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ABSTRACT

The dynamic stability is studied for thin-walled structural elements with variable stiffness
subjected to periodically alternating axial force in this paper. Here, the variation stiffness
means that it changes with periodically alternating axial force as for nonlinear geometry
stiffness matrix of thin-walled member. Damping is considered and the governing equations
are expressed in terms of a system of two second-order differential equations of the Mathieu
type, with periodic coefficients. MATLAB package is used to determine the stability
boundary. Numerical example is presented for the dynamic stability boundary of a simply
supported beam with I-shaped cross section. Comparison is made with finite element
analysis. Considered damping, some conclusions are drawn out: Excited zone of thin-walled
member is continuous, the dynamic instability is highly dominant in the first region while
the second and third instability regions are of much less practical importance; The larger the
ratio of damp, the less the dynamic instability region; The larger the ratio of damp, the more
time dependent components of the load wanted, absorption of damping is commonly of no
effect to prevent parametrically excited vibration from dynamic instability; Parametrically
excited vibration considering damping is much more different from damped forced vibration
in nature.

Keywords: Dynamic stability; variation stiffness; thin-walled member; finite element
method; parametrically excited vibration

1. INTRODUCTION

From viewpoints of engineering, all thin-walled members should keep steady first, that is,
keep balance and stability under disturbing forces, based on it, vibration characteristics can
be carried out later. Dynamic stability is one of the three criteria to dynamic design of
structures [1]. Therefore, researches on dynamic stability of thin-walled member is
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becoming more prevalent nowadays. Although history of research on dynamic stability of
thin-walled member, e.g., on parametrically excited vibration is not long, many researchers
devote themselves to the area [2-4].  But a few papers dealt to the parametrically excited
vibration with damping. Damp ratio value ties up dynamic stability zone. Only if damp ratio
is less than a certain point (about 0.25), i.e., time dependent components of the load (excited
parameter) is larger than a certain value, it is possible that the variation stiffness thin-walled
member loses its stability. In fact, as for steel structure, damp ratio is about 0.005~0.05
(less than 0.25), and for concrete structure, damp ratio is about 0.05 (less than 0.25).
Therefore, dynamic instability of thin-walled member is general, popular and universal,
damping should be considered here.

MATLAB programs are written to work out graph of dynamic instability regions. Two
non-dimensional parameters are introduced: one is the proportion of dynamic load to what
fundamental static buckling load minus static load leaves and another is the proportion of
load frequency to fundamental natural frequency. Therefore, the length, size of thin-walled
members as well as boundary conditions have no influence upon boundary of dynamic
instability regions. The programs are also valid for variable cross section thin-walled
members, even if it is not revised and enlarged. What is more, fundamental static buckling
load, fundamental natural frequency and frequency under axial force are obtained once done
and for all. If different model of static buckling and vibrating are to be considered, changing
finite element is not a tough issue. Finite element method (FEM) has not been noted in any
works on dynamic stability of variation stiffness thin-walled member yet. The paper intends
to be of some help for engineers in those areas of dynamic analysis and design.

2. BASIC ASSUMPTIONS

The usual assumptions in the field of strength of materials are made, i.e., Hooke’s law holds
and plane sections remain plane. As in the case of the applied theory of vibrations, the
influences of longitudinal inertia forces and the inertia forces associated with the rotation of
the cross sections of the member with respect to its own principal axes are not included.

3. PHYSICAL SYSTEMS

If a thin-walled member is subjected to a periodical longitudinal load, and if the amplitude
of the load is less than that of the static buckling value, in general, the member experiences
only longitudinal vibrations. However, it can be shown that for certain relationships between
the disturbing frequency  and the natural frequency of transverse vibration  thin-walled
member becomes dynamically unstable and transverse vibrations occur, the amplitude of
these vibrations rapidly increases to large values.

A thin-walled member subjected to periodically alternating axial force is essentially
variation stiffness. Linear stiffness matrix of thin-walled member remains constant, while
nonlinear geometry stiffness matrix changes with periodically alternating axial force. So,
problem discussed is essentially dynamic stability of variation stiffness thin-walled member.
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4. MATHEMATICAL MODEL

With damping regarded, thin-walled member with variation stiffness can be represented by
an assembly of finite elements connected together at the nodes.The matrix equation for
discrete system axially loaded is

0 KxxCxM (1)

where M  is global mass matrix, C  is damping matrix and K is global stiffness matrix.
For thin-walled member subjected to a periodic longitudinal force tCosPPP to  ,

where   is the disturbing frequency, the static and time dependent components of the load

oP  and tP  can be represented as a fraction of the fundamental static buckling load *P .

Hence, putting tCosPPP  **  , with  and   as percentages of the static buckling

load *P .
A periodic longitudinal force P is used to modify nonlinear geometry stiffness matrix of

thin-walled member in Equation(1), thus oscillation equation of thin-walled member with
variation stiffness is obtained:

   0**  xKtCosPPKxCxM Ge  (2)

Equation(2) is essentially a second-order differential equation with periodic coefficients,
where eK is linear stiffness matrix which reflects strain energy and GK is nonlinear

geometry stiffness matrix which reflects the influence of oP  and tP .

I  representing the unit matrix, equation (2) may be written again as:

   0**11   xKtCosPPKMxCMx Ge 

     0*1**11 
 xtKCosPKPKIKPKMxCMx GGeGe  (3)

where
     2111   KMIKMMCM (4)

  2*1 
Ge KPKM  (5)

     


GGeGGe KPKPKKPKPK *1**1* 22
2
1

(6)

The above equation (3) becomes a second-order differential equation with periodic
coefficients of the Mathieu type.

  0xtCos2Ix2x 2  (7)



Q. Wang, Y. Luo and L.Y Wang248

It can be written as another form of Mathieu type:

  0xtCos2Ix
22

2
22 













 (8)

Mathieu equation is called to be periodic in the sense that it satisfies equation (8) for

every positive

2

T

4

2 T .

The periodic solution with a period 2T in the form is sough
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are equal

respectively, and substituting the series (9) into Eq.(8) leads to the following system of
linear homogeneous algebraic equation in terms of ka  and kb
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The necessary condition for the existence of the periodic solution of Eq. (9) is that the
determinants of the homogeneous systems obtained be equal to zero.Considering the two
conditions under the   sign, we obtain
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This equation relating the frequencies of external loading with the natural frequency of
the member and the magnitude of the external force makes it possible to find regions of
instability that are bounded by the periodic solutions with a period 2T.

To determine the regions of instability bounded by the periodic solutions with a period T,
we proceed in an analogous manner. By substituting the series
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into Eq. (9), the following systems of algebraic equations are given:
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Let the determinants of the homogeneous system to zero, we arrive at the following
equations for the critical frequencies:
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and



Q. Wang, Y. Luo and L.Y Wang250

 

   

 

0

4

9
I00

4
I0

0I
2

00I

22

2

22

2

22

2

22

2

22

2

22

2

22

2

22

2

22

2











































































           (14)

for determining the regions of instability bounded by the periodic solutions with a period T
of the thin-walled member.

5. DYNAMIC STABILITY OF THE MEMBER WITH DAMPING

5.1 Numerical examples
An open I-shaped cross-section of thin-walled member with both ends simply supported is
shown in Figure 1.

Figure 1. I-shaped

The following properties were taken for numerical computations: length mL 2 , cross-
sectional dimension:

mmt 05.111  , mmb 2031  , mmt 24.72  , mmb 2032  , mmh 95.191 .
Young’s modulus: 2/110.2 mNeE  ; Shear modulus: 2/118.0 mmNeG  ;
Poission’s ratio: 25.0 ; Rayleigh damping:      KMC   .
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Dynamic stability of open-section thin-walled member in the conditions of 01.0  and
05.0 , while 0  is calculated,respectively.

We are much obliged to S. Kiipornchai and S. L Chan for their nonlinear thin-walled
open section finite element [5]. The MATLAB program developed here adopts their element
but eliminates axial deformation, that is, we take into account of bending coupled with twist
and warping deformation of thin-walled member. The results are shown in Table.1.

Table 1: Boundary of dynamic stability of variation stiffness thin-walled member

Serial
number of
Dynamic
instability

regions

2




0.0 0.2 0.4 0.6 0.8 1.0

Ref.[2] —— 1.0477 1.0949 1.1398 1.1829 1.2245

This paper
0.01

—— 1.0430 1.0863 1.1275 1.1669 1.2045

Ref.[2] —— —— 1.0808 1.1304 1.1757 1.2186

The first
upper

boundary

This paper
0.05

—— —— 1.0785 1.1211 1.1617 1.2007

Ref.[2] —— 0.9496 0.8949 0.8369 0.7748 0.7072

This paper
0.01

—— 0.9489 0.8973 0.8418 0.7815 0.7154

Ref.[2] —— —— 0.9065 0.8439 0.7795 0.7107

The first
lower

boundary

This paper
0.05

—— —— 0.8741 0.8210 0.7629 0.6986

The second
upper

boundary

This paper
This paper

0.01
0.05

——

——

——

——

0.4987

——

0.4995

——

0.4997
0.4927

0.499800.4961

The second
lower

boundary

This paper
This paper

0.01
0.05

——
——

——
——

0.4809
——

0.4533
—— 0.412600.4210

0.3538
0.3590

This paper 0.01 —— —— —— 0.3084 0.2741 0.1997The third
upper

boundary This paper 0.05 —— —— —— —— —— 0.2921

This paper —— —— —— 0.3190 0.3113 0.3015The third
lower

boundary This paper

0.01

0.05 —— —— —— —— —— 0.2133
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5.2 Discussions
Instability of thin-walled member is a parametric excitation problem.A boundary of the
instability regions for variation stiffness thin-walled member is shown in Table 1. Compared
to results of Ref. [2], the results of MATLAB program developed in this paper are with
more precision and efficiency. And, it reveals some interesting features. First, regions of
stability are larger than regions of instability. Second, judging from the magnitude of the
relative width parameter, the first region of instability is large and reduces rapidly for the
second and third regions, which indicates that the instability is highly dominant in the first
region. Therefore, the first region is always called the principal region and is generally most
important while the second and third instability regions are of much less practical
importance.

Using FEM, the static and time dependent components of the load for thin-walled
member of arbitrary section can be determined out when dynamic instability of thin-walled
member occurs. It can be seen that the results of Table 1 will not change with the size,
length and restriction of variation stiffness thin-walled member due to adoption of ratio
method, which shows the commonness of dynamic stability of variation stiffness thin-
walled member.

Only if damp ratio is less than a certain point, i.e., time dependent component of the load
(excited parameter) is larger than a certain value, variation stiffness thin-walled member
loses its stability. Compared to the results between 01.0  and 05.0  in Table 1
indicates that the larger the damp ratio is, the more time dependent components of the load
wanted. Therefore, the effect of damping on dynamic instability of thin-walled member with
varying stiffness is general and should not be neglected. So dynamic instability of variation
stiffness thin-walled member is general, popular and universal.

From Table 1 it can be seen that, as dynamic load factor   increases beyond the limit
point, the eigenvalue solution of the instability region boundary becomes imaginary which
implies that the periodic solution of the Mathieu equation does not exist in that region. The
stability behavior in that region is definitely unstable, and this may be due to the large
lateral displacement of the thin-walled member due to increasing values of dynamic load
factors. Indeed, the thin-walled member loses its stability because nonlinear geometry
stiffness matrix decreases to a lowest point with dynamic load on it. At 0.0 , the
dynamic load takes no action on the thin-walled member which should be understood as a
critical state.

From Table 1 it also can be seen that both damp ratio value and parametrically excited
vibration coefficient are small. And, parametrically excited vibration coefficient seems to
increase in proportion to damp ratio. The first dynamic instability region takes up most of
parametric plan, occurring in all probability and causing a lot of harm. So it’s more difficult
to inspire the first dynamic instability than the third dynamic instability where damp exists.
The larger the damp ratio value, the less dynamic instability region.

Both parametrically excited vibrations and forced vibrations could lead to instability
phenomena, and they are similar in appearance. But they are not the same dynamic
response. Forced vibration occurs when disturbing frequency is close to the natural
frequency of thin-walled member while parametrically excited vibrations take place at many
cases. It is pointed out that to avoid dynamic instability of thin-walled member is more
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difficult than prevent it from sympathetic vibration.

6. SUMMARY AND CONCLUSIONS

The dynamic stability of variation stiffness thin-walled member subjected to periodically
alternating axial force is analyzed considering damping in this paper.Here, the variation
stiffness means that it changes with periodically alternating axial force as for nonlinear
geometry stiffness matrix of thin-walled member.Dynamic stability of variation stiffness
thin-walled member with damping can be transformed into a system of second-order
differential equation of Mathieu type with periodic coefficients.Using MATLAB package, a
computer program is developed to calculate regions of dynamic instability corresponding to
bending vibration, torsion and warping coupling vibration. It is the same as neglecting
damping, as for the same dynamic instability mode, the larger the load swing, the wider the
dynamic instability zone.  Considered damping, some conclusions are drawn out: Excited
zone of thin-walled member is continuous, the dynamic instability is highly dominant in the
first region while the second and third instability regions are of much less practical
importance ; The larger the damp ratio value, the less the dynamic instability region; The
larger the damp ratio, the more time dependent components of the load wanted, absorption
of damping is commonly of no effect to prevent parametrically excited vibration from
dynamic instability; Parametrically excited vibration considering damping is much more
different from damped forced vibration in nature .

MATLAB programs are written to work out the boundary of dynamic instability regions.
Two non-dimensional parameters are introduced: one is the proportion of dynamic load to
what fundamental static buckling load minus static load leaves and another is the proportion
of load frequency to fundamental natural frequency.Therefore, the length, size of thin-
walled members as well as boundary conditions have no influence upon graph of dynamic
instability regions.Need not revised and enlarged, the programs are also valid for variable
cross section thin-walled members. What’s more, fundamental static buckling load,
fundamental natural frequency and frequency under axial force are obtained once done and
for all. The finite element method has not been noted in works on dynamic stability of
variation stiffness thin-walled member yet.

The paper intends to be of some help for engineers in those areas of dynamic analysis
and design.
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