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ABSTRACT 
 

Reliability-based optimization of two and three dimensional frame structures is the subject 
of this study. For this purpose, a computer program was developed and tested over a number 
of examples for validation. Since similar studies have been made previously for trusses and 
reliably documented in the literature, optimization of such structures based on reliability 
analysis could therefore be confidently relied on, and thus, designing of such structures 
could be considered with less value for safety factors.  

This probabilistic optimization technique can well substitute that of the deterministic 
one where a considerable factor of safety and therefore, a heavy structure as always is a 
must.  For this purpose, one may take into account the probabilistic behavior for load, 
yield stress, young modulus, etc, using parameters such as standard deviation and 
variance, through which safety remarks can be embedded into the design procedure by 
some mathematical relations, resulting to a probabilistic optimization technique.  In this 
technique, one must first define the failure criterion, followed by the computation of 
safety zone (Z), reliability index () and lastly, the failure probability (Pf).  

In this paper, the applied load and the yield stress are considered probabilistic, while 
the violation of interior forces from the member ultimate strength is the failure criterion. 
For each of the interior axial, shear, bending and torsion reactions, the failure probability 
is calculated and the maximum value is constrained through optimization process. 

During the optimization process using Genetic Algorithm (GA), the failure probabilities 
are some boundary constraints and minimizing the weight of structure is the objective of the 
problem. The profiles of I-shaped cross-sections are selected from a data file.  

Finally, the probabilistic technique and deterministic one are investigated and 
compared applied to some structural problems. 

 
Keywords: Reliability analysis; safety factor; probabilistic optimization; standard 
deviation; variance; failure criterion; safety zone; reliability index; failure probability; 
genetic algorithm 
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1. INTRODUCTION 
 

Mankind has always been after safety and certainty. To understand it as an external 
parameter to guard a safe environment, it is obviously fair to state that tendency to safety is 
an instinctive desire within a person, to reduce danger or risks.  

A structure under the study of a designer is not always under a set of predefined or 
approximate loadings, and since these approximations and uncertainties are not meant to 
ignore, to assure reliability, generally safety factors are considered. Major the safety factor 
ensures a more relaxed mind. However, by considering a safety factor, yet the variations of 
load (or structural resistance) distribution factor or changes of load probability density will 
introduce different failure probabilities, which indicate that safety factors do not account for 
the uncertainties existing within the load or even material properties. In some cases 
however, a smaller safety factor than unity may even handle the uncertainties due to failure 
probability, as well fulfilling economical purposes. 

The uncertainties in structural parameters such as material properties, external loads, 
geometry, etc., have caused serious attentions to reliability in structural design and analysis. 
Thus, reliability theory, as a branch of theory of probability, provides a firm framework 
which can introduce a proper factor of safety when required [15]. Thus, any system made of 
a satisfied reliability index, may be referred to as safe. Now, higher safety factors do not 
necessarily lead to reliable and safe designs. They may even tend to either over-design cost 
wise or under-design reliability-wise.  

Obviously, some of the most recent developments in reliability-based civil engineering 
analysis and design have been covered and authored by some of the most active scholars in 
their respective areas, representing some of the most recent research, upcoming interests and 
challenges to the profession. To mention only some of these valued researchers, one may 
refer to [1-11, 14, 23, 24]. However, civil engineers have not yet been so fast in adapting to 
new probabilistic methods developed and effectively use stochastic design procedures for 
economic and reliable designs of systems. 

In this paper, the structural member or system failure probability of 2D and 3D frame 
structures are computed using reliability theory. They will then be embedded into a discrete-
based stochastic design model developed here where GA-based optimization technique is 
taken place.  

Thus, the outcome of this work is a computer program which optimizes 2D and 3D frame 
structures using GA technique with a major attention paid to reliability of those structures 
included as constraints in the optimization model. 

 
 

2. SECOND MOMENT METHODS IN DETERMINING RELIABILITY INDEX 
 

Evaluating safety of a structure depends on incoming loads, resistance of materials, 
executive issues and other probabilistic variables. In addition to them, they need time and 
design parameters which are definite and numerical variables. Loads generally have a 
probabilistic process in time and physical space Z(t, x, y, z). In such a space, resistance of 

structure appears in form of limit surfaces (Figure 1) and since the resistance is a 
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probabilistic variable, resultant surfaces are also probabilistic and in this case, failure means 
passing from limit surface of safety region in Z space [16]. 

A structure which is affected by a certain position of loads can be considered as a point of 
sample space Z. The reliability of a structure PS is the resting probability of that sample 
point in safety region of above space, while the failure probability Pf is the placing of that 
point in failure region. 

 

Figure 1. Structural resistance as the limiting surface within the loading space 

 
Basic idea of second moment theorem is based on this point that all uncertainties related 

to structure reliability should be expressed in terms of mean (first moment) or covariance 
(second moment) of internal parameters. These parameters are called basic variables that are 
specified here with notation Zi. Basic variables include loading and resistance parameters, as 
well as geometric variables and uncertainties related to a selected model. One may use 
second moment method of reliability when numbers of basic variables are limited. In 
addition, we should be able to say if in exchange for a group of these values, structure places 
in failure region or safety region. This may result in dividing space Z to two regions; namely 
safety and failure regions, noted as S and F, respectively. These two regions are separated by 
failure surface, termed also as limiting surface. For more clarity of the reliability indices 
used here, two distinct methods are paid attention to. 

 
2.1 Cornell reliability index (CRI) 
If failure surface is shown by ZL , one can define failure function as [16]: 
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Where, function g that is better to be chosen derivable for computational reasons, is usually 
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obtained by structural analysis. If probabilistic variables iZ corresponding to parameters iz  

are replaced in failure function, the resultant probabilistic variable is called safety margin 
and is specified with M.  
 )( iZgM   (2) 

 
According to definition, this safety margin reflects arbitrariness of choosing function g .  

Cornell in 1969 [16], defines the reliability index or safety index c as follows: 
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CRI in form of distance measured from region ]M[E  to failure surface provides an 

appropriate evaluation of reliability. This distance is measured in form of a multiple of 
uncertainty parameter ]M[D . ][ME and ]M[D  are in fact mean and standard deviations of 
safety margin, respectively. In Cornell first formulation, failure function is expressed in 
form of resistance difference r from load effect s :  

 
 srsrg ),(  (4) 

 
Similar safety margin of above relation is: 
 

 SRM   (5) 
 
If R and S are independent, reliability index (1) will be as follows: 
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The above relation is used for a distinct member with normal distribution. 
If the reliability index is a hyper-plane, we can define linear failure function as follows: 
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Where, aT

 is a row vector with entries ai and Z is a column vector with entries Zi. 
Similar safety margin of failure function in eq. (7) is:  
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Thus, the reliability index (3) will be: 
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Where E[Z] and  Cz are the mean and covariance matrices for vector Z , respectively. 
In equation (9) one may notice that  remains unchanged under any linear transformation 

of basic variables. 
 

2.2 The first order second moment reliability index 
The failure function (4) is not unique for a failure surface, and there are various alternatives 

for that function. Basic variables R and S  are often limited to positive values for physical 
reasons. So, a simple alternative for relation (4) is as follows [16]: 

 
 )/log(),( srsrg   (10) 

 
Therefore, reliability index (3) will be defined as: 
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The safety margin log (R/S) is a nonlinear function of R and S, and therefore, mean and 

standard deviation are not obtained from second moment representation (S, R) only. 
One method of settling such issues is linearization of safety margin. This work requires 

choosing linearization method. The simplest method is applying linear expressions of Taylor 
expansion around one point. If linearization operation is done around a point related to mean 
values ),( SR  , we will then have the following result: 
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Using above linear safety margin and regarding relation (9), the following reliability 

index is obtained: 
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Where, RV  and SV  are dispersion coefficients of R and S , respectively.  

FO  is known as the First order-second moment reliability index. The above relation is to 

compute the reliability index of a separate member. However, it is also used for hyper-
planes similar to CRI.   
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In evaluating structure reliability that has been discussed here, we usually use CRI. This 
is because failure functions in structures are generally in form of linear combination of 
structure member resistance and external loads effect [17]. In this order safety margins of 
structural systems are similar to equation (8) where modal resistance R  and modal external 
load effect S  are present as probabilistic variables. This is true when geometric parameters 
of a structure such as length, cross section, moment of inertia and also elastic modulus have 
definite values. It is to be noted that in the present study, only external loads and elements 
resistance of structure have been considered as probabilistic parameters. 

 
2.3 Steps to determine reliability formulations [1] 
1. Failure definition: First step in using reliability theory for structures is to specify 

boundaries between safety and failure criteria. For instance, member, nodal and/or 
system displacements excessive of the allowable ones may indicate the failure. 

2. The second step is to choose a model which relates the essential variables to failure 
criterion or the system safety index. 

3. Determining the uncertainties in essential variables. 
4. Obtaining failure probability distribution functions of the variables. 

 
 

3. USING RELIABILITY THEORY IN 2D AND 3D STRUCTURAL FRAMES 
 

The first step is to determine the failure criterion for frames. Then, by computing the 
difference between internal forces and ultimate resistance in critical sections, a safety 
margin (Z) is found. Structural resistance space is then appeared as limit surfaces. Since the 
load and the resistance are probabilistic variables, the resulted surfaces are also probabilistic. 
Now, if in this domain, the safety, failure and the separating surface of those two are shown 
by S, F and LZ respectively, then: 

 

 SZ  0  

 ZLZ  0  
 FZ  0  
 

Having determined Z, then the reliability and safety indices will be obtained. To compute 
the reliability index denoted by , one must determine the parameters of standard deviation, 
variance and mean safety margin E[Z], so that [4]: 

 
 ][/][ ZZE    (14) 
 
3.1 Reliability theory in 2D frame structures 
Since bending moments may be considered as the highest effective load in 2D frames, the 
formation of plastic hinges at the location of joints and critically affected bending moment 
sections will therefore be defined as failure criteria. Thus, the difference between internal 
forces caused by environmental loads and bending resistance at the joints or critical sections is 
regarded as safety margin. In 2D frames, internal forces are the bending moments at the joints 
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which, using matrix methods at the left and right of each member are determined as [17]: 
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Where, )( iILij is the member reaction forces matrix in critical sections affected by a unit 

load, Lj is the vector of external loads and (I=I1, I2, ...., In)
T contains member moment of 

inertia. Using the following relation, one may express the members bending resistances 
according to a complete plastic moment as [7]:    

 

 CAZPR yiii   (16) 
 

Where Ai, Cyi and AZPi are the cross sectional area, allowable stress and modulus of plastic 
section for the ith member, respectively. According to Figure 2, AZPi   for an I-section may 
be obtained using the following formula:  

 

 

Figure 2. Axles of I-section for determining Modulus of plastic section about horizontal axis  
 

Modulus of plastic section about horizontal axis= 
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Now, the safety margin at the left and right ends of members may be defined as [17]: 
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In a 2D frame structure consisting of n members under a number of l loads, if allowable 

stresses Cyi and applied loads Lj are probabilistic variables, then the reliability margin will be a 
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probabilistic variable and failure probability at the two ends of each member will be [11]: 
 

 )/][()(
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Where   may be referred to as the standard normal probability distribution function. Also 

E[Zi] and 
iZ   are the mean and standard deviations of safety margin of ith element which 

are computed using the following relations [15]: 
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In equations (19) and (20) Cyi and Lj are the mean yield stress and load, respectively. 

2

yiC , and 2

jL  are the Variance Coefficients of Yield Stress (VCYS) and External Load 

(VCEL), respectively.  Also l indicates total number applied loads to the structure. 
 

3.2 Reliability theory in 3D frame structures 
In such a structure each of the bending moments about horizontal or vertical axes, also axial 
forces or shear forces could cause total or member failures. Therefore, in 3D frame 
structures failure probabilities caused by all types of internal forces in all directions are 
computed and the maximum value is considered as the dominant (appointed) value for 
failure probability. In Eq. (16), instead of using the coefficient AZPi for axial and shear 
resistive forces, cross sectional area Ai of the ith member is taking place, and Cyi as the 
allowable axial and shear stress is read from data files. Besides, according to Figure 3, 
computation of AZPi with regard to the I-shaped cross-sectional as discrete variables is done 
as follows [7]: 

 

Figure 3. I-section for determining Modulus of plastic section about  
horizontal and vertical axles  
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Modulus of plastic section about horizontal axis= 
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Modulus of plastic section about vertical axis= 
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Therefore, values for the mean and variance of the safety margin for the 
thi  member are 

computed as followed [10, 22]: 
1. Axial force in x direction: 
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2. Shear force in z direction: 
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3. Shear force in y direction: 

 

2

1

2
)(

2222

1
)( )()55.0(,)(55.0][ Lj

l

j
IwCyiZij

l

j
Iwyii iiiiii

LijtdLLijtdCZE  


  

4. Bending about horizontal z axis: 
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5. Bending about vertical y axis: 

 

2

1

2
)(

222

1
)( )(,)(][ Lj

l

j
ICyiZij

l

j
Iyii iiiiii

LijzALLijzACZE  


  

 
Now, using Eq. (14), reliability index () for each member under each of the internal 

forces are determined, and by using Eq. (18), failure probability (
if

P ) for all cases are 

computed. Maximum failure probability of the above five cases will be a dominant value for 
each member. 

Since the structure is designed in plastic limit, cautions must be taken to avoid torsion, as 
it will cause collapse of the system, and therefore cannot be reliable. Of course, if failure 
probability is defined as violation of allowable strength, then the mean and variance values 
of torsion moment should first be computed.  
6. Torsion:  
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Then also, in all five above cases, the allowable stress may substitute the yield stress and 
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its coefficients, if constrained by failure probability in elastic limit.   
 
 

4. RELIABILITY THEORY BASED ON MEMBERS AND SYSTEM FAILURE 
PROBABILITIES 

 
4.1 Reliability theory based on member failure probability 
To optimize a structure by emphasizing on the safety of all members, one should determine 
failure probability of each member, while constraining it to a minimum value expressed as 
the allowable. Thus, failure probability of each member is considered as a constraint that 
should not exceed allowable failure probability related to each member. Thus [4]:  

 
 ),...,2,1( efaf niPP

ii
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Where 
if

P and 
ifaP are the failure and the allowable failure probabilities one for thi  

member, respectively. 
One of the features of such a method is that member’s failure probability under 

probabilistic external loads will be reduced to a minimum one. However, from the 
economical point of view, there are also members whose failure will not affect the whole 
system a great deal, and so higher allowable failure probabilities for such members may be 
permitted, and this obviously reduces the total weight of the structure as the objective 
function. 

 
4.2 Reliability theory based on system failure probability 
In order to design a large structure with a minimum failure probability for the whole system, 
members’ failure probabilities will be determined and then added to be constrained. Thus, 
this sum value should not exceed the system allowable failure probability. This statement 
may also be expressed in terms of the following formula [1]: 
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 faf PP   (23) 

 

Where )( fP and )( faP indicate total failure and total allowable failure probabilities, 

respectively. 
Based on [1], the relation (22) is an upper conservative bounding relation, aiming for the 

reliability of indeterminate structures. Now, since this method has indicated logical 
responses to especially very large indeterminate space structures, it might also be fair to 
consider the same approach for computing failure probabilities for frame structures. 
Therefore, to avoid a very complex, tedious and long process of true reliability analysis of 
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frame structures, the upper bound is considered active. Besides, seeking an acceptable 
solution, some different approaches have been investigated, details of which are listed 
below, assuring for the validated results obtained.  

First: in this study, by converting the ends of each member to a hinge and also by 
introducing a hinge in the middle of beams, 3 hinges for each beam and 2 hinges for each 
column in the structure would be formed. Now, by computing failure probabilities for each 
case individually, and then summing them all up, a significant failure probability for the 
whole system would be obtained. This would obviously generate a big failure probability 
that could definitely lead to an increase in the weight of the structure. This approach may be 
considered very conservative. To avoid such a problem, and as well as guarding for the 
critical failure point while seeking  the betterment of structure weight, only the maximum 
failure probability for each member enters the computation. Thus: 
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Where, PS1, PS2 and PS are the beams, the columns and the total system failure probabilities 
summation, respectively and neb and nec  are total number of the beams and the columns. 
Pf (3i-2), Pf (3i-1) are also two ends failure probability of members and Pf (3i)  is the failure 
probability of the middle of beams. As one notices, each member enters only one 
representative in computation. 

Second: In this state, we introduce a higher failure probability for the system by 
introducing and adding the most critical failure probability from each node to the member 
failure probability. Thus: 
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Third: This time, we add the available whole failure probability without any limitation 

and as you can see in the examples, the weight of the structure increases significantly. 
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Results from above three states in numerical examples will be compared and evaluated 

with results of elements failure probability method. 
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5. GENETIC ALGORITHM IN OPTIMIZATION BASED ON RELIABILITY 
THEORY 

 
Having determined (Pf) for the members and the whole system, by defining constraints and 
objective function system optimization will be performed using Genetic Algorithm (GA) 
method. This method is inspired by nature which can replace mathematical methods in 
particular as a discrete optimization technique, with the feature of hardly trapped in a local 
optimum. In this work, the objective function is minimization of weight and the constraints 
are the (Pfa) for either structural members or the system. 

 
5.1 Objective Function 
In this work, the objective function is to minimize the weight of the structure so that:           
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Where wi is the weight per unit length, and li and ne are length of member i and total number 
of members, respectively. 

In the present work design variables considered for frame structures are of discrete type. 
A number of I-shaped section profiles are arranged in a catalogue list. In this list there are 
cross-sectional areas as essential variables and also related properties such as moments of 
inertia, etc., are therefore considered as dependent variables. Due to discrete nature of 
essential variables for problems under study here, GA was employed as a type of optimizer 
[18-20]. Thus, the aim is to select the best set of profiles as design variables from the 
available set in the catalogue list, to minimize the weight of the structure as well as 
satisfying all the constraints. This is done through an iterative process, details of which may 
be addressed in [13].  

 
5.2 Constraints 
For the problems studied here, the constraints are formed as follows: 

 
 ),...,2,1( efaf niPP
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 faf PP   (28.b) 

 

Where ne is the number of structural members. 
ifaP  and faP  are the allowable failure 

probabilities for  ith
 member and for the system, respectively. 

On the other hand, to control the slenderness of columns, the following constraint will 
also be applied: 
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Where 
ir

KL
max)( is the maximum slenderness coefficient of thi member. 

 
5.3 Penalized objective function 
Since GAs are designed for unconstrained maximization problems, the constrained problems 
should therefore be converted into unconstrained ones [12, 18]. For this purpose first the 
coefficient of constraint violation (C) will be computed from: 
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Where, C1 and C2 are used for the failure probability of members and system, respectively.  
Then, using penalization method [12], the modified fitness function will be as follows: 
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Where, Goli is the modified objective function of the ith

 design, and Rp is the penalty function 
not exceeding: 
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Where ngen is generations counter and r1 is a constant penalty function coefficient selected 
arbitrary. Here, its value was taken as: 
 
 100))1(2.01(251  ngenr  (33) 

 
Using GA to minimize an objective function such as the weight of the frame structure as 

for all the cases under study here, fitness function for the thi  design will then be computed 
using the equation below [6]: 

 
 ii GolGolGolFit  minmax   (34) 

 
Where for any generation, Fiti is the ith fitness design, Golmax and Golmin are the largest and 
smallest penalized objective functions, respectively.  

Programs developed in this work, are performed to eventually optimize a 2D/3D frame 
structure according to reliability-based design, results through which may be presented using 
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some examples. 
 

A. Unit-load analysis program for 2D and 3D frames 
To compute the safety margin, it is necessary that first 2D-frames or 3D-frames are analyzed 
based on a unit-load approach and then intrinsic reaction forces and moments are determined. 

 
B. Reliability programs for 2D and 3D frames 
Elements and/or system failure probabilities will then be computed using RELIABILITY-
2D and RELIABILITY_3D programs developed for the purpose of this study (see section3). 

 
C. Reliability-based minimization of weight using GA 
Elements and/or system failure probabilities computed will then be used as constraints for 
weight minimization of frames. 

 
 

6. BENCHMARK EXAMPLES 
 

Here, the aim is to carry out the procedure of optimum design on a number of problems. Since 
there was no means of comparison in the literature, the attempt was made to verify the program 
developed and solutions obtained by studying different types of problems using different 
aspects and viewpoints, details of which are embedded within the examples sections.  

 
6.1 Example (1) – A five storey frame with rigid joints 
This example is a five-storey five-span plane frame structure with a given set of loadings as 
shown in Figure 4. Each span length is set as 5.6m and each storey as 2.8m height. The 
uniform distributed load on each beam span is approximated to a mean value of  39.45 
N/cm. Table 1 lists categorized set of design variables assumed and some related data for the 
problem are shown in Table 2. 

 
Table 1: Categorizing frame members for example 1 

5 4 3 2 1 No. Type 
5, 10, 15, 

20, 25 
4, 9, 14, 
19, 24 

3, 8, 13, 
18, 23 

2, 7, 12, 17, 
22 1, 6, 11, 16, 21 No. El 

10 9 8 7 6 No. Type 
30, 55 29, 54 28, 53 27, 5 26, 51 No.El 

15 14 13 12 11 No. Type 
35, 50 34, 49 33, 48 32, 47 31, 46 No.El 

20 19 18 17 16 No. Type 
40, 45 39, 44 38, 43 37, 42 36, 41 No.El 
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Figure 4. Structural geometry, members numbering and loading, Example 1 
 

Table 2: Optimization input data for example 1 

0.004 Mutation probability 

1 Cross probability 
50 Population size 

Control parameters 
to GA 

0.0785 (N/cm3) Materials density 
21e6 (N/cm3) Elasticity module 

Another parameters 

 
Three different cases of optimum designs were studied. For cases two and three, 

designing under external forces and probabilistic yield stress, the load distribution factor is 
taken as 0.1 and members yield stress distribution factor as 0.05. The reason for carrying out 
these comparisons is to verify whether the solutions will match while under the same limited 
conditions applied to both probabilistic and deterministic models. Thus, it may well assure 
correctness of the theory and program developed.  
1) In this case, assumption is made to almost take the allowable failure probability to an 

epsilon value close to zero to prevent a division by zero. Similarly, the load variance and 
members yield stress factors are also taken as nearly zero. This is in fact a case similar to 
deterministic one.  
Now, by defining the violation of the allowable resistance as failure criterion, the 
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structure is attempted for optimization while elastically constrained. Thus, a comparison 
of the optimum design weights of the latter with deterministic approach is made while 
the same constraints were used. The results obtained were illustrated in Figure 5 where, 
probabilistic optimum weight is recorded as 11050kg, while for the deterministic case 
the optimum weight is equal to 10418kg. This shows an acceptable 6% drift of the 
results. In elastic probabilistic method, maximum of lateral drift is an epsilon value close 
to zero but maximum displacement in middle of beams spans is 8.41 cm. It is clear that 
one should define a constraint of nodes failure probability to prevent nodes failure in 
beams and columns. 

 

variance of load & yield stress ~0
allowable failure probability of elements (Pfa)~0
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deterministic optimization

 

Figure 5. Convergence history of optimum weight for both models under  
elastic limit, Example 1 

 
Same assumptions as above, however this time members plastic failure criterion is 

constrained for probabilistic optimization procedure, and the optimum weigh at each 
generation were compared with those of deterministic model while constrained in the 
non-elastic region. Figure 6 shows the convergence histories of the above cases where 
the probability-based design leads to an optimum 8804kg weight while the deterministic 
one records an optimum weight of 8718kg, with a 0.98% drift. As anticipated, non-
elastic optimum weight is less than that in elastic limit. In the aforementioned 
probabilistic method, maximum of lateral drift is close to zero and maximum 
displacement in middle of beams spans is 1.26 cm. it shows that in this case, drift and 
displacement have been controlled well, but however, it is necessary that one defines a 
constraint for nodal failure probability. 
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Figure 6. convergence history of optimum weight for both models under non-elastic limit, 
Example 1 

 
2) Using the same conditions as in case B above, the structure was again attempted for 

optimization. This time permissible values for failure probabilities of members and 
system, being respectively equal to 1.810-6 and 110-4 were allowed. The optimum 
weights were determined as 6864kg and 6699kg, respectively. Figure 7 illustrates the 
corresponding convergence histories for the two cases above. For the first case, 
maximum displacement in middle of beams is 5.35cm and maximum lateral drift is close 
to zero. Also maximum slender coefficient of columns is 92. For second case, maximum 
displacement in middle of beams is 1.97cm and maximum lateral drift is close to zero. 
Also maximum slender coefficient of columns is 132. Thus, the results indicate that 
constraining nodal failure probability may cause a certain control to the structural failure. 

variance of load & yield stress~0
allowable failure brobability of elements=1e-4/55=1.8e-6
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Figure 7. probabilistic weight design in non-elastic limit, with zero VCYS and VCEL and a non-
zero allowable failure probability, Example 1 
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To verify the validity of the developed program, the following examples are presented. 
 

6.2 Example (2) – A one-storey one-span 3D frame 
Figure 8 illustrates the problem. The average external loads are shown in this Figure and 
members mean yield stress is assumed as 24 kN/cm2. Grouping of the members as design 
variables are listed in Table 3 and some related data for the problem are shown in Table 4. 

 

 

Figure 8. Structural geometry, members numbering and loading for example 2 
 

Table 3: Categorizing frame members for example 2 

3 2 1 No. Type 

4 2, 3 1 No. El 

 
Table 4: Optimization input data for example 2 

0.004 Mutation probability 

1 Cross probability 
50 Population size 

Control parameters to 
GA 

0.0785 (N/cm3) Materials density 
21e6 (N/cm3) Elasticity module 

Another parameters 

 
Figure 9-a illustrates that with a nearly zero failure probability and a constant VCYS 

value equal to 0.05 for a member, with an increase in VCEL as listed in Table V, the 
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optimum weight will increase as well as the safety factor. In that table one also realizes that 
a VCEL lower than 0.1 whether does not affect the optimum weight or the affect is so little. 

 
variance coefficient of yield stress=0.05
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Figure  9-a. Variation of optimum design with a constant VCYS and varied VCEL under 
allowable failure probabilities of nearly zero, example 2 

 
By increasing the allowable failure probability of members to 1.6710-4, while 

maintaining the same value for VCYS, a distinct reduction on the weight will be observed, 
as illustrated in Figure 9-b. Also in Figure 10, an accumulative set of results indicating 
variations of optimum weight with different measurements of VCEL and VCYS is shown. 
Information gathered in this Figure easily indicates that by increasing each of these 
coefficients, the optimum weight may also increase. They may also be regarded 
symbolically as a source of reference on predicting the optimum weight of the structure at 
certain values for VCYS and VCEL using just interpolation.  
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Figure 9-b. Comparison of optimum weight with P of nearly zero and 1.67e-3 for example 2 
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Figure 10. Optimum weight variation with VCYS and VCEL using  
Pf-all-elem= 1.67e-4 and Pf-all-system =1e-3, example 2 

 
Now, by assuming a constant permissible member failure probability equal to 1.6710-4, and 

a permissible system failure probability equal to 510-4, being in fact the sum of all members 
permissible failure probabilities, Figure 11 may be presented. It performs variation of weight 
of the structure as the objective function against number of generations while constraining 
separately members and system failure probabilities against the allowable values. It is shown 
that under a system failure probability constraint, the optimum weight is of a further quantity, 
equal to 1144kg in comparison to the 1140 kg optimum weight of the structure when failure 
probability of members is constrained, resulting in nearly equal weights. 

 
allowable failure probability of elements= (5e-4) /3=1.67e-4

allowable failure probability of system=5e-4
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Figure 11. Convergence history of optimum weight against generation under different failure 
probabilities for example 2 



RELIABILITY-BASED OPTIMIZATION OF STEEL FRAME... 
 

 

469

Table 5: Safety coefficient due to increase of vcel according to Figure 6-a 

 
6.3 Example (3) – A six-storey 3D frame structure with rigid joints 
As a third and final benchmark example, a 6-storey 3-span space frame with rigid beam-to-
column joints will be considered. The structural geometry of the problem is shown in Figure 
12, while member numbering and sizes, including plan & side views are illustrated in Figure 
13 and 14. Figure 15 indicate the exerted lateral loading for this example, while there is also 
a uniform distributed loading equal to 200N/cm applied on the beams. Also GA control 
parameters and material properties as well as categorized set of design variables for the 
frame are listed in Tables 6 and 7, respectively. 

VCEL and VCYS for the members are arbitrarily taken as 0.1 and 0.05, respectively. 
Also, member’s allowable failure probability is constrained to 4.16710-6 while for the 
system, this value is chosen as 10-3. 

 

 

Figure 12. Structural geometry for example 3 

VCYS = 0.05 
0.4 0.35 0.3 0.25 0.2 0.1 0.01 0.05 0.001 VCEL 

2144 1911 1859 1823 1709 1178 1120 11201120 Optimum weight 

1.9141.706 1.66 1.627 1.526 1.05 1 1 1 Safety coefficient 
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Figure 13. Member numbering and sizes- plan view, example 3 
                                                                   

  

Figure 14. Member numbering–side view, 
example 3 

Figure 15. lateral loading, Example 3 
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Table 6: optimization input data for example 3 

0.004 Mutation probability 

1 Cross probability 
40 Population size 

Control parameters to 
GA 

0.0785  Materials density 
21e6 (N/cm3) Elasticity module 

Other parameters 

 
Table 7: Categorized set of design variables for example 3 

8 7 6 5 4 3 2 1 No.type 

54, 55, 
58, 59 

 

49, 50, 51, 
52, 53, 56, 
57, 60, 61, 
62, 63, 64 

38, 39, 42, 
43 

 

33, 34, 35, 
36, 37, 40, 
41, 44, 45, 
46, 47, 48 

22, 23, 26, 
27 

17, 18, 19, 
20, 21, 24, 
25, 28, 29, 
30, 31, 32 

6, 7, 10, 
11 

1, 2, 3, 4, 5, 
8, 9, 12, 13, 
14, 15, 16 

No.el 

16 15 14 13 12 11 10 9 No.type 

122,125, 
128,131, 
137,138, 
139, 140 

121, 123, 
124, 126, 
127, 129, 
130, 132, 
133, 134, 
135, 136, 
141, 142, 
143, 144 

98, 101, 
104, 107, 
113, 114, 
115, 116 

 

97, 99, 100, 
102,103,10
5, 06, 108, 
109, 110, 
111, 112, 
117, 118, 
119, 120 

86, 87, 90, 
91 

81, 82, 83, 
84, 85, 88, 
89, 92, 93, 
94, 95, 96 

 

70, 71, 
74, 75 

 

65, 66, 67, 
68, 69, 72, 
73, 76, 77, 
78, 79, 80 

 

No.el 

24 23 22 21 20 19 18 17 No.type 

218,221, 
224,227, 
233,234, 
235, 236 

217, 219, 
220, 222, 
223, 225, 
226, 228, 
229, 230, 
231, 232, 
237, 238, 
239, 240 

194, 197, 
200, 203, 
209, 210, 
211, 212 

 

193, 195, 
196, 198, 
199, 201, 
202, 205, 
206, 207, 
208, 213, 
214, 215, 

216 

170, 173, 
176, 179, 
185, 186, 
187, 188 

169, 171, 
172, 174, 
175, 177, 
178, 180, 
181, 182, 
183, 184, 
189, 190, 
191, 192 

146, 149, 
152, 155, 
161, 162, 
163, 164 

145, 147, 
148,150,15
1,153,154,1

56, 157, 
158,159, 
160, 165, 
166, 167, 

168 

No.el 

 
Having run the problem while aiming for the minimum weight of the structure, the 

following constraints were considered separately: 
Failure probabilities at each end of the columns and beam sections and also at the 

midpoints of beams do not exceed the permissible values (Pfi≤Pfai). Note that for this 
example Pfai is a constant value, while Pfi is different for every point in the columns or beam 
sections. The value listed in row 5, column 2 of that table just shows that the maximum pfai 
has not exceeded the permissible failure probabilities for all the members pfai. 
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Sum of most critical failure probabilities for total elements not to exceed the permissible 

failure probability for the system ( a

ne

i
criticali PfPf 

1

) (See first state in section IV-B). 

Sum of most critical failure probabilities for total elements and nodes, not to violate the 

corresponding system allowable values ( a

nn

j
criticalj

ne

i
criticali PfPfPf  

 11
) (See second 

state in section IV-B). 
Total sum of critical sections failure probabilities to be limited not to exceed the system 

allowable quantity (
a

neb

i

nec

j
jjiii PfPfPf  

 
 )(

1 1
)13,23()3,13,23(

) (See third state in section 

IV-B).  
In above relations, ne, nn, neb and nec are the total number of elements, nodes, beams 

and columns, respectively. Also, 3i-2 and 3i-1 define ends of the members and 3i is the 
midpoint of the beams. 

Procedure of optimization on Example 3 performed a convergence history as indicated in 
Figure 16. According to Table 8, regarding the first set of constraints, an optimum weight of 
75261kg was recorded for the Pfai. Interesting to note that for the second constraint, a 
percentage difference of -0.27% was recorded for the optimum weight, when compared with 
that of the first set of constraints. This might be concluded that by assuming an arbitrary 
value for the Pfa, a value for Pfi May be computed by dividing Pfi by ne as shown below 
Table 8 [1]. 
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Figure 16. convergence history of optimum weight against generation under different failure 
probabilities, example 3 
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Table 8: Variation of  displacements and optimum weight under different constraints of failure 
probability 

)(
1 1

)13,23()3,13,23( 
 

 
neb

i

nec

j
jjiii PfPf

 




nn

j
criticalj

ne

i
criticali PfPf

1
_

1
_

 




ne

i
criticaliPf

1
_

 
pfi

 
Kind of reliability 

Results 

1.05 2.2 1.49 1.1 Max Transverse  Disp. (cm)└ 

6.96 4.9 7.3 6.3 Max Lateral  Disp . (cm)╘ 

53.6 82 82 61 Max. slender. Coef.├ 

1.28e-4 8.5e-5 3.2e-4 
6.5 e-
05* Failure probability ┤ 

86506 76619 75055 75261 Optimum weight  (kg) 

15 % 1.8 % -0.27 % -- 

Variation of optimum weight 
 the system failure 
probability methods ratio the 
members failure probability 
method 

└ : Allowable transverse disp.[20] = length of member / 240 = 500 cm / 240 = 2.1 cm 

╘ :  Allowable lateral disp.[19] = (Height_build * Coef. / No_floor ) = 18*0.025/6= 0.075 m   =7.5 cm 
T= 0.08 * ( height_build^(3/4) )   IF  T < 0.7 then  Coef.= 0.025  
Else           Coef. =0.02           T=0.08*(18^3/4))=0.69Coef.=0.025 
├ : Allowable slender. coef. [20] = 200 

Pfai=Pfa / ne ,    Pfa =1e-3,      Pfai = 4.167e-6 , ┤ : Allowable failure probability: 

*: the maximum pfi just to show that it has not exceeded the permissible failure probabilities for all the members 
pfi 

 
 

7. CONCLUSIONS 
 

In this work, the attempts were made to introduce ways in which some approximated 
techniques may well substitute the safety factors used through conventional design 
approach.  

Also, by performing different examples, quality performance of a written program to 
handle reliability-based optimization of frame structures was observed, results of which may 
be listed as follows: 

 
1. In case where allowable failure probability as well as VCYS and VCEL are taken as 

nearly zero, the output through reliability-based optimization and deterministic one will 
result very close solutions, indicating to some extent the correctness of the approach 
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taken and the program developed. 
2. Exceeding the VCYS and VCEL values, will lead to a higher optimum weight, 

comparing to point (1) rose above. 
3. Interpolation technique may be a reliable source of reference in predicting the optimum 

weight of the structure for different combinations of VCYS and VCEL at a certain 
allowable failure probability. Thus as shown in Figure 10, it may essentially be fair to 
generalize that, by increasing the allowable failure probability of members while 
maintaining the same value for VCYS, a distinct reduction on the weight will be found. 
Also an accumulative set of results indicating variations of optimum weight with 
different measurements of VCEL and VCYS shows that by increasing each of these 
coefficients, the optimum weight may also increase.  

4. Using modern design techniques and reliability-based optimization may be a suitable 
substitute in deciding for the safety factors as a result of which a more reliable 
performance of the structure may be achieved. 

5. Results obtained may indicate that for prevention of nodal failure, one should define a 
nodal failure probability constraint assuring that displacement in members and drift in 
floors do not exceed from allowable values. 
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