer routine is meant for 
computing the critical excitations, and the inner routine, that computes HL , is called by the 
outer routine at each major step of computing the critical input. The steps involved in these 
calculations are:

(a) Outer optimization for estimating critical excitations
1. Use the site design response spectrum to simulate sample ground accelerations and 

quantify the constraint bounds 
00 , nE and .WH

2. Select the failure criterion of the structure, define the distributions and distribution 
parameters of the basic random variables, and make initial guess for the optimization 
variables .,..,2,1, f

2 Nii 

3. Define the performance function (R, N ),...,, 22
2

2
1 f

g of Eq. (16).

4. Make an initial guess for the failure point rvi Nix ,...,2,1;*
0  and compute the associated 

point rvi Niy ,...,2,1;*
0  in the standard uncorrelated normal space. Here, the 

transformation XTY  t is used, where iiii XX  /)(  is the reduced variate and 

T is a transformation matrix. Details of this transformation are provided in [23].
5. Call the basic optimization routine that provides new values for the optimization 

variables .,..,2,1, f
2 Nii 
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(b) Inner optimization for HL computation
1. Fit a response surface in the uncorrelated standard normal space. Thus, the actual 

implicit performance function is approximated with a closed form function at the 
failure point. In the present work, we use a quadratic polynomial function as given in 
Eq. (19). The steps of this fitting can be summarized as follows:

 Sample Y in Eq. (19) at 2Nrv+1 points (at mean, i , and mean if  of these random 

variables). Here, f is a constant and ii  ,  are mean and standard deviation of Yi, 

respectively.
 Evaluate the actual performance function, )g( Y at the 2Nrv +1 points. Here, the 

quantity f210
0

,...,2,1|;),,,,,(|max NiBAtxz ii
t


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 is computed using numerical 

integration of the governing equations of motion (Eq. 2).
 Solve the set of 2 Nrv +1 algebraic equations given by A B = G, to determine the 

constants a, bi, ci, i=1, 2,…, Nf. Here A is a square matrix of size 2 Nrv + 1 and the 
matrices B and G are of the size 2 Nrv+1 by 1. The details of these matrices can be 
found in reference [19].

 Use the explicit limit surface )(g Y to calculate the reliability index, HL and the 

associated design point .,...,2,1;*
rvi Niy   The procedures for these calculations are 

standard and the details of these computations are provided in [23]. This includes 
iterative calculation of the reliability index, evaluation of the performance function and 
updating the check-point. The algorithm is stopped when the convergence criteria 
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and refit a new response surface using the new updated point. 
2. Check convergence of the basic optimization routine .||,|)(| 3

2
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2
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convergence is achieved go to next step, otherwise go to step 4. 
3. Store the quantities .,...,2,1;,,, *

HL
2

rviii Nix 
The computation of reliability-based critical earthquake excitations, as developed above, 

provides different input-response descriptors. This includes critical PSD function that 
produces the least HL associated HL and notional failure probability,

)( HL0
fP )(1 HL . Here,  is the standard Gaussian probability distribution 

function. The formulation leads also to a critical time history at the design point, given as 

.sincos)()(
f

1

**
g 




N

i
iiii tBtAtetu   Here, ** , ii BA correspond to the point in the original 

space of random variables to which the failure point in the standard normal space gets 
mapped. Finally, the vector rvi Ni ,...,2,1;   provides a measure of sensitivity of reliability 

index with respect to individual random variables X.
Thus the steps in computing critical earthquake loads from response spectra for elastic 
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structures are: (1) quantifying the constraints from the site response spectrum (2) 
establishing the outer optimization for critical earthquake calculation and (3) the inner 
optimization for HL computation. The next section extends this approach to inelastic 
structures.

4. CRITICAL EARTHQUAKE EXCITATIONS FOR BILINEAR HYSTERETIC 
STRUCTURES

4.1 Dynamic analysis of bilinear hysteretic structures
The inclusion of inelastic structural behavior is of central importance in earthquake-
resistance design. This is particularly true when dealing with extreme loads as is the case 
with seismic critical excitations. The response of inelastic structures has a non zero mean 
and is non-Gaussian even if the seismic input is Gaussian with zero mean. The equation of 
motion governing the relative displacement response u(t) of a one-story structure modeled 
as a single-degree-of-freedom system subjected to a single component of earthquake 
acceleration )(g tu  at its base (see Figure 1(a)) is given by:

          ).()(  )()( g tumtftuctum s   (20)

Here, m, c, are, respectively, the mass and damping of the SDOF, )(tf s  is the inelastic 

restoring force in the spring. For linear SDOF systems this force is a linear function of the 
spring coefficient k and the displacement response )(tu and for inelastic systems )(tf s is a 

nonlinear function of the displacement response )(tu . Figure 1(b) depicts the nature of )(tf s

for hysteretic inelastic systems.

m

c

fs(t)

u(t)
(a)

)(tu g

u(t)

(b) fs(t)

Figure 1. (a) bilinear hysteretic SDOF system (b) force-displacement relationship

For dynamic systems governed by the above equation of motion the force-deformation 
relation is no longer a single valued relation. Thus, for a displacement u(ti) at time ti the 
resisting force depends upon prior history of motion of the system and whether velocity 
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response )( itu  is increasing or decreasing. Assuming that damping is viscous and that the 

system starts from rest, the above equation reduces to:

          ),()(  )(2)( gsy
2 tutfututu    (21)

where,   is the damping ratio,  is the natural frequency for the elastic system or for the 

inelastic system undergoing small deformations (i.e. yuu  ) and yu  is the yield 

displacement. The function )(s tf may be viewed as the spring restoring force in a 

dimensionless form. Referring to Eq. (21) it may be noted that for a given earthquake 
acceleration ,)(g tu the inelastic displacement response depends on the natural frequency

 , the damping ratio   and the yield displacement yu (see Figure 1(b)). Herein, the yield 

displacement yu  is defined as kf /y  where yf  is the yield strength. The maximum inelastic 

displacement of the structure normalized to the yield displacement is known as the ductility 
factor and is an important parameter for design of inelastic structures. An incremental 
differential equation is obtained by expressing Eq. (21) at time it and tti  [31]. The 

numerical integration to this equation is carried out using the Newmark-β method and more 
details are provided in reference [5]. The details of the computation of the reliability index 
using the response spectrum were provided in Section 2.3.

4.2 Energy dissipated by inelastic structures
To gain more insights into the nature of critical earthquake loads computed for inelastic 
structures, it is of interest to quantify various forms of energy dissipated by the inelastic 
system. Several authors employed the energy dissipated by the structure in characterizing 
response analysis of dynamical systems [32,33]. These energy terms can be quantified by 
integrating the structure equation of motion. Thus, the energy balance for the inelastic 
system can be written as (see Eq. (21)):

   
u u u u

dutumdutfdutucdutum
0 0 0 0

gs           .)()()()(  (22)

The right side of the above equation represents the input energy to the structure since 
ground starts shaking until it comes to rest. The first energy term of the left side is the 
kinetic energy )(K tE of the mass associated with its motion relative to the ground and is 
given as:

          .
2

)]([
)()()(

0 0

2

K   
u u tum

udtumdutumtE
 

 (23)

The second term of the left side of Eq. (22) represents the energy dissipated by viscous 
damping )(D tE  given by:
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          .)]([)()(
0 0

2
D  

u t

dttucdutuctE  (24)

The third term of Eq. (22) is the sum of the recoverable strain energy )(tES  and the 

energy dissipated by yielding )(Y tE  and are given as:

          .)()()()()()(;
2

)]([
)(

0

SS

0

sY

2

S  
t

s

u
s tEdttftutEdutftE

k

tf
tE  (25)

The parameter k appearing in the above equation is the initial stiffness of the inelastic 
system. In the present study, the time-variation of energy terms given in Eqs. (23-25) are 
employed in quantifying and characterizing various forms of energy dissipated by the 
inelastic system.

The computation of reliability-based non-stationary critical earthquake loads (Sections 2, 
3 and 4) involves the following: (1) Quantifying the constraints imposed on the earthquake 
load (outer optimization) from the site response spectrum (2) Using the response surface 
method to replace the implicit performance function with an explicit quadratic limit state (3) 
Establishing the inner optimization using FORM to evaluate the system reliability index, 
and (4) Establishing the outer optimization that optimizes the parameters of the earthquake 
load (PSD and envelope functions).

It may be noted that the framework for computing critical excitations for linear and 
hysteretic systems is essentially the same. The difference is in the algorithm adopted for the 
dynamic analysis which is embedded in the response surface fitting.

4.3 Inelastic MDOF structures
The formulation developed in Section 4.1 computes non-stationary random critical 
earthquake loads on inelastic SDOF structures. The algorithm presented for the dynamic 
analysis computes the seismic response for SDOF structures. The formulation of Section 4.1 
can be extended to handle MDOF structures if the dynamic analysis tackles MDOF systems. 
This can be achieved by linking the methodology developed in the present paper with finite 
element software. The use of the finite element is to compute the structure’s inelastic 
response which is needed in the inner optimization routine and the response surface fitting.

5. NUMERICAL EXAMPLES

To demonstrate the formulations developed in the preceding sections, three numerical 
examples are considered. The first two examples demonstrate the methodology for elastic 
single- and multi-story frame structures, respectively. The third example considers a 
structure with inelastic behavior.
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5.1 Example 1: Single-story elastic frame structure
5.1.1 Structure considered
A single-story steel frame structure is considered. The frame structure has width L = 9.14 m, 
height h = 5.49 m and modulus of elasticity E = 210 Gpa. The columns are made of W
1033 steel section and the girder supports a total dead load of 3103 N/m. The stiffness of 
columns is computed to be 4.67105N/m. For purpose of dynamic analysis it is assumed 
that the girder is rigid to prevent rotation and columns are massless. Accordingly, the frame 
structure is modeled as an SDOF system. The natural frequency of the frame structure was 
computed as 07.2n Hz and a modal viscous damping of 3 % is considered. The failure 

criterion of the frame structure is defined in terms of the spring force (shear force in 
columns). The structure is considered to fail if the force in the spring exceeds a threshold 
value R. Herein, R is taken as a normal random variable of mean 3102R N and 

standard deviation 200R N.

5.1.2 Quantification of constraints from the site response spectrum
The quantification of the constraint limits imposed on the future design earthquake (Eq. 18) 
is based on numerical analysis of a set of 20 simulated earthquake accelerations compatible 
with the TDRS of the site. The TDRS adopted in this example is taken for a firm soil site 
[34,35], see Figure 2(a). The acceleration duration is taken as 20 sec.

k

k

k

k

k

9.14 m

(a) (b)

5 



3.
0 

m m

m

m

m

m

Figure 2. (a) design response spectrum (b) multi-story frame structure

Table 1: Statistics of simulated accelerations from the site response spectrum

Parameter E0 (m
2/s4) E2 (m2/s6) ET (m2/s4) 

0n (Hz) WH





1.37

0.16

296.11

31.93

20.17

3.21

2.25

0.11

0.1369

0.0137
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Table 1 summarizes the statistics of the parameters 0E , ,2E ET, 
0n  and WH for the 

simulated acceleration. Herein, WH is calculated with respect to a white noise random 

process of intensity = 0.02. It is observed that the variations in E0 and E2 are higher than 
variations in 

0n  and .WH  This observation is consistent with features usually observed in 

actual recorded ground motions. The average value of 25.20 n  is significantly matching 
with the dominant frequency of 2.50 Hz for a random process described by the Kanai-Tajimi 
PSD function for a stiff soil site [36].

In the numerical calculations, the constraint quantity 0E is taken as the peak value across 

the ensemble (1.47 m2/s4) and the quantities 
0n  and WH are taken as the average values 

given in Table 1. The lower and upper limits on the envelope parameters are taken as 
35.0,10.0 21  ll  and .50.0,25.0 21  uu  Figure 3(a) depicts a sample ground 

acceleration of the generated 20 time histories. It was observed that the convergence of the 
iterative scheme employed for generating ground accelerations compatible with TDRS is 
achieved within a number of iterations of about 10. For instance, the response spectrum of 
the simulated acceleration shown in Figures 3(b) is obtained with 7 iterations. Figure 4 
shows the Fourier spectrum of the simulated acceleration and also for an actual ground 
acceleration recorded at a firm soil site. Both plots indicate a frequency content of 0-10 Hz 
and a dominant frequency of about 2.0 Hz. Critical earthquake loads are computed using 
sequential quadratic optimization method through the Matlab Optimization Toolbox [37]
using the ‘fmincon’ algorithm. The convergence limits of the optimizations are taken as 

10,10 6
2

3
1

   and .10 6
3

  It may be emphasized that it is difficult to prove that the 
optimization will converge to the global optima. However, the optimal solution was verified 
by starting the optimization with alternative initial guesses. While implementing this 
procedure, several alternative starting solutions from within the feasible region were 
considered and it was observed that all the starting solutions lead to the same maximum. 
The solution was also verified with the qualitative feature expected for the ground 
acceleration, dynamic response of the structure and constraints imposed.

Figure 3. Simulated acceleration compatible with target response spectrum (a) time history (b) 
response spectra ( target spectra,   simulated acceleration)
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In the numerical calculations, the frequency range of the ground acceleration ( c0 , ) is 

taken as (0,10) Hz which is expected to cover well the frequency range of an earthquake 
signal at a stiff site. The number of frequency terms retained in the series representation (Eq.
(7)) is taken as Nf = 101 which implies that the performance function is defined in a space of 
203 random variables. This number was selected based on a study of the sensitivity of the 
reliability index with respect to the number of frequencies retained Nf. The frequencies 

f,..,2,1, Nii  are distributed such that one of these frequencies coincides exactly with the 

structure natural frequency n and more frequencies are placed within the bandwidth of .n
Two cases of constraints are considered. In the first case constraints on total average energy 
and zero-crossing rate are considered and in the second case these two constraints as well as 
the entropy rate constraint are considered.

Figure 4. Fourier spectrum (a) simulated ground acceleration (b) 1989 Loma Prieta earthquake 
(W-component)

Figure 5. Example 1: verification of response surface method,
case 2 ( maximizing HL ,   maximizing fP )

5.1.3 Results and discussions
The calculation of HL in this paper is based on the use of response surface modeling. For the 
method to be successful it is required that: (a) The failure surface in the transformed standard 
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normal space does not possess more than one region which makes comparable contributions to 
the failure probability, and (b) The response surface provides an acceptable fit to the failure 
surface near the failure point. For the problem on hand, it is difficult to prove that these 
conditions are invariably met for all choices of the parameters of the problem. However, for 
specific cases limited verifications are possible. To illustrate this, we consider the case when 
the ground acceleration is modeled as a stationary Gaussian process and the structure is taken 
to be linear. In this case the response process is Gaussian and the extreme of this process over 
a specified time duration can be approximated by a Gumbel random variable. This would 
mean that the probability of failure of the structure with respect to the performance function as 
in Eq. (16) can be determined without taking recourse to response surface modeling. This in 
turn, means that the critical PSD function here can be determined directly by maximizing the 
failure probability without adopting the response surface approach. The exact results on the 
critical PSD function so obtained is compared in Figure 5 with corresponding results based on 
response surface based procedure. The two results show nearly the same behavior. This, at 
least to a limited extent, verifies the applicability of the response surface approach to the 
present problem. For the general case when the structural inelastic behavior and nonstationary 
of the ground acceleration are considered, this type of verification is difficult to make. In the 
present study, we proceed with the promise that the results for this general case can be 
considered acceptable if the results obtained are qualitatively consistent with the known 
features of the dynamic response of inelastic structures, constraints imposed and critical PSD 
function obtained.

Figure 6 shows the PSD function of the critical acceleration )(g tw for cases 1 and 2, 

respectively. The associated critical envelope function )(te (see Eq. 6) and a sample critical 

acceleration )(g tu are shown in Figure 7 for case 2. The reliability index of the structure is 

computed to be -1.88 and 2.87 for cases 1 and 2, respectively. The associated notional failure 
probabilities are computed to be 9.87 110 and 2.05 310 , respectively. Similarly, the peak 
value of the displacement response standard deviation (Eq. 10) reduces from 0.0972 m to 0.0395 
m when the entropy rate constraint is brought in. It is also seen that for case 1, the PSD function 
has dominant amplitude at the structure natural frequency with low amplitudes on either side of 
the structure natural frequency. The low amplitude at frequencies other than the structure 
frequency ensure the satisfaction of the constraint imposed on the zero-crossing rate.

Figure 6. Example 1: power spectral density function for )(twg (a) case 1 (b) case 2
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Figure 7. Example 1, case 2: (a) critical envelope (b) sample critical acceleration )(tug

The inclusion of the entropy rate leads to the redistribution of the power of the PSD 
function across wider range of frequencies compared to case 1 (see Figure 6(b)). In other 
words, the entropy rate constraint leads to a wide band earthquake signal with the associated 
PSD function having its geometric center being shifted from the structure fundamental 
frequency. Relatively small peak amplitude, however, is yet observed at the structure natural 
frequency. This is also evident from the increase of the reliability index from -1.88 for case 
1 to 2.87 for case 2. The result of case 2 is seen to be realistic in terms of the shape of the 
PSD function and response produced. Case 1, on the other hand, does not lead to a realistic 
description of real earthquake load. This is because the amplitude of recorded ground 
motions is always characterized by the nonlinear soil amplifications at the site. To compare 
numerical results from critical earthquake loads with those obtained from existing 
earthquake models, we compute the reliability index when the structure is subjected to 
Kanai-Tajimi PSD function valid for a stiff soil site. The reliability index obtained from 
Kanai-Tajimi model of central frequency 2.0 Hz [35] was 3.97 which reveals a factor of 
about 1.40 compared to the associated value computed from critical input of case 2. 
Therefore, critical earthquake models produce relatively conservative responses.

5.2 Example 2: Multi-story elastic frame structure
To demonstrate the applicability of the formulation developed in the present paper to 
MDOF structures, we consider the five-story reinforced concrete shear frame of Figure 2(b). 
The structure has a span width of 9.14 m and floors height of 3.00 m, modulus of elasticity 
E = 2.01010 N/m2 and columns have square cross-sections of 0.30 m. The stiffness of 
columns in each floor is computed as k = 6106 N/m and girders carry a dead load of 3.00 
KN/m. The free vibration analysis showed that the first five natural frequencies are 0.68, 
1.97, 3.11, 3.99 and 4.55 Hz, respectively. A modal viscous damping of 5 % damping ratio 
is considered for all the modes and dynamic analysis is carried out by retaining contribution 
from the five modes. The performance function of Eq. (16) is defined in terms of the 
displacement response of the top floor. The resistance R is taken as a deterministic quantity
R=0.04 H=0.04×15=0.6m. The same constraint quantities and convergence limits adopted in 
Example 1 are used in this example.
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Figure 8. Example 2, case 2: (a) critical PSD function for )(twg (b) critical envelope

The PSD function of the stationary acceleration, for case 2, is shown in Figure 8(a) and 
the associated envelope function is presented in Figure 8(b). Figures 9(a) and 9(b) show a 
sample of the critical acceleration and the sensitivity variables, respectively.

Figure 9. Example 2, case 2: (a) sample acceleration )(tug  (b) sensitivity

indices  Ai,   Bi

In general, the feature observed in Example 1 is also observed in the present example. 
The frequency range of the PSD function is similar to that of example 1. This in turn implies 
that the frequency range of the ground acceleration depends on the soil profile and not on 
the structure properties. Furthermore, it is observed that the PSD function has a peak at the 
fundamental natural frequency of the structure. However, this peak is not high as was the 
case with the single-story frame structure of Example 1. A minor peak is also observed at a 
frequency close to the second natural frequency of the structure. The reliability index 
obtained for constraints scenarios 1 and 2 were -1.49 and 1.70, respectively. The sensitivity 
analysis of the reliability index with respect to 1 % changes in the constraint parameters 


00 ,nE and WH revealed that the percentage changes in reliability index are 1.47 %, 0.48 

% and 1.79 %, respectively. It was also observed that the reliability index is sensitive to the 
random variables corresponding to the structure first two natural frequencies.
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5.3 Example 3: Single-story inelastic frame structure
We reconsider the same steel frame structure of Example 1 with the important difference 
that the inelastic behavior of the structure is considered. The force-displacement relation is 
taken to be elastic-plastic. The initial stiffness of the columns is taken as 4.67105 N/m and 
the natural frequency of the inelastic structure undergoing small deformation is 

07.2n Hz. A modal viscous damping of 3 % is considered. The yield strength of the 

spring force in tension and compression is taken as 2 104 and 2 104 N, respectively. 
This, in turn, implies that the yield displacements in tension and compression are 0.0428 
and -0.0428 m, respectively. The same constraint quantities and convergence limits of 
Example 1 are adopted.

The results of this example are shown in Figures 10 to 14. Figure 10 shows the 
convergence of the objective function HL in terms of the iteration number. In general, it is 
observed that the broad feature of critical PSD functions for alternative constraint scenarios 
resemble the features that have been observed for the elastic structure. We focus our 
attention, however, on the influence of the inclusion of the structure inelastic behavior on 
the critical seismic loads obtained. The following observations are made:

Figure 10. Example 3, case 2: convergence of objective function

Figure 11. Example 3, case 2: (a) critical PSD function for )(g tw  (b) critical envelope
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1. The results of constraints scenarios of cases 1 and 2 indicate the emergence of a peak at 
the elastic structure natural frequency. Such peak, however, is relatively smaller than 
the case of elastic structure (see, for example Figures 6(b) and 11(a)). It is seen also that 
entropy rate constraint is crucial in producing realistic earthquake input with the PSD 
function being broad band compared to case 1. For case 2, the reliability index HL was 

seen to increase from 1.32 to 3.16 as the entropy rate is brought in and similarly the 
ductility factor  decreases from 3.4 to 2.15. A similar observation can also be made 
on the sensitivity indices where the plots of these factors display remarkable 
fluctuations near the natural frequency of the elastic structure.

2. The input acceleration at the design point for the elastic structure is narrow band with 
most energy lumped at the structure natural frequency (Figure 12(b)). The 
acceleration for the inelastic structure possesses amplitudes at a wider frequency range 
(0-5 Hz) (Figure 12(a)). A peak amplitude, however, exists close to .  This is 
consistent with the feature observed in the PSD function. The inelastic displacement 
response has non zero mean (Figure 13) and permanent deformation is also observed.

Figure 12. Example 3, case 2: critical acceleration )(g tu at the design point (a) inelastic 

structure (b) elastic structure

Figure 13. Example 3, case 2: (a) critical normalized response (b) restoring force-displacement 
hysteretic loops
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3. The computation of the sensitivity indices indicates that these indices are higher at 
frequencies that are close to the structure fundamental frequency. This, in turn, implies 
that the reliability index is more sensitive to the random variables ( ii BA , ) that are close 
to the natural frequency of the elastic structure.

4. The input energy to the inelastic system from the critical acceleration )(g tu  is 

primarily dissipated by yielding and damping of the structure (see Figure 14(a)). Unlike 
the elastic system, the kinetic and recoverable strain energy for the inelastic system are 
small and diminish near the end of the ground shaking (Figure 14(b)). The energy 
dissipated by yielding is significantly higher than that dissipated by damping. Viscous 
damping dissipates less energy from the inelastic system compared to that for the 
elastic system. This is because the velocity response is higher for the elastic system. It 
is also obvious that input energy to the inelastic system differs from the energy input to 
the elastic system.

Figure 14. Example 3, case 2: dissipated energy under a sample critical acceleration )t(ug  (a) 

inelastic structure  EK+ES,   ED,  .  EY (b) elastic structure  EK+ES,   ED

The form of the response surface assumed in Eq. (16) does not take into account the 
cross terms XiXj. The inclusion of these terms would lead to considerable increase in the 
computational effort although the framework of solution remains the same. To investigate 
the influence of including cross terms in the response surface model on the critical response 
and PSD functions, limited studies were conducted. The reliability index for cases 1 and 2, 
with the cross terms included, were computed to be 1.36 and 3.14, respectively. These 
results are marginally different from the corresponding results when the cross terms were 
excluded, which have already been computed to be 1.32 and 3.16 respectively. Similarly, 
the changes in critical power spectral density functions were also found to be marginally 
small. In this context it is to be noted that the fit for the response surface here is obtained in 
the space of standard normal random variables after the basic random variables, which are, 
in general, mutually dependent and non-Gaussian, have been transformed into mutually 
uncorrelated N(0,1) random variables. This would mean that the mutual dependencies in the 
basic random variables are implicitly taken into account in deriving the response surface 
even when cross terms in the model are not included. This possibly explains the marginal 
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influence that the cross terms in response surface model have on the final outcome of the 
case studies conducted.

6. CONCLUDING REMARKS

This paper develops a reliability-based computational methodology for non-stationary 
critical earthquake loads on elastic and inelastic structures. The new contributions 
developed in this paper include (1) developing a reliability-based non-stationary random 
critical earthquake loads from response spectra using the response surface method (2) 
accounting for uncertainty in the PSD function and the envelope function by treating these 
functions as unknowns (3) developing a general framework for handling structural hysteretic 
inelastic behavior (4) quantifying different forms of energy dissipated by the elastic and 
inelastic structures.

In the evaluation of the structural reliability in this study, the constraints on the critical 
earthquake input, such as, average zero crossing rate and entropy rate, have been treated as 
being deterministic in nature. One could treat these quantities also as random variables so 
that the uncertainties involved in their specification could be quantified. The probability 
distribution of these variables needs to be obtained based on studies such as the site specific 
uniform hazard analysis and study of local soil conditions. When these uncertainties are 
included one could derive the critical excitation model by optimizing the failure probability 
conditioned on these random variables and deduce the critical excitation models by using 
the theorems on conditional expectations. It is possible to model critical earthquake 
excitations based on uniform hazard spectra at a site but the constraints parameters should 
be treated as being random.

In general, critical earthquake loads were characterized by the constraints considered, site 
soil conditions and behavior of the structure (elastic or inelastic). The formulation developed 
leads to several descriptors of the input, such as, critical PSD function, critical reliability index 
and associated notional failure probability, sensitivity indices and a time history of the 
acceleration at the design point. It is shown that critical earthquake inputs for the inelastic 
structure differ from those for the elastic structure in terms of the above descriptors and also in 
terms of alternative energy forms dissipated by the structure. The input energy to inelastic 
structures is shown to be dissipated mainly by yielding and damping.

In the present study, the non-stationary ground acceleration was modeled as a uniformly 
modulated random process that is obtained by multiplying an envelope function and a 
stationary random process. This implies that the PSD function of the input acceleration does 
not depend on time. In this context, it is of interest to explore non uniform ground 
acceleration models using evolutionary PSD functions. It is possible to model the ground 
acceleration as being non-stationary in frequencies also which would add more complexity 
to the problem. This can be accounted for by using an envelope function that is a function of 
time and frequency as well. In this case, the formulation of the problem remains the same 
but the optimization problem needs to maximize the frequency parameters as well. It is also 
of interest to implement the formulation developed to complex MDOF inelastic structures. 
This can be achieved by using finite element method-based inelastic structural dynamic 
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analysis combined with the formulation proposed in this paper. Different models of 
inelasticity can also be studied.
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