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ABSTRACT 
 

In this paper, three-dimensional amplification of plane harmonic SH, SV, and P waves in 
multilayered alluvial valleys is investigated by using a boundary element method in 
frequency domain. It is shown that in order to achieve real responses, the problem must be 
analyzed and modeled three-dimensionally. Also, for exact evaluation of surface ground 
motions in alluvial valleys all key parameters such as layering, material and geometrical 
characteristics of each layer, stimulation frequency, wave type, plus angle and azimuth of 
incidence must be taken into account altogether. 

The accuracy and efficiency of the proposed formulations for the computation of the 
surface displacement field amplification is verified by solving a number of problems. 

 
Keywords: Boundary element method; wave propagation; site effects; multilayered alluvial 
valley; 3D models 

 
 

1. INTRODUCTION 
 

The study of topographic effects and sediments on amplification of earthquake waves has 
been the main subject of various studies.  In the recent years, the importance of site effects 
in the local amplification of surface ground motion has been well recognized. Study of 
ground motions in topographies and basins needs three-dimensional modeling because of 
numerous reasons. The response of a 3D topography depends on the angle, azimuth and type 
of incident wave. Lateral variations of the sediment thickness could cause interaction of the 
alluvial layers to be dependent on the azimuth of the wave. In addition, the 3D curvature of 
the alluvium-basement interface could cause focusing of body waves for certain locations in 
the basin. These have led a number of researchers to study more realistic problems. Most of 
the published papers in this field are limited to simple geometries and axisymmetric cases. 
Sanchez-Sesma [1] considered diffraction of a vertical incident P wave by several types of 
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irregularities including canyon and alluvial basins using the c-complete family of wave 
functions. This study was limited to axisymmetric cases. Lee and Langston [2] investigated 
the wave propagation in a three-dimensional circular basin subjected to incident plane P and 
SH waves using a ray technique. Their solution was applicable only in the high frequency 
range. Lee [3] extended the method to study the case of a hemispherical alluvial valley, but 
his solution is applicable for irregularities of spherical shape only. Eshraghi and Dravinski 
[4] studied a non-symmetric model for P-, S- and Rayleigh waves also for alluvial valleys. 
Sanchez-Sesma et al. [5] investigated the response of an axisymmetric alluvial valley for 
incident SH-waves. Sanchez-Sesma et al. [6] obtained the polarization of waves for a 
cylindrical deposit.  

Some works have been done to study the 3D scattering from two-dimensional (2D) 
structures. Luco et al. [7] used an indirect boundary method to obtain the response of an 
infinitely long canyon of uniform, but arbitrary cross-section, in a viscoelastic layered half 
space, for incident P- and S- waves. Zhang and Chopra [8] investigated the same problem 
using the direct boundary element method for a homogeneous half-space including Rayleigh 
waves. The time-harmonic response of uniform, circular cylindrical valleys of semi-circular 
and semi-elliptical cross-section embedded in a uniform half-space using a combination of 
the boundary element method and the finite element method has been proposed for P, SV, 
SH and Rayleigh waves by Khair et al. [9-10]. Liu et al. [11] studied scattering of obliquely 
incident seismic waves by a cylindrical valley in a layered half-space using the combination 
of the finite and boundary element methods. 

The study of 3D alluvial valleys has been subject of other researches. Yomogida and 
Etgen [12] also used the finite-difference method to study the Los Angeles basin for the 
Whittier-Narrows earthquake. Hizada et al. [13] obtained 3-D simulations of surface wave 
propagation in the Kanto sedimentary basin. Later, Sanchez-Sesma et al. [14-15] studied 
wave amplification in three-dimensional alluvial valleys. Other numerical results were 
reported by Barros and Luco [16] to illustrate the time-harmonic, three-dimensional 
response of cylindrical valleys embedded in uniform and layered media under obliquely 
incident P and S waves. Scattering of plane harmonic waves by multiple dipping layers was 
conducted by Dravinski and Mossessian [17]. Mossessian and Dravinski [18] have also 
applied an indirect boundary integral equation method to study amplification of elastic 
waves by three-dimensional canyons of arbitrary shape. Reinoso et al. [19] have presented a 
direct boundary element method for calculating the three-dimensional scattering of seismic 
waves from irregular topographies and buried valleys due to incident P-, S- and Rayleigh 
waves. Mohammadnejad [20] has studied 3-D topographic effects and basins on 
amplification of earthquake waves. Gatmiri and Arson [21-22] have studied Seismic site 
effects by an optimized 2D BE/FE method. Lee et al. [23] have demonstrated Effects of 
Topography on Seismic-Wave Propagation by developing a new spectral-element mesh 
implementation to accommodate realistic topography. Recently, Rahimian et al. [24] have 
studied effects of arbitrary shaped surface topographies on earthquake ground motion using 
BEM in time domain. Because of the complexity of the problems in reality, closed form 
analytical solutions are not accessible for them. However, latest advances in computational 
techniques have made numerical approaches more practical for realistic problems. Boundary 
element method (BEM) is one of such approaches. This technique formulates the problem in 
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terms of boundary values. The main advantage of BEM, especially in comparison with finite 
element and finite difference methods, is that the discretization is only applied to the 
boundary, thus reducing the volume of modeling and the number of unknown variables. 
Moreover, the radiation condition at infinity is exactly satisfied in this method which is very 
striking for wave propagation problems. 

In this study, the BEM in frequency domain is employed. The accuracy of the present 
method is tested through comparison with results of some earlier studies. Numerical results 
for several multilayered alluvial valleys are presented. Influence of mechanical properties of 
sedimentary layers, dimensionless frequency of incident wave, soil layering, thickness of 
sedimentary layers and number of layers is investigated. 

 
 
2. PROPAGATION OF PLANE HARMONIC WAVES IN A HALF-SPACE 

 
Consider   as a homogeneous and linearly elastic three-dimensional half-space under the 
boundary  at 0y  . The propagation of plane harmonic waves in domain   is described 
by the Navier-Cauchy equation. For time-harmonic problems, with the dependence on time 
as exp t)(iω , the Navier-Cauchy equation is as follows 
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are the longitudinal and transversal wave velocities, respectively.   is the circular 
frequency of the incident wave and u is the displacement vector. The solution of the Navier-
Cauchy equation has to satisfy the traction-free boundary condition at the boundary . 

One method of solving equation (1) is to use potential functions. According to Helmholtz 
theorem, the displacement field u can be expressed as the sum of the gradient of a scalar 
field   , plus the curl of a vector field   , i.e. 

 
  u  (3) 

 
  must be such that the relation 0.  is satisfied. The displacement field in the form of 

equation (3) satisfies the Navier-Cauchy equation if the potential functions satisfy the 
following equations 
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with 11 c/k   and 22 c/k  the longitudinal and transversal wave numbers, respectively. 
Equations (4) are called the Helmholtz equations or the wave equations in the frequency 
domain (reduced wave equations). 
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Assume that the plane waves travel in the yx  plane, so it is yielded 0 z/ . By 
using the Helmholtz decomposition, the in-plane displacements u and v are given as 
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while the out-of-plane displacement  is as follows 
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Consider the reference coordinate system zyx ,, . In the general case that normal to the 

wave front, i.e. the wave propagation direction, lies in the )( yyyx  plane (Figure 1) 

where the zx  plane forms a horizontal incidence angle h with respect to the general 

plane zx  , the displacements in the general system are obtained by using the following 
transformation matrix as follows 

 

 























































 























v

u

v

u

v

u

hh

hh

T

cossin

sincos

0

010

0

 (7) 

 
Also, we have the following relations 
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Figure 1. Position of the propagation wave plane )( yyyx  relative to the reference 

coordinate system x – y – z 
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2.1 Incident SH wave 
The solution at any point in the half-space is given by the sum of I , the incident SH wave, 

and R , the reflected SH wave (Figure 2a): 
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where 3  is the incidence angle with respect to the y-axis, and Co  is the incident wave 

amplitude. The displacement field uo is given by  
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Figure 2. Incidence and reflection of waves in half-space 

 
2.2 Incident P wave 
The solution at any point in the half-space is given by the combination of I , the incident P 

wave, and R and R , the reflected P and SV waves, respectively (Figure 2b): 
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where 1   is the incidence angle relative to the y-axis, and Ao is the incident wave 
amplitude. The angle of the reflected SV wave relative to the vertical axis is given by 

)sin(sin 1
11

2   k , where   21

21 2112k /)/()(/   cc is the material constant. The 
amplitude ratios are defined by  
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The displacement field uo is as follows 
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2.3 Incident SV wave 
The solution at any point in the half-space is obtained through the combination of I , the 

incident SV wave, and R and R , the reflected SV and P waves, respectively (Figure 2c): 
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where 2  is the angle of the incident SV wave with respect to the y-axis, and Bo   is the 

incident wave amplitude. The reflection angle of the P wave relative to the vertical axis is 
defined by )sin(sin 2

1
1  k . The reflection coefficients are specified by  
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The displacement field uo is given by 
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The above solution is for incidence angles smaller than the critical one ))/(sin( kcr 11 . 
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3. SCATTERING BY THREE-DIMENSIONAL TOPOGRAPHIES 
 

Consider the half-space h  and the valley v  (Figure 3). The displacement field related to 

the half-space is uh and that of the valley is uv . The traction-free boundary condition applies 

on the free surface:  

 
0ht  on a

0vt  on c
 (17) 

 
In h , the total displacement uh  and the total traction th  are obtained by applying the 

principle of superposition as the sum of the free field plus the scattered field: 
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where the traction to  produced by the incident wave can be obtained from  
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Figure 3. The half-space h and the valley v  

 
Where ni are the components of the unit outward normal to the boundary, and the 

displacements u, v, and ω are the components of the free field motion uo(u ,v ,ω), given by 
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the expressions (10), (13), and (16) for a harmonic wave propagating in a three-dimensional 
half-space. As the total traction is zero on the boundary a , the traction due to the scattered 
wave can be written as 
 os tt   on a  (20) 

 
The displacements and tractions for the half-space due to the scattered wave can be 

obtained from the following matrix system using the BEM 
 

 0 shsh tGuH  (21) 
 

in which Gh and Hh are the influence matrices obtained from the integration of displacement 
and traction kernels over the boundary of the half-space, respectively. Referring to Figure 3, 
equation (21) can be written in the following more explicit form 

 
 0 ][][ dada
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By applying the traction free boundary condition on a, the above equation is written as 
 

 adda
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where the displacements and tractions at the interface d, i.e. d

su and d
st , and a

su are 

unknown. On the other hand, total displacements and tractions of the valley can be 
computed from the following system of equations using the BEM 

 
 0 vvvv tGuH  (24) 

 
According to Figure 3, this equation can be expressed in the following more obvious 

form  

 0 ][][ dcdc
vvvvvv ttGuuH  (25) 

 

Because the total traction 0
c

vt , the above equation becomes 

 
 0 ddc
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Now, equation (23) for h  and equation (26) for v  are combined together. 

Compatibility and equilibrium conditions at d are as follows 
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The total displacements and tractions on d are given by ddd
osh uuu   
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and ddd
osh ttt  , respectively. Substituting these conditions into equation (26) for 

v yields 

 0 ][][ ddddc
osvosvvv ttGuuHuH  (28) 

 
The resulting system from equations (23) and (28) is 
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The total displacements at the surface of the valley are obtained directly from the above 

equation, while the total displacements and tractions for the half-space are given by equation 
(18) applying the principle of superposition. Substituting the scattered values in terms of the 
total values into equation (29), a system of equations with unknowns of total displacements 
and tractions is obtained  
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Although the system has been formulated for two regions, the half-space and the valley, 

the approach is general and applicable to several regions (i.e. the half-space and strata inside 
the valley). 

 
 

4. COMPARISON WITH AVAILABLE SOLUTIONS IN THE LITERATURE 
 

In order to appraise the accuracy and efficiency of the represented formulations for 
computing the surface displacement amplification, a number of examples are considered. 
The employed computer program is based on BEM in frequency domain. BEM formulations 
for time-harmonic elastodynamic problems have been presented by Dominguez [25] in full 
details. 

 
4.1 Hemispherical valleys 
Responses obtained by Sanchez-Sesma [1] and Reinoso [26] for the 3D scattering of a 
hemispherical alluvial valley (Figure 4) due to vertical incidence of P wave has been used to 
test the accuracy of the present method for layer media.  

The comparison of Reinoso results [26] with ours is presented in Figure 5 for the 
normalized frequency p=0.5. The dimensionless frequency p is introduced as the ratio of 
the diameter of the valley and the wavelength of the incident longitudinal wave in the half-
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space   (p  12 caa //  ), where   is the actual frequency of the incident P wave and 

a  is the radius of the valley. Material properties for the half space are 
1 hshs  and 25.hs , and for the valley are 3.v , 6.v and 3.v , where   is the 

density,   is the shear modulus, and   is the Poisson’s ratio. The shear wave velocity for 

the half space is equal to 1 and the longitudinal wave velocity is 3 . Our results are drawn 

with a continuous line, while Reinoso results are drawn with filled circles.  
 

 

Figure 4. A hemispherical alluvial valley of radius a  
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Figure 5. Amplitude of components of the surface displacement field for a hemispherical valley 

due to vertical incidence of P waves with normalized frequency p=.5 
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This valley is also subjected to SH wave with incidence angle of 30 relative to the 
vertical axis. Material properties of the half space are similar to those of the previous one, 
while the properties of the valley are as follows: 2025.v , 1v , and 3.v . Surface 
displacement amplitudes at stations along the x- and z-axes for two normalized frequencies 

15 ,.s )/(  2cas  are shown in Figure 6. The dimensionless frequency s  is defined 
as the ratio of the diameter of the valley in the incident wave plane to the wavelength of the 
incident shear wave. The results of Sanchez-Sesma [10] are plotted with filled circles. All 
distances are normalized with respect to the radius of the valley. As can be seen, the 
comparison between both results is satisfactory.  
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Figure 6. Amplitude of components of the surface displacement field for a hemispherical valley 

due to incident SH wave with incidence angle of 30 , horizontal incidence angle 0 , and 
normalized frequencies 1,5.s   
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5. STUDY OF SOME SURFACE TOPOGRAPHIES 
 

In order to assess the validity of the present formulations for the computation of the surface 
displacement field amplification, the results were compared with other reported solutions 
available in the literature. A number of problems are given next. 

 

 

Figure 7. An elliptical-shaped alluvial valley 

 
5.1 Elliptical-shaped valleys 
In order to investigate the influence of the shape of the alluvial valleys on 3D scattering of 
waves, two elliptical-shaped valleys are considered. The equation of the semi-ellipsoid is 
defined by 012

3
22

2
22

1
2  yazayax ,/// , where 1a , 2a and 3a are the principal axes of 

the ellipsoid along the Cartesian coordinates x, y, and z, respectively (Figure 7). In reality, 

1a and 3a are half of the diameters of the ellipsoid along the x- and z-directions, respectively, 

and 2a is the depth of the valley. Results are presented for two elliptical-shaped valleys 

with 321 aaa  . All distances are normalized relative to the half-width of the valley along 

the z-axis (i.e. 3a ). In addition to the actual frequency , a dimensionless frequency s  is 
defined as the ratio of the diameter of the valley in the incident wave plane to the 
wavelength of the incident shear wave. The dimensions of the axes of the first valley are 

12 321  aaa ,  and those of the second one are 15 321  aaa ,. . Properties for the half 

space are 1 hshs  and 25.hs , and for the valley are 2025.v , 1v , and 3.v . 
The material properties, the actual frequency of the incident wave, and the depth and width 
of the valleys lying in the incident wave plane are the same for both of these valleys in order 
to make rational comparisons. Both valleys are subjected to SH waves with incidence angles 
of 0  and 30 relative to the vertical axis y. The plane of the incident SH waves is the yz 
plane (horizontal incidence angle 90 ). Results for the normalized frequency 5.s (relative 

to 3a ) are depicted by Figures 8 and 9 for the first and second valleys, respectively. The 
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graphs on the left-hand side correspond to the displacement field for stations along the x-
axis, and the ones on the right-hand side correspond to stations along the z-axis. As 
expected, surface displacement field for stations along the z-axis only has one component in 
the x-direction. That is, the motion in the plane of the incident SH wave only occurs in the 
out-of-plane direction which constitutes the out-of-plane motion. However, for stations 
along the direction perpendicular to the plane of the incident SH wave (i.e. z-direction) all 
three components of the displacement field are present except for the vertical incidence 
which has only two in-plane components of motion. The comparative study of the responses 
shows that, for the narrower valley in the out-of-plane direction, a clear reduction occurs for 
all components of the displacement field in comparison to the other model. 
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Figure 8. Amplitude of components of the surface displacement field for an elliptical-shaped 
valley ( 1aa,2a 321  ) due to incident SH wave with incidence angles of 0, 30, horizontal 

incidence angle 90 , and normalized frequency 5.s   
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Figure 9. amplitude of components of the surface displacement field for an elliptical-shaped 
valley ( 1aa,5.a 321  ) due to incident SH wave with incidence angles of 0, 30, horizontal 

incidence angle 90, and normalized frequency 5.s   

 
5.2 Hemispherical valleys with one alluvial layer 
In order to study the effect of the soil layering, surface topography, and thickness and 
properties of each layer on amplification potential of the site, hemispherical valleys with one 
alluvial layer are regarded. The internal radius of these valleys is 1a , and the thickness of 
their alluvial layer is equal to t  (Figure 10). Therefore, the internal radius is the same for all 
these valleys, but their external radius is different which is equal to t1 . Also, properties for 
the half space material are assumed to be the same: 31/hs , 1hs , and 25.hs . These 
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valleys are subjected to vertical incidence of P, SH, and SV waves with azimuthal angle of 
incidence 0 . Results for the normalized frequency p=.25 (relative to a ) are plotted with 
dotted, dashed, and solid lines for three thicknesses 218040t .,.,. , respectively, in Figures 
11 and 12.  

 

Figure 10. a hemispherical valley with one alluvial layer 
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Figure 11. amplitude of components of the surface displacement field for a hemispherical valley 
with one alluvial layer due to vertical incidence of SH, SV, and P waves with normalized 

frequency p=.25 ( 1vv   and 3/1v  ). Results are plotted with dots for 4.t  , with dashed 

lines for t=0.8, and with solid lines for t=1.2 
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Figure 12. amplitude of components of the surface displacement field for a hemispherical valley 
with one alluvial layer due to vertical incidence of SH, SV, and P waves with normalized 

frequency p=.25 ( 2025.v  , 1v  , and .3ν v  ). Results are shown with dots for 4.t  , with 

dashed lines for t=.8, and with solid lines for 1.2t   

 
In the first case, material properties related to the alluvial layer are considered such that 

the shear wave velocity in it would be greater than that of the half space ( 1 vv  and 

31/v ); the shear wave velocity in the half space is equal to 0.577, and it is equal to 1 for 
the alluvial layer. As can be seen, by increase of the alluvial layer thickness the 
amplifications decrease. 

In the second case, contrary to the first one, material properties of the alluvial layer are 
assumed to be such that the shear wave velocity related to it would be smaller than that of 
the half space ( 2025.v , 1v , and 3.v ); accordingly, the shear wave velocity in the 
alluvial layer will be equal to .45. In contrast with the first state, increasing of the alluvial 
layer thickness produces larger amplifications.  

In real, as the thickness of the alluvial layer increases, if the soil of this layer is softer 
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than that of the half space, i.e., if the shear wave velocity is smaller in it, the amplifications 
increases, and vice versa, if this layer consists of the more rigid soil than the half space, the 
amplifications decrease. In this respect, the more the difference between properties of the 
alluvial layer and the half space is, the more apparent the influence of the soil characteristics 
on the surface displacement field amplification is.  

 
5.3 Hemispherical valleys with two alluvial layers 
Again, in order to study the effect of the soil layering, and thickness and mechanical 
properties of each layer on the scattered displacement field, hemispherical valleys with two 
alluvial layers are considered. The external radius of these valleys is 1a , and the thickness 
of their first alluvial layer is equal to t  (Figure 13). Material properties of the half space are 
the same for all these valleys: 1 hshs  and 25.hs . Responses of these valleys due to 

two angles of incidence 0 and 30  and horizontal angle of incidence 0  of SH and P waves 
for the normalized frequency 5.s  (relative to a ) and three thicknesses 420 .,.,t are 

presented in Figures 14 and 15. Results are drawn with solid lines for 0t , with dashed 
lines for 2.t , and with dots for 4.t . 
 

 

Figure 13. A hemispherical valley with two alluvial layers 

 
In the first state, mechanical properties of the first alluvial layer are assumed to be 

311 . vv   and 61 .v  , and those of the second layer are taken to 

be 20252 .v , .12 v , and 32 .v , where shear wave velocity for the first alluvial layer 
(.707) is greater than that of the second layer (.45). It is seen that by increase of the first 
alluvial layer thickness the amplifications decrease. 

In the second state, the geological material of these two alluvial layers is exchanged with 
each other. Contrary to the first state, by increase of the first alluvial layer thickness larger 
amplitudes are observed.  

Indeed, the comparative study manifests that as the thickness of the first alluvial layer 
increases, if the soil of this layer is softer than that of the second layer, i.e., if the shear wave 
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velocity is smaller in it, the surface ground motion amplifications increases, and vice versa, 
if this layer consists of the more rigid soil than the second layer, the amplifications decrease. 
In sum, it can be concluded that the larger the shear wave velocity is, the harder and safer 
the layer will be.  
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Figure 14. amplitude of components of the surface displacement field for a hemispherical valley 
with two alluvial layers due to incident SH and P waves with incidence angles of 0, 30, 
horizontal incidence angle 0, and normalized frequency 5.s   ( 3.1v1v  , 6.1v  and 

2025.2v  , .12v  , 3.2v  ). Results are plotted with solid, dashed, and dotted lines for three 

thicknesses t=0,.2, .4, respectively 
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Figure 15. amplitude of components of the surface displacement field for a hemispherical valley 
with two alluvial layers due to incident SH and P waves with incidence angles of 0, 30, 

horizontal incidence angle 0, and normalized frequency 5.s   ( 3.,.1,2025. 1v1v1v    
and 3.2v2v  , 6.2v  ). Results are drawn with solid, dashed, and dotted lines for three 

thicknesses t=0, .2, .4, respectively 
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6. CONCLUSIONS 
 

The scattering of three-dimensional surface topographies due to incident plane harmonic 
SH, SV, and P waves for vertical and oblique incidences was investigated by using BEM in 
frequency domain. A comparative study was done to show the validity of the presented 
formulations. It can be realized that in incidence where the propagation wave path is 
perpendicular or almost  perpendicular to the inclination wall, the motion tends to be more 
amplified than the case where incidence takes place parallel to the slope. Also, graphs are 
representative of amplification factor as a function of the topography coordinates. From 
numerical aspects of the solution, it is concluded that in order to provide acceptable 
convergence, as the frequency of the incident wave or its incidence angle relative to the 
vertical axis increases, the length of discretization over the free surface of the half space 
must increase as well. 

One practical implication of this study is that soft layers, in which shear wave velocity is 
low, are prone to highly amplify the surface ground motion, while rigid layers act more 
safely against earthquake. Finally, it is concluded that a realistic and complete study of site 
effects on surface ground motion amplification requires three-dimensional modeling of 
irregularities. In addition, surface topography, soil layering, thickness and material 
properties of each layer, incident wave type, related frequency, and azimuth and angle of 
incidence must be considered. 
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