
ASIAN JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING) VOL. 11, NO. 3 (2010)
PAGES 277-293

A CHARGED SYSTEM SEARCH WITH A FLY TO BOUNDARY
METHOD FOR DISCRETE OPTIMUM DESIGN OF TRUSS

STRUCTURES

A. Kaveh*a and S. Talataharib

aCentre of Excellence for Fundamental Studies in Structural Engineering, Iran University of
Science and Technology, Tehran, Iran

bDepartment of Civil Engineering, University of Tabriz, Tabriz, Iran

ABSTRACT

A discrete version of the Charged System Search algorithm (CSS) is developed to optimize
truss structures with discrete variables. The discrete CSS algorithm, similar to its original
version, is based on some laws from electrostatics and the Newtonian mechanics. Each
agent in the CSS is considered as a charged sphere having a uniform volume charge density
which can affect an electric force to the other ones. However, contrary to the original CSS,
for the discrete CSS, the affected forces can be attractive or repulsive. In addition, a new
approach is presented to handle the constraints, which is called the fly to boundary method.
Some design examples are tested using the new method and the results are compared to
those of other meta-heuristic algorithms to demonstrate the effectiveness of the present
method.

Keywords: Charged system search; meta-heuristic algorithms; fly to boundary method;
optimum discrete design; truss structures

1. INTRODUCTION

The competitive world has forced engineers and researchers to evince interest in economical
designs and to develop optimization approaches. Recently, authors have presented a novel
continuous optimization algorithm, so called Charged System Search (CSS) [1] and it is
applied to skeletal structural optimization problems [2]. The CSS algorithm is based on the
Coulomb and Gauss laws from electrical physics and the governing laws of motion from the
Newtonian mechanics. This algorithm can be considered as a multi-agent approach, where
each agent is a Charged Particle (CP). Each CP is considered as a charged sphere with a
specified radius, having a uniform volume charge density which can insert an electric force
to the other CPs.

For practical structural optimization problems, industrial cross sections are used which

* E-mail address of the corresponding author: alikaveh@iust.ac.ir (A. Kaveh)

A. Kaveh and S. Talatahari278

have discrete values and as a result a discrete solution is preferred to the continuous one for
this kind of the optimization problems [3]. When the design variables represent a selection
from a set of parts, the problem is considered as a discrete one [4]. Many research results are
available on optimum discrete design of structural problems utilizing different meta-
heuristic algorithms [2-18]. In our previous research, a new optimization method has been
introduced for structural optimization problems with continuous variables using the CSS
algorithm [1,2]. The main contribution of the present paper is to present a discrete version of
the CSS which not only preserves the positive characteristics of the original CSS, but also
improves its capability in solving discrete problems. The simplest method to have a discrete
result is to utilize a rounding function where in this method the agents are allowed to select
only discrete values from the permissible list of cross sections. In other words, if any of the
agents selects another value for a design variable, the algorithm changes its magnitude by
the value of the nearest discrete cross section. However, utilizing this method reduces the
exploration of the algorithm. In order to obviate this defect, contrary to the original CSS,
both attractive and repulsive forces are considered. In this way, the power of the exploration
of the algorithm is increased.

In order to handle the constraints, we have utilized a simple penalty approach in our
previous researches [1,2]. Despite the popularity of penalty functions, there are several
drawbacks associated with this method, and the main one is the requirement of a careful
tuning of the penalty factors for accurate estimation of the degree of penalization to be
applied in order to approach efficiently to the feasible region [19]. In order to deal with this
problem, a new constraint handling approach is developed here which is called the fly to
boundary method. This approach can be considered as an improved version of the fly-back
and feasible-based approaches.

2. CHARGED SYSTEM SEARCH FOR TRUSS STRUCTURES WITH
DISCRETE VARIABLES

2.1 Review of the continuous CSS algorithm
The Charged System Search contains a number of Charged Particle (CP) where each one
treated as a charged sphere and can insert an electric force to the others. The pseudo-code
for the CSS algorithm is summarized as follows [1]:

 Step 1: Initialization. The magnitude of charge for each CP is defined as

fitworstfitbest

fitworstifit
qi 




)(!;! Ni ,...,2,1 (1)

where fitbest and fitworst are the best and the worst fitness of all the particles; fit(i)
represents the fitness of the agent i; and N is the total number of CPs. The separation
distance rij between two charged particles is defined as follows:

A CHARGED SYSTEM SEARCH WITH A FLY TO BOUNDARY... 279






||2/)(||

||||

bestji

ji
ijr

XXX

XX
(2)

where Xi and Xj are the positions of the ith and jth CPs, respectively, Xbest is the position of
the best current CP, and  is a small positive number. The initial positions of CPs are
determined randomly.
 Step 2: CM creation. A number of the best CPs and the values of their corresponding

fitness functions are saved in the Charged Memory (CM).
 Step 3: The probability of moving determination. The probability of moving each

CP toward the others is determined using the following function:








 





 otherwise 0

)()(
)()(

)(
 1 ifitjfitrand

ifitjfit

fitbestifit

pij (3)

 Step 4: Forces determination. The resultant force vector for each CP is calculated as

)(
,

2213 jiij
jii ij

i
ij

i
jj pi

r

q
ir

a

q
q XXF 










 


!; !!

arii

arii

Nj

ij

ij






1,0

0,1

,...,2,1

21

21 (4)

 Step 5: Solution construction. Each CP moves to the new position as

oldjoldjvj
j

j
ajnewj tkrandt

m
krand ,,2

2
1, XV

F
X  (5)

t
oldjnewj

newj 


 ,,

,

XX
V (6)

where ka and kv are the acceleration and the velocity coefficients, respectively; and randj1

and randj2 are two random numbers uniformly distributed in the range (0,1).
 Step 6: CP position correction. If each CP swerves off the predefined bounds, correct

its position using the harmony search-based handling approach as described in Ref.
[15].

 Step 7: CM updating. The better new vectors are Included to the CM and the worst
ones are excluded from the CM.

 Step 8: Terminating criterion control. Steps 3-7 are repeated until a terminating
criterion is satisfied.

A. Kaveh and S. Talatahari280

2.2 A discrete CSS
One way to solve discrete problems by using a continuous algorithm is to utilize a rounding
function which changes the magnitude of a result to the nearest discrete value, as











 oldjoldjvj

j

j
ajnewj tkrandt

m
krandFix ,,2

2
1, XV

F
X (7)

where)(XFix is a function which rounds each elements of X to the nearest permissible
discrete value. Using this position updating formula, the agents will be permitted to select
discrete values. Although this change is simple and efficient, it may reduce the exploration
of the algorithm [4]. Therefore, in order to maintain the exploration rate, here we perform
two changes. Firstly, a new parameter so-called the kind of force is defined as








1

1
ijar

t

t

k

k

1 w.p.

 w.p.
(8)

where arij determines the type of the force, where +1 represents for the attractive force and
−1 denotes for the repelling force and kt is a parameter to control the effect of the kind of
force. In general the attractive force collects the agents in a part of search space and the
repelling force strives to disperse the agents. As a result, utilizing this new parameter the
resultant force is redefined as

)(
,

2213 jiijij
jii ij

i
ij

i
jj pari

r

q
ir

a

q
q XXF 










 


; !!

arii

arii

Nj

ij

ij






1,0

0,1

,...,2,1

21

21 (9)

The second change consists of assigning a big value for kv instead of a small one. The
effect of the pervious velocity of a CP is controlled based on the values of the kv. Performing
more searches in the early iterations may improve the exploration ability, however it must
be deceased gradually. ka can be considered as an exploitation controller parameter and kv,
controls the exploration process, and therefore a decreasing function will be a good
selection as considered in Refs. [1,2]. However, here in order to maintain the exploration
rate in a discrete search domain, it is selected as a big value (equal to 2). Figure 1 shows the
flowchart of the discrete CSS algorithm.

2.3 Further explanation of discrete CSS
In order to further clarify the process of the discrete CSS, we consider the following
Rosenbrock function [20], as one of the standard test functions in optimization,

2
1

22
12)1()(100)( xxxf X (10)

A CHARGED SYSTEM SEARCH WITH A FLY TO BOUNDARY... 281

Figure 1. The Flowchart for the discrete CSS algorithm

Owing to a long narrow and curved valley that is present in this function, gradient-based
algorithms may require a large number of iterations before the minimum vector (1.0, 1.0) is
found, as shown in Figure 2. The permitted domain for the discrete CSS algorithm is taken
from the set D = {－ 3.00,－ 2.95,－ 2.90,－ 2.85,－ 2.80, . . . , 2.80, 2.85, 2.90, 2.95, 3.00},
which has 121 discrete values. For this example, the number of CPs is set to 25. Figure 3
shows the positions of the current CPs and the stored CPs in the CM for this benchmark
example for different number of iterations. It can be seen that in the early iterations, the CPs

A. Kaveh and S. Talatahari282

investigate the entire search space to discover a favorite space (global search). When this
favorite space containing a global optimum is discovered, the movements of the CPs are
limited in this space to provide more exploitation (local search).

Figure 2. Rosenbrock function

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Iteration = 0
Best-fitness = 25.220

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Iteration = 5
Best fitness = 0.500

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Iteration = 10
Best fitness = 0.003

(a) (b) (c)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Iteration = 15
Best fitness = 0.003

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Iteration = 20
Best fitness = 0.003

Posiion of the current CPs
Position of the CPs stored in the CM

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Iteration=25
Best fitness = 0.000

(d) (e) (f)

Figure 3. The positions of the current CPs and the stored CPs in the CM for the mathematical
example

A CHARGED SYSTEM SEARCH WITH A FLY TO BOUNDARY... 283

3. FLY TO BOUNDARY METHOD

The feasible-based constrained approach [21] deals with constrained search spaces by using
the separation of constraints and objectives. In this method, the idea is to avoid the
combination of the value of the objective function and the constraints of a problem to assign
fitness, like when using a penalty function [19,21]. Authors have recently presented a
modified feasible-based method which employs the following four rules as [22]

Rule 1: Any feasible solution is preferred to any infeasible solution.
Rule 2: Infeasible solutions with slight violations of the constraints are treated as feasible

ones.
Rule 3: Between two feasible solutions, the one with better objective function value is

preferred.
Rule 4: Between two infeasible solutions, the one having smaller sum of constraint

violations is preferred.

Although the feasible-based mechanism is a sufficiently powerful and reliable approach,
it has some disadvantages. Assume that in the kth iteration all the solutions in the memory
of the optimization algorithm have feasible values. If a new solution generated in the
subsequent iterations is infeasible, according to the rule 1, it is not employed. This solution
is compared to those stored in the memory only and only if it is feasible, according to the
rules 2 and 3. The last rule after that iteration (iteration k in which all solutions in the
memory are feasible) is not used at all. This process is completely similar to the fly-back
mechanism. In the fly-back method, any generated solution is compared to the memorized
one, if it is feasible (similar to rule two in the feasible-based method) while it is ignored if it
is not feasible (similar to rule one in the feasible-based method). However, the fly-back
approach has some difficulties in finding the first valid solutions for all agents, since
according to this method the agents must be initialized in the allowable region.

Here considering these points, a new constraint handling approach is developed. This
method is called the fly to boundary approach and is based on fly-back and feasible-based
methods. For most of the structural optimum design problems, the global minimum is
located on or close to the boundary of the feasible design space. In other words, the
constraints in the engineering problems determine the limits of the search space and often at
least one constraint is active for the final optimum result. Therefore, the fly to boundary
method attempts to lead the infeasible solutions toward the boundary space while with the
feasible solutions it behaves like the feasible-based method. Related to the drawback of
defining the initial feasible vectors for all agents, the selection is limited to some strong
sections in the initialization stage for this method. Two rules are considered in the fly to
boundary method as follows:

Rule 1: When the new solution is feasible, between the new and stored solutions, the one
having better weight value is preferred.

Rule 2: If the new solution is infeasible, then one of the following sub-rules will be used:

A. Kaveh and S. Talatahari284

2.1. When a solution has slight violations of the constraints, it will be treated as feasible one.
However, the permitted violations will be decreased when the number of iterations
increases. This efficiently guarantees that the optimization algorithm does not swerve
from feasible space.

2.2. When the violations are big, for a predefined time, the following process will be
repeated:


















2
,

,
2

,,
,,,

,,
,,

,

newjoldj
newjoldjoldj

newjnewj
newjoldj

oldj

XX
XXX

XX
XX

X

spacefeasible
2

 if

spacefeasible
2

 if

,,

,,







newjoldj

newjoldj

XX

XX

(11)

At last, the oldj ,X is selected as the new solution.

When the new solution is infeasible and the previous one is feasible, the boundary of at
least one constraint will be between these points. We want to find a point which is feasible
while being very close to this boundary. Firstly, the centre of the new solution and the
previous one is determined. If the new solution is feasible, the boundary will be between
this point and newj ,X and thus oldj ,X must be changed to this new point; and if the new

point is infeasible, newj,X will be changed to this point. This process is similar to the

bisection method which is used for root finding of functions. We expect in both conditions
the new point to be nearer to the boundary than the previous one. If this process is repeated
for a definite number of times, the final result will not only be feasible, but will be on or
very close to the boundary.

4. FORMULATION FOR DISCRETE OPTIMUM DESIGN OF STRUCTURES

Minimizing the structural weight W requires the selection of the optimum values of member
cross-section di while satisfying the design constraints. The discrete optimal design problem
of truss structures may be expressed as

 

,....,2,1

,....,2,1

,...,,,

 subject to

)(minimize to

],...,,[Find

maximin

maximin

)(,2,1,

1

21

nmi

mi

dddDDx

LxW

xxx

iriiiiii

nm

i
iii

ng
















X

X

(12)

A CHARGED SYSTEM SEARCH WITH A FLY TO BOUNDARY... 285

where X is a vector containing the design variables; Di is an allowable set of discrete values
for the design variable xi; ng is the number of design variables or the number of member
groups;)(ir is the number of available discrete values for the ith design variable; W(X) is
the cost function which is taken as the weight of the structure;!nm is the number of members
forming the structure;!m is the number of nodes; i is the material density of member i; iL

is the length of the member i; i and! i are the stress and nodal deflection, respectively;!
min and max mean the lower and upper bounds, respectively.

5. NUMERICAL EXAMPLES

Three truss examples with discrete variables are optimized utilizing the new method. Then,
the results are compared to the solutions of other methods to demonstrate the efficiency of
the present approach. For the proposed algorithm, a population of 25 individuals is used in
all the examples; the constants a and kt are set to 1 and 0.8, respectively. The acceleration
coefficient ka and the velocity coefficient kv are considered as 1 and 2, respectively. The
algorithms are coded in Matlab and the structures are analyzed using the direct stiffness
method.

Figure 4. A 52-bar planer truss

A. Kaveh and S. Talatahari286

5.1 A 52-bar planer truss
The 52-bar planar truss structure shown in Figure 4 has been analyzed by Wu and Chow [6],
Lee and Geem [9], Li et al. [14] and Kaveh and Talatahari [4]. The members of this
structure are divided into 12 groups: (1) A1–A4, (2) A5–A10, (3) A11–A13, (4) A14–A17, (5) A18–
A23, (6) A24–A26, (7) A27–A30, (8) A31–A36, (9) A37–A39, (10) A40–A43, (11) A44–A49, and
(12) A50–A52. The material density is 7860.0 kg/m3 and the modulus of elasticity is

51007.2  MPa. The members are subjected to stress limitations of ±180 MPa. Both of
the loads, Px = 100 kN and Py = 200 kN are considered. The discrete variables are selected
from Table 1.

Table 1: The available cross-section areas of the AISC code

mm2in.2No.mm2in.2No.
(2477.414)3.84033(71.613)0.1111
(2496.769)3.87034(90.968)0.1412
(2503.221)3.88035(126.451)0.1963
(2696.769)4.18036(161.290)0.2504
(2722.575)4.22037(198.064)0.3075
(2896.768)4.49038(252.258)0.3916
(2961.284)4.59039(285.161)0.4427
(3096.768)4.80040(363.225)0.5638
(3206.445)4.97041(388.386)0.6029
(3303.219)5.12042(494.193)0.76610
(3703.218)5.74043(506.451)0.78511
(4658.055)7.22044(641.289)0.99412
(5141.925)7.97045(645.160)1.00013
(5503.215)8.53046(792.256)1.22814
(5999.988)9.30047(816.773)1.26615
(6999.986)10.85048(939.998)1.45716
(7419.430)11.50049(1008.385)1.56317
(8709.660)13.50050(1045.159)1.62018
(8967.724)13.90051(1161.288)1.80019
(9161.272)14.20052(1283.868)1.99020
(9999.980)15.50053(1374.191)2.13021

(10322.560)16.00054(1535.481)2.38022
(10903.204)16.90055(1690.319)2.62023
(12129.008)18.80056(1696.771)2.63024
(12838.684)19.90057(1858.061)2.88025
(14193.520)22.00058(1890.319)2.93026
(14774.164)22.90059(1993.544)3.09027
(15806.420)24.50060(729.031)1.13028
(17096.740)26.50061(2180.641)3.38029
(18064.480)28.00062(2238.705)3.47030
(19354.800)30.00063(2290.318)3.55031
(21612.860)33.50064(2341.931)3.63032

A CHARGED SYSTEM SEARCH WITH A FLY TO BOUNDARY... 287

Table 2 and Figure 5 provide the comparison of optimal design results and convergence
rates of the 52-bar planar truss structure, respectively. From Table 2, it can be observed that
the PSOPC can not find a good result while the CSS can find the best result. The HPSO and
HPSACO algorithms achieve good optimal results after 100,000 and 5,300 analyses iterations,
respectively. However, CSS needs less than 5,000 analyses to reach to a good solution.

Table 2: Optimal design comparison for the 52-bar spatial truss

Optimal cross-sectional areas (cm2)

Present
study

Kaveh and
Talatahari

[4]

Li et al.
[14]

Lee and
Geem [9]

Wu and
Chow [6]

Element
group

CSSHPSACOHPSOPSOPCHSGA

4658.0554658.0554658.0555999.9884658.0554658.055A1 ~ A41

1161.2881161.2881161.2881008.3801161.2881161.288A5 ~ A102

388.386494.193363.2252696.380506.451645.160A11 ~ A133

3303.2193303.2193303.2193206.4403303.2193303.219A14 ~ A174

940.0001008.385940.0001161.290940.0001045.159A18 ~ A235

494.193285.161494.193729.030494.193494.193A24 ~ A266

2238.7052290.3182238.7052238.7102290.3182477.414A27 ~ A307

1008.3851008.3851008.3851008.3801008.3851045.159A31 ~ A368

494.193388.386388.386494.1902290.318285.161A3 7~ A399

1283.8681283.8681283.8681283.8701535.4811696.771A40 ~ A4310

1161.2881161.2881161.2881161.2901045.1591045.159A44 ~ A4911

494.193506.451792.256494.190506.451641.289A50 ~ A5212

1897.621904.831905.492146.631906.761970.142Weight (kg)

1 100 200 300 400 500
1500

2000

2500

3000

3500

4000

4500

Iteration

W
ei

gh
t

 PSO
 PSOPC
 HPSO
 HPSACO
 CSS

Figure 5. The convergence history for the 52-bar truss structure

A. Kaveh and S. Talatahari288

5.2 A 72-bar spatial truss
For the 72-bar spatial truss structure shown in Figure 6, the material density is 0.1 lb/in3

(2767.990 kg/m3) and the modulus of elasticity is 10,000 ksi (68,950 MPa). The members
are subjected to the stress limits of ±25 ksi (±172.375 MPa). The nodes are subjected to the
displacement limits of ±0.25 in (±0.635 cm). The 72 structural members of this spatial truss
are categorized as 16 groups using symmetry: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–
A18, (5) A19–A22, (6) A23–A30, (7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48, (11) A49–
A52, (12) A53–A54, (13) A55–A58, (14) A59–A66 (15), A67–A70, and (16) A71–A72. The discrete
variables are selected from Table 1. Table 3 lists the values and directions of the two load
cases applied to the 72-bar spatial truss.

Figure 6. A 72-bar spatial truss

Table 3: Loading conditions for the 72-bar spatial truss

Case 2Case 1

PZ

kips(kN)
PYPX

PZ

kips(kN)
PY

kips(kN)
PX

kips(kN)
Node

5.0 (22.25)0.00.05.0 (22.25)5.0 (22.25)5.0 (22.25)17

5.0 (22.25)0.00.00.00.00.018

5.0 (22.25)0.00.00.00.00.019

5.0 (22.25)0.00.00.00.00.020

A CHARGED SYSTEM SEARCH WITH A FLY TO BOUNDARY... 289

For this example, the best weight of the CSS algorithm is 393.05 lb (178.28 kg), while it
is 393.38 lb (178.43 kg) for the HPSACO [4]. The PSOPC and HPSO algorithms do not get
optimal results when the maximum number of iterations is reached [14]. The HPSO
algorithm gets the optimal solution after 50,000 analyses [14] while it takes just 5,330 and
5,370 analyses for the HPSACO and CSS, respectively. The convergence history for this
example is shown in Figure 7. Table 4 compares the results of the CSS algorithm to those of
the previously reported methods in the literature.

1 50 100 150 200 250

500

1000

1500

2000

Iteration

W
ei

gh
t

 HPSACO
 CSS

Figure 7. The convergence history for the 72-bar truss structure

Table 4: Optimal design comparison for the 72-bar spatial truss

Optimal cross-sectional areas (in.2)

Present study
Kaveh and

Talatahari [4]
Li et al.

[14]
Wu and

Chow [6]

CSSHPSACOHPSOPSOPCGA

 Element group

1.9901.8004.9704.4900.196A1 ~ A41

0.4420.442 1.2281.4570.602A5 ~ A122

0.1110.141 0.1110.1110.307A13 ~ A163

0.1110.111 0.1110.1110.766A17 ~ A184

0.9941.228 2.8802.6200.391A19 ~ A225

0.5630.563 1.4571.1300.391A23 ~ A306

0.1110.111 0.1410.1960.141A31 ~ A347

0.1110.111 0.1110.1110.111A35 ~ A368

0.5630.563 1.5631.2661.800A37 ~ A409

0.5630.563 1.2281.4570.602A41 ~ A4810

0.1110.111 0.1110.1110.141A49 ~ A5211

0.1110.250 0.1960.1110.307A53 ~ A5412

0.1960.196 0.3910.4421.563A55 ~ A5813

0.5630.563 1.4571.4570.766A59 ~ A6614

0.4420.442 0.7661.2280.141A67 ~ A7015

0.7660.563 1.5631.4570.111A71 ~ A7216

393.05393.380933.09941.82427.203Weight (lb)

A. Kaveh and S. Talatahari290

Figure 8. A 354-member braced truss dome (a) 3D view (b) top view and (c) side view

This example has been optimized using 6 meta-heuristic algorithms, previously [17].
Simulated annealing technique results in the least weight compared to other heuristic
algorithm, which is 14,760.8 kg. The final designs achieved by evolution strategies and
particle swarm optimization methods are both 14,816.3 kg, and are only 0.3% different from
the one located by SA. Ant colony optimization, tabu search, harmony search and genetic
algorithms achieved 4%, 8.7%, 8.8%, 12.6% heavier designs, respectively [17]. Figure 9
compares the convergence history between these algorithms with the CSS.

0 10,000 20,000 30,000 40,000 50,000
3,000

10,000

20,000

30,000

40,000

50,000

Number of analyses

W
ei

gh
t

 SA
 ESs
 PSO
 ACO
 TS
 HS
 GA
 CSS

Figure 9. Comparison of the convergence history for the 354-member braced truss dome
structure

A CHARGED SYSTEM SEARCH WITH A FLY TO BOUNDARY... 291

The best result of the CSS algorithm has the weight of 14,377.4 kg which is 2.5% lighter
than the best result of the above-mentioned methods. Table 5 contains the comparison of
optimal pipe section design results of the 354-bar dome shaped truss for the CSS and
simulated annealing algorithms. For the CSS result, the stress and stability limitations
contrary to node displacements are active constraints.

Table 5: Optimal design comparison for the 354-bar dome shaped truss

Optimal pipe sections

Present work
(CSS)

Hasançebi et al. [17]
(SA)

Element
group

P2 (6.90 cm2)P2 (6.90 cm2)1

P3.5 (17.29 cm2)P3 (14.39 cm2)2

P3 (14.39 cm2)P4 (20.45 cm2)3

P3 (14.39 cm2)P3.5 (17.29 cm2)4

P3 (14.39 cm2)P3 (14.39 cm2)5

P3 (14.39 cm2)P3 (14.39 cm2)6

P3 (14.39 cm2)P3 (14.39 cm2)7

P3 (14.39 cm2)P2.5 (10.97 cm2)8

P2.5 (10.97 cm2)P3 (14.39 cm2)9

P3 (14.39 cm2)P3 (14.39 cm2)10

P2.5 (10.97 cm2)P2.5 (10.97 cm2)11

P2.5 (10.97 cm2)P2.5 (10.97 cm2)12

P2.5 (10.97 cm2)P2.5 (10.97 cm2)13

P2.5 (10.97 cm2)P2.5 (10.97 cm2)14

P2.5 (10.97 cm2)P2.5 (10.97 cm2)15

P2.5 (10.97 cm2)P2.5 (10.97 cm2)16

PX2 (9.55 cm2)PX2 (9.55 cm2)17

PX2 (9.55 cm2)PX2 (9.55 cm2)18

P2 (6.90 cm2)P2 (6.90 cm2)19

P2 (6.90 cm2)P2 (6.90 cm2)20

P2 (6.90 cm2)P2 (6.90 cm2)21

P2 (6.90 cm2)P2 (6.90 cm2)22

14,377.4 (31,696.8)14,760.8 (32,542.3)Weight kg (lb)

A. Kaveh and S. Talatahari292

6. CONCLUDING REMARKS

In this paper, a new discrete optimization approach based on the CSS algorithm is
developed for optimal design of truss structures. The other contribution of the paper is the
use of a new constraint handling approach, called a fly to boundary method. The fly to
boundary method attempts to lead the infeasible solutions toward the boundary space while
with the feasible solutions it behaves like the feasible-based method. Using this method
changes the position of the infeasible solution to a new one being closer to the boundary.

Several standard truss examples from the literature are presented to demonstrate the
effectiveness and robustness of the proposed approach compared with the other meta-
heuristics. The results reveal that the CSS performs better than the others. Also, the
convergence capability of the CSS method outperformed those of the other approaches. The
application of the present CSS algorithm is not limited to truss structures and can also be
applied to other types of structural optimization problems, such as frame structures, and
plates and shell structures.

REFERENCES

1. Kaveh A, Talatahari S. A novel heuristic optimization method: charged system search,
Acta Mechanica, 2010, DOI: 10.1007/s00707-009-0270-4.

2. Kaveh A, Talatahari S. Optimal design of skeletal structures via!the charged system
search algorithm, Structural and Multidisciplinary Optimization, 2010, DOI: 10.1007/
s00158-009-0462-5.

3. Kaveh A, Talatahari S. A discrete particle swarm ant colony optimization for!design of
steel frames, Asian Journal of Civil Engineering, No. 6, 9(2008) 563–75.

4. Kaveh A, Talatahari S. A particle swarm ant colony optimization for truss structures
with discrete variables, Journal of Constructional Steel Research, Nos. 8-9, 65(2009)
1558–68.

5. Rajeev S, Krishnamoorthy CS. Discrete optimization of structures using genetic
algorithms, Journal of Structural Engineering, ASCE, No. 5, 118(1992) 1233–50.

6. Wu SJ, Chow PT. Steady-state genetic algorithms for discrete optimization of trusses,
Computers and Structures, No. 6, 56(1995) 979–91.

7. Kameshki ES, Saka MP. Optimum geometry design of nonlinear braced domes using
genetic algorithm, Computers and Structures, Nos. 1-2, 85(2007) 71–9.

8. Camp CV, Bichon J, Stovall SP. Design of steel frames using ant colony optimization,
Journal of Structural Engineering, ASCE, 131(2005) 369–79.

9. Lee KS, Geem ZW, Lee SH, Bae KW. The harmony search heuristic algorithm for
discrete structural optimization, Engineering Optimization, No. 7, 37(2005) 663–84.

10. Kaveh A, Farahmand Azar B, Talatahari S. Ant colony optimization for design of space
trusses, International Journal of Space Structures, No. 3, 23(2008) 167–81.

11. Schutte JJ, Groenwold AA. Sizing design of truss structures using particle swarms,
Structural and Multidisciplinary Optimization, 25(2003) 261–9.

12. Lee KS, Geem ZW. A new structural optimization method based on the harmony

A CHARGED SYSTEM SEARCH WITH A FLY TO BOUNDARY... 293

search algorithm, Computers and Structures, 82(2004) 781–98.
13. Degertekin SO. Optimum design of steel frames using harmony search algorithm,

Structural and Multidisciplinary Optimization, 36(2008) 393–401.
14. Li LJ, Huang ZB, Liu F. A heuristic particle swarm optimization method for truss

structures with discrete variables, Computers and Structures, Nos. 7–8, 87(2009) 435–43.
15. Kaveh A, Talatahari S. Particle swarm optimizer, ant colony strategy and harmony

search scheme hybridized for optimization of truss structures, Computers and
Structures, Nos. 5-6, 87(2009) 267–83.

16. Saka MP. Optimum design of steel sway frames to BS5950 using harmony search
algorithm, Journal of Constructional Steel Research, No. 1, 65(2009) 36–43.

17. Hasançebi O, Ç arbas S, Dogan E, Erdal F, Saka MP. Performance evaluation of
metaheuristic search techniques in the optimum design of real size pin jointed
structures, Computers and Structures, Nos. 5-6, 87(2009) 284–302.

18. Kaveh A, Talatahari S. Size optimization of space trusses!using Big Bang–Big Crunch
algorithm, Computers and Structures, Nos. 17-18, 87(2009) 1129–40.

19. Coello, CAC. Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art, Computer Methods in Applied
Mechanics and Engineering, 191(2002) 1245–87.

20. Rosenbrock HH. An automatic method for finding the greatest or least value of a
function, Computer Journal, No.3, 3(1960):175–184.

21. Deb K. An efficient constraint handling method for genetic algorithms, Computer
Methods in Applied Mechanics and Engineering, 186(2000) 311–38.

22. Kaveh A, Talatahari S. Engineering Optimization with!Hybrid Particle Swarm and Ant
Colony Optimization, Asian Journal of Civil Engineering, No. 6, 10(2009) 611–28.

23. Kaveh A. Talatahari S. A Discrete Big Bang–Big Crunch Algorithm for Optimal Design
of Skeletal Structures, Asian Journal of Civil Engineering, No.1, 11(2010) 103-122.

