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ABSTRACT 
 

In statically indeterminate prestressed concrete structures, prestressing force produces 
secondary moment in addition to primary moment due to eccentricity. This condition is 
different from statically determinate structures where there is no secondary moment effect 
and the moment due to prestressing is due to primary moment only, i.e., prestressing force 
times eccentricity. With the presence of secondary moment, prestressing force design 
becomes more complex, because the secondary moment is a function of prestressing force 
and the geometry of the structures. In addition, considering that in general the cable profile 
is parabolic or another type of curves, which also occurs at continuous supports, the load 
balancing method may not be used. To cope with this problem moment due to prestressing 
force is assumed to be the prestressing force times a β coefficient. In statically determinate 
structures the β coefficient equals the cable eccentricity to the center of gravity of the 
section. Therefore, the β coefficient can be considered as a statically indeterminate 
eccentricity. By assigning that the moment due to prestressing force as a function of 
prestressing force and by considering the allowable stress requirements at top and bottom 
fibers, equations can be derived to compute the prestressing force in statically indeterminate 
structures. From the derived equations, the upper and lower bounds of prestressing force can 
be determined if the section satisfy the requirements. If the optimum prestressing force is 
needed, the difference of lower and upper bounds should be minimum. Nevertheless, the 
difference of lower and upper bounds can be considered as a safety level. At the end of the 
paper examples are presented to show the application of the proposed method.  

 
Keywords: Prestressed concrete; prestressing force; statically indeterminate structures; 
secondary moment; moment coefficient 

 
 

1. INTRODUCTION 
 

Prestressed concrete structures have become an alternative way of design in order to obtain 
sophisticated and economical structures particularly for long span concrete structures. With 
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the simple principles to give compression to the concrete so that during the service load the 
tensile stress will be eliminated while limiting the compressive stress within the prescribed 
value, prestressed concrete has become an attractive approach in concrete structures design. 
However, some difficulties may arise in designing prestressed concrete members for 
statically indeterminate structures. This is due to the presence of secondary moment when 
the prestressing force is applied [1-5]. The interaction between the secondary moment and 
the magnitude of prestressing force produces more challenging tasks, because the magnitude 
of the secondary moment might be significantly large enough and can not be neglected. 

When Lin’s load balancing method [1] is used, some conditions should be satisfied. First, 
the cable profile is assumed curved or parabolic in each span of the member with no smooth 
transition. Therefore, the drastic changes in the cable profile in continuous supports are 
neglected in the computation so that the prestressing force can balance a part of the external 
loading in every span of member. Besides that we can not have cable eccentricities at the 
end supports as those eccentricities produce additional moments. This condition results in 
that when the prestressing force is obtained by using load balancing method, we have to 
check the stress to account for those two conditions.  

Another method to handle the secondary moment is by designing the cable profile so that 
the cable is concordant, i.e., the C-line (the profile of the line of thrust) coincides with the T-
line (the profile of tendon), in the case without external loading [3, 4]. By using this 
procedure the secondary moment would be zero. However, obtaining such profiles is not an 
easy task and needs some procedures to transform the tendon profile. 

In this paper a simple procedure to obtain the magnitude of prestressing force in statically 
indeterminate concrete elements is proposed. By assuming  that the total moment due to 
prestress  as a linear function of the magnitude of prestressing force, and employing the 
relationships between stress limitation,   the magnitude of prestressing force can be obtained. 
 The inequalities then can be solved defining the lower and upper bounds of the prestressing 
force so that when such prestressing force is applied to the members, the stress will be in the 
prescribed limit, with the secondary moment has been taken into account. With this 
procedure the determination of prestressing force will be simple. In addition,   this method 
can be considered as a general procedure that can be used either for statically determinate or 
indeterminate structures. In statically determinate prestressed concrete structures, the value 
of secondary moment would be zero. It is to be noted that the economical design will be 
accomplished when the difference between lower and upper magnitudes of prestressing 
force is small. The difference between the lower and upper bound magnitudes of 
prestressing force  can be considered as “a degree of safety”.   

 
 

2. SECONDARY MOMENT 
 

In statically determinate structures, the moment due to eccentricity is the same as the 
moment due to the effect of equivalent load due to prestressing force.  As can be seen from 
Figure 1, the moment due to the eccentricity of the tendon to the center of gravity of the 
section at any point is 

 FeM1   (1) 
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Figure 1. Statically determinate structures 

 
Due to prestressing, the transverse equivalent load is generated along the beam’s span. 

The force at the end of the beam can be seen in Figure 2 (a) which can be simplified as 
follows: 

(a) Vertical component of force = F sin  , if   is small the vertical component becomes 
= F  , 

(b) Horizontal component of force  = F cos  , if   is small the horizontal component  
becomes = F. 

 
The moment due to prestressing force is depicted in Figure 2(b). 
 

 

Figure 2. Force due to prestressing and bending moment due to eccentricity of prestressing force 
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If the tendon’s trajectory is curved it produces an equivalent uniform load = q to the 
beam as shown in Figure 3(a). The total load should be the same as the vertical component 
of prestressing at ends of beam in Figure 2 (a).  The equilibrium of vertical forces results in   

 

  F2Lq  (2a) 
so that 

 L

F2
q




 
(2b) 

 

 

Figure 3. Equivalent load and moment due to equivalent load in statically determinate beam 

 
When the trajectory is parabolic, the ordinate of the tendon can be expressed as 
 

 
2L

)xL(ex4
y




 
(3) 

so that 

 
L

e4

dx

dy

0x









  
(4) 

 
and the vertical load becomes uniformly distributed as 

 

 
2L

Fe8
q 

 
(5) 
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Moment due to equivalent uniform load in the middle span is 
 

 8

qL
M

2

2 
 

(6a) 

 
and by substituting Equation (5) into (6a) results in 
 

 FeM2   (6b) 
 
It can be seen that moment due equivalent load (M2) in equation (6b) is the same as 

moment due to  prestressing force and eccentricity (M1) in Equation (1).  
Consider now a hypothetical indeterminate structure as shown in Figure 4.  Moment due 

to prestressing force and eccentricity M1 is the same as in Equation (1), i.e., prestressing 
force times eccentricity. While moment due to eccentricity at beam ends is equal to zero, 
assuming that there is no eccentricity between tendon profile and center of gravity of the 
section.  The bending moment diagram due to prestressing and eccentricity is the same as in 
Figure 2 (b). 

Since the tendon’s trajectory in Figure 4 is the same as the one in Figure 1, it produces 
the same uniform loading q.  Therefore, moment at beam ends due to equivalent uniform 
load in Figure 4 will be  

 12

qL
M

2

2 
 

(7a) 

 
and by substituting Equation (5) results in 

 
Fe

3

2
M2 

 
(7b) 

Similarly the moment at midspan will be 
 

 24

qL

12

qL

8

qL
M

222

2 
 

(8a) 

    
By substituting Equation (5) results in 

 
Fe

3

1
M2 

 
(8b) 

 

Figure 4. Statically indeterminate structure 
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The bending moment diagram due to uniform loading for the structure in Figure 4 is 
shown in Figure 5. If the bending moment diagram in Figure 5 is compared with the one in 
Figure 2 (b) or Figure 3, it is clear that, due to the uniform loading produced by prestressing 
force, both bending moment diagrams are different. If bending moment due to eccentricity is 
called primary moment, the difference between the moment due to equivalent load and the 
moment due to eccentricity is called the secondary moment, Ms,  i.e., 

 

 12s MMMM   (9) 

 
Therefore, for statically indeterminate structures, if only moment due to eccentricity is 

included, the secondary moment should be added in the stress calculation. 
 

 

Figure 5.  Moment due to uniform loading for the structure in Figure 4 

 
Due to the presence of the secondary moment in statically indeterminate structures, the 

design becomes more complex. One of the methods to avoid this is by using load balancing 
method [1]. However, there are some limitations on using this method. One limitation is that 
the cable profile should have a smooth transition in the middle support for the case of 
continuous beams. In addition, in order to cancel the secondary moment, the eccentricity at 
the beam ends should be zero. Therefore, load balancing method is more appropriate to be 
used for statically determinate structures. Another method to avoid of calculating the 
secondary moment is by designing a concordant cable, where the C-line is designed to 
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coincide with the T-line in the case of zero external loading. However, the design process 
becomes more complex.  

 
 

3. MOMENT COEFFICIENT-  
 

In this paper the determination of prestressing force in statically indeterminate structures is 
obtained through the introduction of the moment coefficient due to prestressing force as  , 
i.e., the moment due to prestressing force  at initial condition is 

 

  iFi FM  (10a) 
 

and assuming that the structure is linearly elastic we can obtain moment due to prestressing 
force at final condition as 
 

  FMF  (10b) 
 

where FiM = moment due to prestresssing force at initial (transfer), FM  = moment due to 

prestresssing force after loss of prestress, iF = prestressing force at transfer and F= 
prestressing force after loss of prestress (the effective force). It is to be noted that for 
statically determinate structures the coefficient  turns to be eccentricity e. In view of that 

coefficient   can be considered as a ‘statically indeterminate eccentricity’.  
Effective prestressing force at the final condition after loss of prestress has the relation  
 

 iFF   (11) 
 
= effective prestress coefficient after loss of prestress.  
 
To obtain the moment due to prestressing some assumptions are taken as follows: 
 
a) Cable eccentricity is small compared to the beam span; 
b) Loss of prestress due to cable friction is neglected; 
c) The number of cable is the same through the span length. 
 
The determination of the equivalent load due to prestressing can be made with reference 

to Figure 6.  
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Figure 6. Computation of equivalent load and primary moment in beam: (a) beam with cable 
profile, (b) primary moment, (c) equivalent load due to prestressing 

 
End A: 

Horizontal load = FcosF 1  , 

Vertical load = 11 FsinF  . 
Span AB: 
Vertical load  point load = 2F , 

Vertical uniform load = 13 a/F . 

 
Span BC: 
Vertical uniform load = 13 a/F , 

Vertical uniform load  = 24 a/F . 
 
End C: 

Horizontal load = FcosF 5  , 

Vertical load = 55 FsinF  , 
Moment = F e. 
 
Having obtained the equivalent load on beam due to prestressing force, internal forces in 

beam can be obtained.  The secondary moment can be computed by subtracting the moment 
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due to equivalent load by the primary moment due to eccentricity. The coefficient    can be 
obtained from structural analysis by applying prestressing force as a unit force.  

 
By assuming that: 
(a) compression stress is assigned as negative ( ) and tension stress is positive (+); 
(b) positive moment when the bottom fiber is in tension; 
(c) prestressing force F and Fi is assigned to be positive in the equation; 
 
The stress in beam shall satisfy the provision provided in the building codes as follows.   
 
At transfer (initial condition) at the top fiber if the stress is in tension: 
 

 
ti

c

tDL

c

tFi

c

i

I

yM

I

yM

A

F


 
(12a) 

 
If the result is in compression: 
 

 
ci

c

tDL

c

tFi

c

i

I

yM

I

yM

A

F


 
(12b) 

 
where CA = area of section, Ic = second moment of area, yt = neutral axis distance to top 

fiber, MDL = moment due to dead load, ti  = allowable tension stress in concrete at transfer, 

ci = allowable compression stress in concrete at transfer. 

 
At bottom fiber if the stress is in tension: 
 

 
ti

c

bDL

c

bFi

c

i

I
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A

F


 
(13a) 

 
If the stress is in compression: 
 

 
ci

c

bDL

c

bFi

c

i

I

yM

I

yM

A

F


 
(13b) 

 
where yb = neutral axis distance to bottom fiber. 

 
At the final stage (after loss of prestress) the following conditions shall be satisfied. At 

top fiber if the stress is in tension: 
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t

c

tTL

c

tF

c I

yM

I

yM

A

F


 
(14a) 

 
If the stress is in compression: 
 

 
c

c

tTL

c

tF

c I

yM

I

yM

A

F


 
(14b) 

 

t = allowable tension stress at the final condition, and c = allowable compression 

stress  at the final condition. 
 
At bottom fiber if the stress is in tension: 
 

 
t

c

bTL

c

bF

c I

yM

I

yM

A

F


 
(15a) 

 
If the stress is in compression: 
 

 
c

c

bTL

c

bF

c I

yM

I

yM

A

F


 
(15b) 

 
In order to obtain the magnitude of prestressing force define first the following:  
 

 c

c

A

I
r 

 

(16) 

 

 t

c
t y

I
Z 

 
(17) 

 

 b

c
b y

I
Z 

 
(18) 

 
Note that instead of using primary moment F  e or Fi  e , moment due to equivalent 

load MF or MFi is used in inequalities in Equations (12) – (15). The task of structural 
designers is to obtain the prestressing force F or Fi such that the stresses are less than the 
allowable stresses stipulated in building codes. This can be achieved by utilizing Equations 
(10a) and (10b). In order to obtain the coefficient , the prestressing force can be assigned as 
a unit force in structural analysis. 
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4. PRESTRESSING FORCE BASED ON INITIAL CONDITIONS 
 

(A). BASED ON ALLOWABLE STRESS AT THE TOP FIBER 
If Equation (12a), i.e., when the stress at top fiber is in tension, is multiplied by Equation 
(17) and considering Equations (16) and (10a) results in 

 

 

DLtti
t

2

i MZ
y

r
F 










 

(19) 

 

If 0
y

r

t

2









 the inequality in Equation (19) becomes 

 













t

2
DLtti
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y

r

MZ
F

 

(20a) 

If 0
y

r

t

2









 , the inequality in Equation (19) becomes 

 













t

2
DLtti

mini

y

r

MZ
F

 

(20b) 

 
Similarly from Equation (12b), i.e., when the stress at top fiber is in compression, we can 

obtain as follows:  

If 0
y

r

t

2









 :

 

 













t

2
DLtci
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y

r
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(21a) 

If 0
y

r

t

2





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


 : 

 









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

t

2
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y

r
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F

 

(21b) 

 
(B). BASED ON ALLOWABLE STRESS AT THE BOTTOM FIBER 
On the other hand, from the condition of stress at the bottom fiber at transfer in Equation 
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(13a) is multiplied by Equation (18) and by using Equations (16) and (10a) we can obtain as 
follows: 

If 0
y

r

b

2









 : 

 








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


b
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y

r
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(22a) 

If 0
y

r

b

2
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








 : 

 




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


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


b

2
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y

r
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F

 

(22b) 

 
Similarly, from Equation (13b) we can obtain as follows: 

If
 

0
y

r

b

2









 : 

 




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







b

2
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y

r

MZ
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(23a) 

If 0
y

r

b

2









 : 

 




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
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

b

2
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r
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(23b) 

 
 

5. PRESTRESSING FORCE BASED ON FINAL CONDITIONS (AFTER LOSS 
OF PRESTRESS) 

 
(A). BASED ON ALLOWABLE STRESS AT THE TOP FIBER 
If Equation (14a), i.e., when the stress at top fiber is in tension, is multiplied by Equation 
(17) and considering Equations (16), (10b) and (11) results in 
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If 0
y

r

t

2





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


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


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
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r
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(24a) 
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r
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Similarly from Equation (14b), when  the stress condition is in compression, we can 

obtain: 

If 0
y

r

t

2
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


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If 0
y

r
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


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
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(25b) 

             
(B). BASED ON ALLOWABLE STRESS AT THE BOTTOM FIBER 
On the other hand from the stress at the bottom fiber at the final stage in Equation (15a), i.e., 
when the stress is in tension, is multiplied by Equation (18) and considering Equations (16), 
(10b) and (11) results in as follows: 

If 0
y

r

b

2









 : 
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



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Similarly from Equation (15b) we can obtain as follows: 
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y

r

b

2
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


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


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(27a) 

If 0
y
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 

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6. APPLICATION 
 

Equations (20)-(27) may be used to define the range of prestressing force Fi to satisfy the 
stress conditions at the initial and final stage (after loss of prestress). It is to be noted that the 
resulting prestressing force will satisfy the stress conditions in Equations (12)-(15) and 
alleviate the use of trial and error or designing concordant cable due to the presence of 
secondary moment in statically indeterminate structures. When optimum design is desired 
theoretically Fimax = Fimin or the difference of prestressing force Fimax and Fimin  obtained from 
Equations (20)-(27) should be minimum. However, if Fimax is smaller than Fimin means that 
the section is too small. 

It is to be noted also that the equations derived in this paper can be used for both 
statically determinate and indeterminate structures where the coefficient   in Equations 
(10a) and (10b) equals the cable eccentricity e since the secondary moment is equal to zero. 
The coefficient   here can be viewed as ‘statically indeterminate eccentricity’ because in 
statically determinate structures the moment due to prestressing equals to the force times 
eccentricity. In addition   can be viewed as moment coefficient (influence) because when F 
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or Fi equals to unity the moment in Equations (10a) and (10b) equals to  . 
In multi-storey buildings when the magnitude of the prestressing force in the beam  may 

be different from one floor to another (or event might be different from beam to beam for a 
particular floor), the resulting equations may still be used to obtain the prestressing force 
provided that the ratio of prestressing force are known for every beam. In this case the ratio 
of prestressing force can be estimated based on the external load to be carried by each beam 
in the structures.  

Because it is uneconomical to design the prestressing force to satisfy all loading 
conditions, usually the prestressing force is obtained based on gravity load only. For 
structures built in earthquake zones, where there are load reversal applied to the members, 
ordinary (non-prestressed) reinforcements are needed.  In this case  

 

 un MM   (28) 

 
where = strength reduction factor, nM = nominal (resistance) moment including 

prestressed and non-prestressed reinforcement, and uM = ultimate moment due to external 

load. For statically indeterminate structures, moment due to external load should include the 
secondary moments from prestressing force with load factor is set as unity  

 

 ssEELLLDLDu MMMMM   (29) 

 
where D , L , E  are load factors for dead, live and earthquake loads stipulated by building 

codes, respectively, while s  is load factor for the effect of prestressing force.  The value of 

s is taken as to 1. DLM , LLM  and sM  are as before and EM   is moment due to 

earthquake. 
Consider now a nine-story building as shown in Figure 7.  The dimension and property of 

beams are shown in Table 1. The structure is subjected to dead, live and earthquake loads as 

shown in Table 2. Concrete strength '
cf  = 30 MPa, at transfer concrete strength, '

cif  = 25 

MPa. The allowable stresses are as follows: 

at transfer: '
cici f6.0  and '

citi f25.0 ;  

at final condition: .
cc f45.0  and '

ct f5.0 . 

 
The tendon’s trajectory is taken as double curvatures and at each end has horizontal 

alignment  as shown in Figure 7. 
 



Y. Arfiadi and M.N.S. Hadi 

 

54 

Tendon’s trajectory Floors 1-7 

 
Tendon’s trajectory Floors 8-9 (roof) 

 

 

Figure 7. Nine story building  
 

Table 1: Beam properties 

Floor 
B 

(m) 
H 

(m) 

Flange  
width 
bf (m) 

Flange 
thickness 

t(m) 
ya (m) yb (m) 

Ac 

(m2) 
Ic (m

4) 

Cable 
eccentricity 
at beam’s 
end e (m) 

9 0.45 0.70 2.35 0.12 0.23011 0.47177 0.543 0.024260 0.028230 

8 0.45 0.70 2.35 0.12 0.23011 0.47177 0.543 0.024260 0.028230 

7 0.40 0.60 2.30 0.12 0.18308 0.41692 0.468 0.014208 0.013077 

6 0.40 0.60 2.30 0.12 0.18308 0.41692 0.468 0.014208 0.013077 

5 0.40 0.60 2.30 0.12 0.18308 0.41692 0.468 0.014208 0.013077 

4 0.45 0.60 2.35 0.12 0.19012 0.40988 0.498 0.015494 0.020120 

3 0.45 0.60 2.35 0.12 0.19012 0.40988 0.498 0.015494 0.020120 

2 0.50 0.60 2.40 0.12 0.19636 0.40364 0.528 0.016735 0.026364 

1 0.50 0.60 2.40 0.12 0.19636 0.40364 0.528 0.016735 0.026364 
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Table 2: Dead, live and earthquake loads  

Lantai qDL (kN/m) qLL (kN/m) E (kN) 

9 25.43 3.60 69.52 

8 19.10 5.40 63.56 

7 18.12 5.40 52.46 

6 18.12 5.40 44.89 

5 18.12 5.40 39.68 

4 18.70 5.40 35.21 

3 18.70 5.40 29.90 

2 19.30 5.40 23.07 

1 19.30 5.40 12.40 

 

 

Figure 8. Equivalent load due to prestressing force 
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Due to the tendon’s trajectory, equivalent load applied to members due to prestressing 
force is depicted in Figure 8 in which for Floors 1-7: 

 
 qp1 = F 1/l1= F/r1 = 0.0445 F 

 
where 1≈ tg 1≈ sin 1=l1/r1, r1 = 22490 mm = 22.49 m and l1 = 2800 mm. 

 
Similarly equivalent load for Floors 8-9: 
 

 qp2 = F/r2 =0.0617 F 
 

where r1 = 16200 mm = 16.2 m. 
 
Structural analysis is done. In order to obtain coefficient   prestressing force is taken as 

a unit force. Results of structural analysis are presented in Tables 3 and 4. 
 

Table 3: Midspan moment for beams and coefficient  

Floor No MDL (kNm) MLL (kNm) MTL (kNm)  (m) 

9 315.269 42.577 357.846 -0.246 

8 180.907 54.280 235.187 -0.221 

7 175.599 52.017 227.616 -0.175 

6 174.481 52.044 226.525 -0.175 

5 172.159 51.348 223.507 -0.173 

4 177.630 51.237 228.866 -0.173 

3 175.782 50.812 226.595 -0.172 

2 180.778 50.533 231.311 -0.172 

1 183.314 51.297 234.611 -0.168 

 
To obtain the prestressing force, Equations (20) – (27) are used, where loss of prestress is 

taken 20% such that  = 0.80. In this case it is assumed that prestressing force at each floor 
will be the same. However, if needed the prestressing force at each floor can be different by 
assigning a ratio from floor to floor. From the results of Equations (20) – (27) and as shown 
in Table 5, Fimin = 796.21 kN and Fimax = 2766.8 kN.  The  value of prestresing force at 
transfer can be taken as the average value, i.e.,  Fi = 1780 kN. Effective prestress after 
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transfer F = 0.80 x 1780 = 1424 kN. 
 

Table 4:  Left-end moment for beams and coefficient  

Floor No MDL (kNm) MLL (kNm) MTL (kNm) (m) ME (kNm) 

9 –343.093 –50.624 –393.717 0.171 104.225 

8 –313.576 –85.522 –399.098 0.196 225.154 

7 –293.513 –87.784 –381.298 0.173 283.522 

6 –294.631 –87.758 –382.389 0.174 383.703 

5 –296.952 –88.454 –385.406 0.175 460.601 

4 –306.498 –88.565 –395.063 0.176 542.627 

3 –308.345 –88.989 –397.335 0.177 576.328 

2 –318.884 –89.268 –408.152 0.177 603.456 

1 –316.347 –88.505 –404.852 0.181 500.025 

 
Table 5: Prestressing force determination 

Left end Midspan 
Floor No 

Fimin (kN) Fimaks (kN) Fimin (kN) Fimaks (kN) 

9 578.68 5270.3 796.21 3189.4 

8 465.94 3730.1 373.60 3016.3 

7 622.62 3355.0 674.25 2771.3 

6 624.80 3332.9 671.85 2766.8 

5 634.03 3323.0 661.97 2779.9 

4 632.56 3534.2 629.47 2991.7 

3 639.04 3517.5 620.56 2996.3 

2 645.48 3764.4 587.61 3204.0 

1 625.89 3592.7 613.88 3266.3 

Fimin    = 796.21 kN 
Result 

Fimax = 2766.80 kN 
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In order to consider earthquake loading as an example consider a beam in the third floor 
where the section is shown in Figure 9: 

 
332.1053MMMM EELLLDLDu   kNm, for earthquake from right. 

 
Secondary moment at left end: Ms = MF – primary moment = 252.048 – 28.651 = 

223.397 kNm, where MF is taken from Equation (10b) and primary moment is prestressing 
force multiplied by eccentricity. For statically indeterminate structures: 

 
835,828397.223332.1052MMMMM ssEELLLDLDu  kNm, where 

s = 1.  

 

Figure 9. Beam section at left end with non-prestressed reinforcement  

 
The non-prestressed reinforcement can be obtained by following the design requirements 

stipulated in building codes such as in ACI 318-08 [6].  For simplicity, nominal moment due 
to prestressing can only be determined by assuming tension and compression reinforcement 
are the same such that the effective stress in prestressing can be determined from the 

approximation. The difference between 


uM
 and nominal moment due to prestressing has to 

be resisted by non-prestressed reinforcements sA  and
 

'
sA  for tension and compression 

reinforcement, respectively.  Prestressing strands can be taken  as  10 x 15,2 mm = 10 x 
140 = 1400 mm2, fpu = 270 ksi = 1860 MPa, fpy = 1670 MPa and non-prestressed 

reinforcement  fy = 400MPa. From this result '
ss AA 
 
= 4D25. 

 
 

7. CONCLUSIONS 
 

The determination of prestressing force in statically indeterminate structures is discussed in 
this paper. Equations are derived so that the magnitude of the prestressing force can be 
obtained directly from those equations. This is achieved by assuming that the value of 
moment due to prestressing force is represented by a moment coefficient   by assigning 

prestresing force as a unit force.  By using moment coefficient   it is not necessary to 
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consider the secondary moment since the effect of prestressing in statically indeterminate 
structures has been included in the calculation. Equations to obtain prestressing force  are 
derived from the stress requirements. It is to be noted that the derived equation can be used 
for both statically determinate and indeterminate structures. In statically determinate 
structures the moment coefficient   turns to be cable  eccentricity e since the primary 

moment equals to the moment due to equivalent load. Therefore,   can be viewed as the 
‘statically indeterminate eccentricity’, i.e., the ‘eccentricity’ in statically indeterminate 
structures. By assigning prestressing force as a unit force, structural analysis due to 
equivalent load can be done. By doing this the prestressing force can be obtained easily by 
using the derived equation.  It is to be noted that by using the method proposed in this paper 
it is not necessary to make tendon transformation in order to have zero secondary moments. 

An example on how to apply the procedure is presented to a nine-story building, where 
the prestressing force can be easily obtained from the derived equations. For structures with 
load reversal such as structures in earthquake zones it is uneconomical to design the 
prestressing force to satisfy all loading conditions. Therefore, to resist earthquake loading 
non-prestressed reinforcements are needed. The determination of non-prestressed 
reinforcement can be done following the provisions in building codes. 
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