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ABSTRACT 
 

An efficient methodology is proposed to optimal design of structures for earthquake loading. 
In this methodology to reduce the optimization overall time, a serial integration of wavelet 
transforms, neural networks and evolutionary algorithms are employed. In order to reduce 
the computational work of the structural time history analysis, a discrete wavelet transform 
is used by means of which the number of points in the earthquake record is decreased. Also, 
an advanced metamodel, called self-organizing generalized regression is employed to 
predict the time history responses. The optimization task is achieved by an evolutionary 
algorithm called virtual sub population method. A 6-storey space steel frame structure is 
designed for optimal weight for the El Centro earthquake induced loads. The numerical 
results demonstrate the efficiency and computational advantages of the proposed 
methodology.   

 
Keywords: Earthquake; wavelet transform; genetic algorithm; neural networks 

 
 

1. INTRODUCTION 
 

The structural optimization for earthquake induced loads is a computationally intensive task. 
In order to deal with this problem an efficient hybrid soft computing strategy is proposed. A 
combination of wavelet transforms, neural networks and evolutionary algorithms are utilized 
to achieve the optimization task. In order to reduce the computational work of the structural 
time history analysis, a discrete wavelet transform (DWT) is used to decrease the number of 
points of the earthquake record involved. In this work, Daubechies [1] wavelet function 
(Db2) is selected to decompose the earthquake record. Also, the fast Mallat [2] algorithm is 
used to calculate the coefficients. The decomposition process is repeated in two stages, and 
the number of the points of the original record is reduced to 0.25 of the primary points. In 
the optimization process a great number of time history analyses should be performed; thus 
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the overall time of the optimization process is still very long. To reduce the computational 
work, a neural system, called self-organizing generalized regression (SOGR), is employed to 
predict the time history responses of the structures. Training the SOGR is implemented in 
three phases. In the first phase, the input-output samples are classified as the similar data are 
divided into some clusters. Here, the similarity criterion is taken as the natural periods of the 
structures. It is obvious that the structures with similar natural periods yield the same 
patterns for dynamic structural responses. The classification is performed by a self-
organizing map (SOM) [3] neural network. In the second phase, a distinct generalized 
regression (GR) [4] neural network is trained for each cluster using its training data. In the 
SOGR the natural periods of structures, during optimization process, should be computed 
and therefore the computational effort of the process is high. In the third phase, another GR 
network is trained to predict the natural periods of the structures. The evolutionary algorithm 
utilized in this paper is virtual sub-populations [5] (VSP) method. As demonstrated in [5-7] 
the computational effort by VSP is less than the standard GA. In order to investigate the 
efficiency of the proposed methodology, a 6-storey space steel frame structure is designed 
for optimal weight for the El Centro earthquake. The numerical results imply that the 
proposed methodology is a powerful tool for optimal design of structures subjected to 
earthquake loading.  

 
 

2. FORMULATION OF OPTIMIZATION PROBLEM 
 

In structural optimization problems, stress and displacement constraints are usually checked. 
In this paper only storey drift constraints for steel moment resisting frames are considered. A 
time-dependent discrete structural optimization problem of steel moment resisting frames is 
formulated as follows: 

 

Minimize       )(XW  

Subject to       001
)(

)( 
alli,

i
di dr

tX,dr
tX,g   ,  mi ,,2,1 

d
j RX    ,  n,,,j 21  

 (1) 

 
where W(X) represents objective function, gdi(X) is the drift constraint, m and n are the 
number of the stories and design variables, respectively. Drift of ith storey and its allowable 
value are represented by dri and alli,dr , respectively. A given set of discrete values is 

expressed by Rd.  
In this paper, Newmark’s method is employed to solve the resulting equations and the 

conventional [8] method is employed to treat with the time-dependent constraints. In this 
method the time interval is divided into p subintervals and the time-dependent constraints 
are imposed at each time grid point.  

The optimization method employed here is a variant of genetic algorithm (GA). GA has 
been quite popular and has been applied to a variety of engineering problems. In GA, 
constraints are mostly handled by using the concept of penalty functions, which penalize 
infeasible solutions. In the case of earthquake loading, a simple form of penalty function is 
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employed as follows: 
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where )(Xfs
 and )(Xf p

are supplemental and penalty functions, respectively. Also, ~  is the 

feasible search space. Also, rp is an adjusting coefficient. 
 
 

3. OPTIMIZATION ALGORITHM 
 

The VSP is a variant of GA that reduces the required computational burden of the GA. In 
the VSP, an initial population with a small number of individuals is selected and all the 
necessary operations of the genetic are carried out and the optimal solution is achieved. As 
the size of the population is small, the VSP algorithm converges to a pre-mature solution. In 
each generation, individual with the best fitness value satisfying the design constraints is 
saved. Then, the best solution is repeatedly copied to create a new population. In the new 
population, the majority of the individuals are the best repeated solution of the previous 
results and the remaining are randomly selected. Thereafter, the optimization process is 
repeated using standard GA with a reduced population to achieve a new solution. The 
process of creating the reduced population with repeated individuals in each iteration is 
continued until the method converges. These reduced populations are called virtual sub-
populations (VSP) and the optimization process with VSPs is called adaptive VSP 
algorithm. The flowchart of VSP is illustrated in Figure 1. 

 

START 

Initialize population on a 
random basis 

Mating operation 

Multi-point crossover 

operation 

Fitness evaluation and save 

elite individuals 

Mutation operation 

Does the inner 

 loop converge? 

Reproduction 

No

Yes Does the outer 
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END 
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Initialize new VSP: 
a. some repeated elite saved individuals 

b. some randomly selected individuals 

 
Figure 1. The flowchart of VSP Algorithm 
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4. EARTHQUAKE DECOMPOSITION BY WAVELET TRANSFORMS 
 

Wavelets are mathematical functions that cut up data or function into different frequency 
components, and then study each component with a resolution matched to its scale. It turns out 
that the wavelet transform can be simply achieved by a tree of digital filter banks. The main 
idea behind the filter banks is to divide a signal into two parts; the first is the low-frequency 
part and the other is the high-frequency part. This idea can be achieved by a set of filters. A 
filter bank consists of a low-pass filter and a high-pass filter, which separate a signal into 
different frequency bands. A filter may be applied to a signal to remove or enhance certain 
frequency bands of the signal. By applying a low-pass filter to a signal, the high-frequency 
bands of the signal are removed and an approximate version of the original signal is obtained. 
A high-pass filter removes the low-frequency components of the original signal, and the result 
is a signal containing the details of the main signal. By combining these two filters into a filter 
bank, the original signal is divided into an approximate signal and a detail signal. The first part 
of coefficients (cA) contains the low-frequency of the signal, and the other (cD) contains the 
high-frequency of the signal. The low-frequency content is the most important part and this 
part is used for dynamic analysis of structures. A multilevel decomposition of the signal is 
obtained by repeating the decomposition process. The low-pass filtered output signal is used as 
input. In [9-10] decomposition of earthquake records has been achieved by employing Harr 
[11] wavelet function. In the present study, Daubechies wavelet function (Db2) [11] have been 
selected to decompose the earthquake record. The decomposition process can be inversed and 
the original record can be computed. This process is named as inverse discrete wavelet 
transforms (IDWT). The decomposition process is achieved in two stages, and the number of 
points of the original record is reduced to 0.25 of the primary ones. In Figure 2, a two level 
decomposition is illustrated. 

 

Figure 2. A two level decomposition of earthquake record )(tU g
  

 
Despite the major reduction in the computational effort of time history analysis, the 

optimization process requires a great number of such analyses. In order to reduce the 
computational burden, a hybrid neural network is proposed in the present study to predict 
the time history responses of the structures. 

 
 

5. SELF-ORGANIZING GR NEURAL NETWORKS 
 

In this paper GR network and its extension is focused. In order to improve the performance 
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generality of the conventional GR network, a new architecture and training algorithm for the 
GR network are proposed. The proposed neural network is a combination of SOM and GR 
networks and called self-organizing generalized regression (SOGR) networks. Similar 
neural systems were proposed in [12-13] employing RBF neural networks. 

The SOM is a neural network algorithm developed by Kohonen [3]. The SOM learn to 
classify input vectors according to how they are grouped in the input space. In the SOM, 
neighbouring neurons learn to recognize neighbouring sections of the input space. Thus, 
SOM learn both the distribution and topology of the input vectors. A SOM network 
identifies a winning neuron using a simple procedure. However, instead of updating only the 
winning neuron, all neurons within a certain neighbourhood of the winning neuron are 
updated, using the Kohonen rule. Consequently, after many presentations, neighbouring 
neurons have learned vectors similar to each other. 

Generalized regression (GR) neural networks are memory-based network that provides 
estimates of continuous and discrete variables and converges to the underlying (linear or 
nonlinear) regression surface. GR has a one pass learning algorithm with highly parallel 
structure. It does not require an iterative training procedure as in MLP. The principal 
advantages of GR are fast learning and convergence to the optimal regression surface as the 
number of samples becomes large. GR approximates any arbitrary function between input 
and output vectors, drawing the function estimate directly from the training data [14]. GR is 
two layers feed forward network. It is often used for function approximation. The first layer 
has as many neurons as there are samples in training set. Specifically, the first layer weight 
matrix is set to the transpose of the matrix containing the input vectors. The second layer 
also has as many neurons as input-output vectors, but here the weight matrix is set to the 
matrix containing the output vectors. Therefore training of GR network is fast. 

 
5.1 SOGR Structure 
Training of SOGR includes three stages. Firstly, the samples are divided into some classes 
so that the data located in each class have the same properties. In the case of dynamic 
analysis of structures the best criterion is the natural periods of the structures [12]. The 
classification task is achieved by a SOM network. The input vectors of the SOM consist of 
the first to third natural periods of the trail structures.  

 
  T

321 T,T,TIV   (3) 

 
where IV is the input vector; T1, T2, and T3 are the first to third natural periods of structures. 

By presenting the input samples to the SOM, the network recognizes the similar ones and 
divides them into some classes. Now it is possible to train a GR network for each class using 
its training data. In this case, IV is used as the input vector of the GR networks and their 
outputs are the time history responses of structures as: 

 
  T
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Therefore, the input and output matrices of GR networks are as follows: 
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where IM and OM are matrices contained input and output vectors, respectively. The 
number of training samples is expressed by nts. 

In order to train the SOM network and find the optimal number of data groups a simple 
procedure is performed. In this procedure, at first, some grids of SOM neurons with random 
topology are selected and the network is trained involving the grids. During the training 
process the SOM neurons concentrate on distinguishable regions. The number of these 
regions is taken into account as the optimal number of the SOM neurons. At last, a SOM 
network with the optimal number of SOM neurons is trained. Let ms be the optimal number 
of SOM neurons. Then for each cluster a distinct GR network is trained. 
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where 

1Cn , 
2Cn , and 

sCmn  are the number of data located in clusters 1, 2, and ms , respectively. 

Also, IMCi IM, OMCiOM, i=1,…,ms. IM and OM are used to train the conventional GR 
network.  

Employing the above explained neural system during the optimization process 
necessitates that the natural periods of structures be computed. Computing the periods with 
analytical methods can impose an additional computational burden to the optimization 
process. In order to eliminate this difficulty another GR network is trained to predict the 
natural periods of the structures. In this GR network, the inputs and outputs are the cross-
sectional area assignments and the natural periods of the structures, respectively. 

 
  T

21 nippn I,...,I,II    ,  IVOppn   (7) 

 
where Ippn and Oppn are the input and output vectors of the period predictor GR network. The 
number of the input vector components is ni. 

Therefore, the input and output vectors of the SOGR neural system are Ippn and OV, 
respectively. In order to evaluate the accuracy of approximate time history responses, the 
SOGR prediction results are compared with the corresponding exact responses through 
Rrmse and Rsquare.  

The main steps of training the SOGR networks are summarized as follows: 
a) Employing the Db2 for decomposition of the El Centro earthquake record.  
b) Selecting a number of input vectors from the design variables space. 
c) Evaluating responses of the structures for the low-pass filtered record by Newmark’s 

method. 
d) Recovering the evaluated responses by IDWT to determine the responses on the 

original time points. 
e) Evaluating natural periods of the structures by conventional FE analysis. 
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f) Selecting data for training and testing the neural networks on a random basis. 
g) Considering two or three dimensional grids of SOM neurons with random topology. 
h) Training the SOM network to classify the samples and find the optimal number of 

clusters (ms). 
i) Selecting a grid with the order of ms×1 and training a new SOM network to cluster 

the data. 
j) Training a GR network for each cluster using its corresponding data. 
Figure 3 shows the architecture of the SOGR.  
 

 

Figure 3. Architecture of SOGR 
 
 

6. OPTIMIZATION BY VSP USING SOGR 
 

For optimization an initial population including 20 individuals is selected on a random basis. 
The first to third natural periods of each individual are predicted by the trained period 
predictor GR network. The periods predicted are then presented to the SOM network to 
determine the cluster number, in which the individual is located. Afterward the GR networks 
associated with each cluster predicts the time history responses. The evolution is achieved 
by VSP using the genetic operators.  

The pseudo code of the VSP + SOGR hybrid optimization process is shown in Figure 3.  
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Step 1: Selecting 20 parent vectors from the design variables space.  

Step 2: Evaluating the natural periods of the structures by the GR networks.  

Step 3: Recognizing the corresponding cluster of the structures.  

Step 4: Evaluating the time history responses of the structures located in each cluster  

Step 5: Evaluating the objective function. 

Step 6: Checking the constraints at the grid points for feasibility of parent vectors. 

Step 7: Generating offspring vectors by adaptive crossover and mutation operators.  

Step 8: Evaluating the natural periods of the offspring vectors by the GR network.  

Step 9: Recognizing the corresponding cluster of the offspring vectors.  

Step 10: Evaluating the time history responses of the offspring vectors.  

Step 11: Evaluating the objective function. 

Step 12: Checking the constraints; if satisfied continue, else reject the solution. 

Step 13: Checking convergence; if satisfied stop, else go to Step 7. 

Step 14: Creating a VSP. 

Step 15: Repeating Steps 7 to 15 until the proper solution is met. 
 

Figure 4. The pseudo code of the optimization process by VSP + SOGR 
 
 

7. NUMERICAL RESULTS 
 

In this paper an illustrative examples is considered. A 3D steel frame, shown in Figure 5, 
subjected to the El Centro (S-E 1940) earthquake is designed for optimal weight. Rigid 
diaphragms are assigned to all the floors. The structural members are divided into six 
groups. The loads consist of 700 kg/m2 gravity load on all floor levels and the El Centro 
earthquake applied in the y direction. Due to one-way action of the diaphragms the gravity 
loads are only supported by the beams of groups 1 and 2.   

 

 

Figure 5. A 6-storey space steel frame 



SOFT COMPUTING BASED STRUCTURAL OPTIMIZATION FOR... 
 

 

423

The time of optimization is computed in clock time by a personal Pentium IV 2000MHz. 
Young’s modulus and weight density are 2.1×1010 kg/m2 and 7850 kg/m3, respectively. The 
optimization is carried out by VSP using the following analysis methods: (a) full dynamic 
analysis (FDA), (b) approximate analysis by conventional GR network (GR), and (c) 
approximate analysis by the SOGR metamodel (SOGR). In order to practical demands, the 
cross-sectional area assignments of elements are selected from European profile list given in 
Table 1. 

Table 1: Available box and I-shaped profiles 

Columns Columns Beams 

1 Box 200×200×12.5 9 Box 260×260×16.0 17 IPE 220 

2 Box 200×200×14.2 10 Box 260×260×17.5 18 IPE 240 

3 Box 220×220×12.5 11 Box 280×280×14.2 19 IPE 270 

4 Box 220×220×14.2 12 Box 280×280×16.0 20 IPE 300 

5 Box 240×240×12.5 13 Box 280×280×17.5 21 IPE 330 

6 Box 240×240×14.2 14 Box 300×300×16.0 22 IPE 360 

7 Box 240×240×16.0 15 Box 300×300×17.5 23 IPE 400 

8 Box 260×260×14.2 16 Box 300×300×20.0 24 IPE 450 

 
In this study, drift constraints under allowable drift design requirements are expressed by 

the drift ratio of the following formula, in which the value of allowable drift ratio is 0.005. 
The constraints are checked at 500 grid points with the time step of 0.02 second. In the 

data generating phase, 150 structures are randomly generated. From which 100 and 50 
samples are employed to train and test the performance generality of the neural networks, 
respectively. The number of points of the original earthquake record is 500. The number of 
the points is reduced to 127 using DWT with Db2 wavelet at the 2nd level. The original and 
filtered earthquake points are shown in Figure 6. 
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Figure 6. The El Centro earthquake points of (a) original, (b) filtered records 
 
The generated structures are analyzed for the filtered earthquake records and the 

approximate responses are obtained using the IDWT. The test samples are also analyzed for 
the original earthquake record to compute the actual responses. The approximate 
(DWT/IDWT) responses are compared with their corresponding actual ones in terms of 
mean Rsquare and mean Rrmse in Table 2. 

 
Table 2: Mean Rsquare and Rrmse of the approximate (DWT/IDWT) drift responses 

Storey Wavelet 
function 

Evaluation 
metrics 

1 2 3 4 5 6 

Rsquare 0.9876 0.9922 0.9964 0.9929 0.9775 0.9464 
Db2 

Rrmse 0.1096 0.0866 0.0590 0.0831 0.1471 0.2291 

 
As the second step in training the SOGR metamodel, a SOM network is trained to 

detect the data clusters. A grid of 5×1 of SOM neurons is employed. After training the 
SOM neural networks with the mentioned grid it is observed that the SOM neurons tend 
to concentrating about four main clusters. Therefore, the optimal number of SOM neurons 
is set to 4 (i.e. ms=4) and a grid of 4×1 SOM neurons is adopted for this example. As the 
optimal number of cluster is determined (ms=4), therefore 4 parallel GR networks are 
incorporated into the SOGR. The Approximate responses are employed to train the 
conventional GR network and the SOGR metamodel. The predicted responses are 
compared with their corresponding actual ones. The performance generalities of the 
conventional GR network and the SOGR metamodel are investigated through the testing 
data. The mean Rsquare and mean Rrmse of the inter-storey drift ratios predicted by the 
GR and the SOGR networks are summarized in Table 3.  
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Table 3: Mean Rsquare, mean and Max Rrmse of the predicted responses by GR and SOGR  

GR SOGR 
Structural response 

Rsquare Rrmse Rsquare Rrmse 

dr1 0.9751 0.1486 0.9856 0.1134 

dr2 0.9801 0.1272 0.9913 0.0877 

dr3 0.9855 0.1050 0.9954 0.0646 

dr4 0.9822 0.1202 0.9925 0.0832 

dr5 0.9614 0.1851 0.9749 0.1498 

dr6 0.9283 0.2549 0.9446 0.2251 

Ave. 0.9688 0.1565 0.9807 0.1206 

 
It is observed that the SOGR has a better generality comparing with the conventional GR 

network. Mean Rsquare and mean Rrmse of the predicted responses in all the clusters are 
given in Tables 4.  

 
Table 4: Mean Rsquare and Rrmse of test data for four clusters 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Outputs  

Rsquare Rrmse Rsquare Rrmse Rsquare Rrmse Rsquare Rrmse 

dr1 0.9913 0.0890 0.9904 0.0945 0.9835 0.1236 0.9768 0.1481 

dr2 0.9949 0.0675 0.9945 0.0727 0.9904 0.0942 0.9856 0.1166 

dr3 0.9976 0.0478 0.9964 0.0586 0.9946 0.0717 0.9932 0.0799 

dr4 0.9954 0.0665 0.9947 0.0718 0.9916 0.0890 0.9882 0.1062 

dr5 0.9818 0.1291 0.9835 0.1240 0.9728 0.1593 0.9615 0.1885 

dr6 0.9588 0.1950 0.9629 0.1887 0.9412 0.2354 0.9190 0.2762 

Ave. 0.9866 0.0992 0.9871 0.1017 0.9790 0.1289 0.9707 0.1526 

 
Another GR network is also trained to predict the first to third natural periods of the 

structures. Results of testing this GR network reveal that the errors of first to third 
approximated periods are 2.441%, 1.459%, and 1.733%, respectively. Therefore, it can be 
employed in the optimization process. The total time spent to data generating, earthquake 
filtering, computing the approximate responses, computing the exact responses and 
networks training phases is about 300 minutes. The results of optimization using full and 
approximate dynamic analyses are given in Table 5.  
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Table 5: Optimum designs obtained by VSP using full and approximate analyses 

Optimum designs Element groups 
No. FDA GR SOGR 

1 IPE 300 IPE 300 IPE 300 

2 IPE 360 IPE 360 IPE 360 

3 IPE 330 IPE 330 IPE 330 

4 Box 280×280×16.0 Box 300×300×17.5 Box 300×300×16.0 

5 Box 260×260×14.2 Box 260×260×14.2 Box 280×280×14.2 

6 Box 220×220×12.5 Box 220×220×12.5 Box 200×200×12.5 

Weight (kg) 118476.63 122446.23 120426.97 

Generations 52 85 68 

Time (min) 2500.00 1.51 1.23 

 
As given in this table, the optimum design obtained by FDA is better than the other 

solutions but it is very extensive in terms of the optimization overall time. The optimum 
design attained by SOGR is better than that of the conventional GR.  

In order to assess the accuracy of the optimum designs obtained by the approximate 
analyses, their final responses are computed by the conventional FE analysis and are 
compared with their approximate responses. The results of the comparison are summarized 
in Tables 6 and 7. Also, third and fifth time history drifts of the optimum designs obtained 
using approximate analyses respectively by GR and SOGR are compared with their 
corresponding actual ones in Figures 7 and 8. 

 
Table 6: Mean Rsquare and Rrmse of the optimum designs 

GR SOGR 
Outputs  

Rsquare Rrmse Rsquare Rrmse 

dr1 0.9780 0.1484 0.9869 0.1144 

dr2 0.9850 0.1221 0.9924 0.0871 

dr3 0.9958 0.0646 0.9947 0.0725 

dr4 0.9889 0.1055 0.9925 0.0865 

dr5 0.9521 0.2187 0.9827 0.1315 

dr6 0.8964 0.3218 0.9567 0.2079 

Ave. 0.9660 0.1635 0.9843 0.1167 
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Table 7: Comparison of maximum value of responses of the optimum designs with their 
allowable values 

Maximum values 
Outputs 

FDA GR SOGR 
Allowable values 

dr1 0.00329 0.00275 0.00290 0.00500 

dr2 0.00497 0.00464 0.00480 0.00500 

dr3 0.00500 0.00503 0.00475 0.00500 

dr4 0.00454 0.00435 0.00392 0.00500 

dr5 0.00473 0.00463 0.00502 0.00500 

dr6 0.00279 0.00276 0.00307 0.00500 
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Figure 7. Third storey drift of optimum structure obtained by GR vs. its actual response 
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Figure 8. Fifth storey drift of optimum structure obtained by SOGR vs. its actual response 

 
It can be observed that the performance generality of the SOGR metamodel is better than 

that of the conventional GR network. In this example the time of optimization employing 
neural networks, including data generating, earthquake filtering and networks training is 
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about 0.12 times of optimization employing full dynamic analysis while, the errors due to 
the approximation are low. 

 
 

8. CONCLUSIONS 
 

In this study, an optimization procedure has been developed to optimal design of structures 
for earthquake loading. In this procedure, a combination of the wavelet transform, neural 
networks and an adaptive evolutionary algorithm has been utilized. The evolutionary 
algorithm employed is virtual sub population (VSP) method. Performing the structural 
optimization using the full time history analysis imposes disproportionate computational 
burden to the optimization process. In order to reduce the computational effort a serial 
integration of discrete wavelet transform (DWT) and a neural system (SOGR) is employed. 
The DWT is employed to reduce the design points of earthquake record. A combination of 
self organizing map (SOM) and generalized regression (GR) networks, the so-called SOGR, 
and a conventional GR network are used to this purpose. The numerical results of testing the 
networks performance generality, demonstrate the computational advantages of SOGR 
compared to the conventional GR network. The numerical results of optimization indicate 
that by using the proposed methodology, the time of optimization including data generating, 
earthquake filtering and neural networks training time is reduced to about 0.12 of the time 
required for optimization employing full dynamic analysis; while the errors is small.  
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