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ABSTRACT 
 

This paper includes description of reliability based design optimization of elasto-plastic 
skeletal structures under multi-parameter static loading. Presented approach is based on the 
assumption that the complementary strain energy of the residual forces is considered as an 
overall measure of the plastic performance for plastic shakedown analysis and optimal 
design of the structure, and this measure is an uncertain quantity responsible for resistance 
of the structure by assuming Gaussian distribution. The problems yield to nonlinear 
mathematical programming which are solved by the use of bi-level sequential quadratic 
algorithm. Simple portal frames are optimized to illustrate the proposed approaches. 

 
Keywords: Reliability-based design optimization; complementary strain energy; 
shakedown analysis; gaussian distribution 

 
 

1. INTRODUCTION 
 

Structures of mechanical engineering for instance power plants, reactors, pressure vessels, 
etc. or civil engineering for instance trusses, frames, grids, bridge decks etc. are exposed to 
variable loading, particularly cyclic or repeated loading. In these situations the step-by-step 
elastic-plastic calculation is somewhat very costly in computing times. The most efficient 
way to handle the problem is to apply the shakedown theory. This theory is based on 
experimental facts obtained from realistic structures or laboratory specimen. It offers a direct 
method as like as limit analysis to perform the analysis of the problem [4]. 

There are several engineering problem where the designer should face to the problem of 
limited load carrying capacity of the connected elements of the structures [1, 2, 3]. Such 
problem can be found during the rehabilitation of the old buildings with composite plates 
(floors) or in case of steel frame structures. Due to the different behaviour of the beam 
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elements of the skeletal structures for compression and tension the stability problems need a 
certain care. The national standards give appropriate tool to solve the problem. In structural 
analysis the static and kinematic theorems provide appropriate tools to solve these complex 
problems [4, 5, 6]. 

In classical plasticity, optimal plastic analysis and design are among the most important 
basic problems [7]. At the application of the plastic analysis and design methods the control 
of the plastic behavior of the structures is an important requirement. Since the shakedown 
analysis provides no information about the magnitude of the plastic deformations and 
residual displacements accumulated before the adaptation of the structure, therefore for their 
determination several bounding theorems and approximate methods have been proposed. 
Among others Kaliszky and Lógó [1, 4] suggested that the complementary strain energy of 
the residual forces could be considered an overall measure of the plastic performance of 
structures and the plastic deformations should be controlled by introducing a limit for 
magnitude of this energy. In engineering the problem parameters (geometrical, material, 
strength, manufacturing) are given deterministically or considered with uncertainties. The 
obtained analysis and/or design task is more complex and can lead to reliability analysis and 
design [5,8,9]. 

This paper is a revised and extended version of the CST2010 Conference presentation of 
Lógó et al. [3]. The aim of this work is to take into consideration the influence of the limited 
load carrying capacity of the connections on the plastic limit state of elasto-plastic steel (or 
composite) trusses and frames under multi-parameter static loading and probabilistically 
given conditions during the design. In addition to the plastic shakedown analysis and 
optimal design to control the plastic behaviour of the structure, bound on the complementary 
strain energy of the residual forces is also applied. This bound has significant effect for the 
load parameter [2]. The different behaviours of the beam elements in compression and 
tension are taken into consideration by the reduced load carrying capacity in compression. 
The calculation is based on the requirements of the Eurocode [11]. 

The second objective of this paper is to analyze the influence of the limited load carrying 
capacity of the connections on the optimal frame designs. The main structural elements of 
steel framed multi-storey structures are columns, beams and their connections. Especially, 
inaccuracies in manufacturing and later deterioration of the connections change their limited 
load carrying capacity, which in consequence influences the behavior of the structure, see 
[2], and has to be taken into account in the analysis and design. It is assumed that the 
stiffness of the connections is semi-rigid [2, 10, 20], i.e. somewhere between rigid and 
pinned connection limits. 

If the design uncertainties (manufacturing, strength, geometrical) are expressed by the 
calculation of the complementary strain energy of the residual forces, the reliability based 
extended shakedown analysis and optimal design problems can be formed. Numerical 
procedures are elaborated which are based on a direct integration technique and the 
uncertainties are assumed to follow Gaussian distribution. The formulations of the problems 
yield to nonlinear mathematical programming which are solved by the use of sequential 
quadratic algorithm. The nested optimization procedure is governed by the reliability index 
calculation. The applications are illustrated by some numerical examples. 
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2. ELEMENTS OF THE MECHANICAL MODELING AND THE ANALYSIS 
 

2.1 Notations and loadings 
In the paper the following notations are used: 

dP : dead load;  

1 2,  P P : static working loads; 

,  e e
h dM M : fictitious elastic moments calculated from the live and dead loads assuming that the 

structure is purely elastic;  
,  r rQ M : residual internal forces and moments; 

,  p p
d hM M : plastic moments;  
p

M : limit moments of the bounded beam to column joints;  

p0W : allowable complementary strain  energy of the residual forces;  

,  y Eσ : yield stress and Young’s modulus; 

0A ,  I ,  Si i i  and i : areas, moment of inertias of the cross-sections  and length of the finite 

elements (i=1,2,…,n), respectively;  

jS : stiffness of the j-th semi-rigid connection, (j=1,2,…,k) is the number of semi-rigid 

connections, they are subsets of (i=1,2,…,n); 
*F, K, G, G : flexibility, stiffness, geometrical and equilibrium matrices; 

 : reliability index;  
1 : inverse cumulative distribution function (so called probit function) of the Gaussian 

distribution;  

 p0Wf : the Gaussian probability density function of the complementary strain energy of 

the residual forces;  

0V : represents the total limit volume of the structure. 

The problem class which is considered is based on the assumption that the dead and 
working (pay) loads are deterministic. The structure is subjected to a dead load dP  and two 

independent, static working loads 1P  and 2P  with multipliers 1 20,  0m m  . In the 

analysis five loading cases (h=1,2,…,5) shown in Table 1 are taken into consideration. For 
each loading case a shakedown multiplier shm  can be calculated. Making use of these 

multipliers a limit curve can be constructed in the plane 1 2,  m m  (Figure 1). The structure 

does not shake down, under the action of the loads 1 1m P , 2 2m P , if the points corresponding 

to the multipliers 1m , 2m  lies inside or on the limit curve. 
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Table 1: Load combinations 

h Multipliers Loads Load multipliers 

1 
2 0m   1 1Q P  s1m  

2 
1 0m   2 2Q = P  s2m  

3 
1 20.5m m  3 1 1 2 2[0.5 ,  (0.5 ),  ] Q P P P P  s3m  

4 
1 2m m  4 1 1 2 2[ ,  ( ),  ] Q P P P P  s4m  

5 
1 22m m  5 1 1 2 2[2.0 ,  (2.0 ),  ] Q P P P P  s5m  

 

 

Figure 1. Limit curve and safe domain 
 

2.2 Modeling of the beam-to-column connections 
The main structural elements of steel framed structures are the columns, the beams and their 
connections. Conventionally the beam-to-column connections are considered to be either 
pinned or rigid. In case of pinned connections, the frames have to be stabilized by 
appropriate bracing systems. Such frames are named brace frames by Eurocode [11]. The 
term rigid in this context implies that the connection is capable of resisting moments with a 
high stiffness. When the connections are rigid, the overall stability may be provided by the 
frame itself without the inclusion of specific bracing systems. Although the idealization of 
connection stiffness as pinned or rigid has been applied exclusively in the past. It is 
generally recognized that the real behaviour of the connections is never as ideal as assumed 
in the analysis. 

Analysis and design of steel frames with semi-rigid connections have been extensively 
examined Monforton and Wu [12]; Frye and Morris [13]; Lui and Chen [14]; Cunningham 
[15]; King [16]; King and Chen [17]; Dhillon and Malley [18]; Sekulovic and Salatic [19]; 
Kaveh and Moez [20]; Lógó et al. [2], Wang [21]; Ihaddoudene et al. [22]. Optimum design 
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of steel frames with semi-rigid connections has also been investigated using mathematical 
programming techniques Xu and Grierson [23]; Almusallam [24]; Alsalloum and 
Almusallam [25]; Simoes [26]; Kameshki and Saka [27] and [28]; Hayalioglu and 
Degertekin [29], [30] and [31]; Csebfalvi [32]; Degertekin and Hayalioglu [33]. 

 
2.2.1 Modeling of the Semi-Rigid Connections 
In case of rigid connections between the nodes and elements are defined as default. However 
in case of semi-rigid connections can be taken into consideration by reducing elementary 

stiffness matrix K̂ : 
 

 
1ˆ T

p p
ppk

 K K k k  (1) 

 

where ppk   is a main diagonal element of K̂ , pk  and 
p

Tk are the column and the row in 

K that involve ppk . 

The typical general behaviour of the semi-rigid connection can be illustrated by a 
moment-rotation relationship shown in Figure 2. In this paper this relationship will be 

approximated by three different elasto-plastic models given in Figure 3. Here 
p

M  is the 
plastic limit moment and  S is the stiffness of the semi-rigid connection. Their magnitudes 
can be assumed from the results of experiments. These models are incorporated in the 
elementary stiffness matrix of the beam elements. In this research the assumptions are 
mentioned here will be considered for modeling of the semi-rigid connections. 

 

 

Figure 2. Real behaviour of the semi-rigid connection 

 
  

a. Pinned connection b. Rigid connection c. Semi-rigid connection 

Figure 3a-c. Models of the semi-rigid connections 
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2.3 Reliability-based control of the plastic deformations 
At the application of the plastic analysis and design methods the control of the plastic 
behaviour of the structures is an important requirement. Following the suggestions of 
Kaliszky and Lógó [1, 4] the complementary strain energy of the residual forces could be 
considered as an overall measure of the plastic performance of structures and the plastic 
deformations should be controlled by introducing a bound for magnitude of this energy: 

 

 p0
1

1
Q Q W

2

n
r r
i i i

i

 F   (2) 

 
Here p0W  is an assumed bound for the complementary strain energy of the residual 

forces. This constraint can be expressed in terms of the residual moments ,Mr
i a  and 

,Mr
i b acting at the ends (a and b) of the finite elements as follows: 

 

 2 2
, , , , p0

1

1
(M ) (M )(M ) (M ) W .

6E I

n
r r r ri
i a i a i b i b

i i

       (3) 

 
By the use of Eq. (3) a limit state function can be constructed: 
 

   2 2
p0 p0 , , , ,

1

1
W , W (M ) (M )(M ) (M ) .

6E I

n
r r r r ri

i a i a i b i b
i i

g


     M


 (4) 

 
The plastic deformations are controlled while the bound for the magnitude of the 

complementary strain energy of the residual forces exceeds the calculated value of the 
complementary strain energy of the residual forces. On similar way a limit state function can 
be determined in case of axially loaded structures. Neglecting the details the formulation are 
as follows: 

 

   2
p0 p0

1

1
W , W (N ) 0.

2E E

n
r ri

i
i i

g


  N


 (5) 

 
Introducing the basic concepts of the reliability analysis and using the force method the 

failure of the structure can be defined as follows: 
 

  R R, 0;S Sg   X X X X  (6) 

 
where RX  indicates either the bound for the statically admissible forces SX  or a bound  for 

the derived quantities from SX . The probability of failure is given by 
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  0 ;f gFP  (7.a) 

and can be calculated as  

 
 

 
R , 0

.
S

f

g

f dx


 
X X

XP  (7.b) 

 
Let assumed that due to the uncertainties the bound for the magnitude of the 

complementary strain energy of the residual forces is given randomly and for sake of 
simplicity it follows the Gaussian distribution with given mean value p0W  and standard 

deviation w .  Due to the number of the probabilistic variables (here only single) the 

probability of the failure event can be expressed in a closed integral form: 
 

 
 

p0

, p0

W , 0

W ,
r

f calc w

g

f dx


 
M

P  or for trusses 
 

 
p0

, p0

W , 0

W , .
r

f calc w

g

f dx


 
N

P  

(7.c) 
 
By the use of the strict reliability index a reliability condition can be formed:  
 

 0target calc   ; (7.d) 

 
where target  and calc  are calculated as follows: 

 

  1
,target f target   P ; (7.e) 

 

  1
,calc f calc   P . (7.f) 

 
Due to the simplicity of the present case the integral formulation is not needed, since the 

probability of failure can be described easily with the distribution function of the normal 
distribution of the stochastic bound 0pW . 

 
 

3. EXTENDED SHAKEDOWN DESIGN OF SKELETAL STRUCTURES 
 

3.1 Basic design formulations of axially loaded structures 
According the recommendations of Eurocode [11] the design resistance of the compressed 
members should be reduced. The formulation is as follows: 

 
 ,b Rd yN A   (8.a) 

 
Here  is the reduction coefficient defined by the relevant buckling mode. For axial 
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compression in members the value of χ for the appropriate non-dimensional slenderness   
should be determined from the relevant buckling curve according to:  

 

 
2 2

1
1


 
   

 (8.b) 

 

where   20.5 1 0.2         . The imperfection factor α corresponds to the 

appropriate buckling curve.   
The mechanical model can be given by the following conditions: determine the maximum 

load multiplier shm  and cross-sectional dimensions under the conditions that (i) the structure 

with given layout is strong enough to carry the loads ( d sh hmP Q ), (ii) satisfies the 

constraints on the self equilibrated residual forces and limited strength capacities, (iii) 
satisfies the constraints on plastic deformations and residual displacements, (iv) safe enough 
and the required amount of material does not exceed a given limit. The design solution 
method based on the static theorem of shakedown analysis is formulated as below: 

 
 Maximize     shm  (9.a) 

Subject to 
 * r

h G N 0 ; (9.b) 

 
 -1 -1e

d dN F GK P ; (9.c) 

 
 -1 -1e

h sh hmN F GK Q ; (9.d) 

 
 ( )maxe r e

y di hi hi yNA N N A       , ( 1, 2,..., )i n ; (9.e) 

 
 ( )mine r e

y di hi hi yNA N N A       , ( 1, 2,..., )i n ; (9.f) 

 
 0;target calc    (9.g)  

 
 

0 0.i i
i

A V    (9.h)  

 
Here Eq. (9.b) is equilibrium equations for the residual forces and Eqs. (9.c-d) express 

the calculations of the elastic fictitious internal forces from the dead load and from the live 
(pay) loads, respectively. Eqs. (9.e-f) are the yield conditions. Eq. (9.g) is the reliability 
condition which control the plastic behaviour of the truss by the use of the residual strain 
energy. The material redistribution is controlled by Eq. (9.h). The goal is to find the 
maximum of the statically admissible load multiplier shm . 
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As it was stated before this is a constrained nonlinear mathematical programming 
problem and it can be solved by any appropriate solution method (e.g. SPQ method) which 
is governed by an iterative procedure for Eq. (9.g). Starting with a reliable structure (feasible 
solution) and selecting one of the loading combination Q ;( 1, 2,...,5)h h   a shakedown 

multiplier shm  can be determined where the target reliability index is reached iteratively. 

Then the limit curve and the safe loading domain of the shakedown can be constructed and 
the unknown cross-sectional dimensions can be obtained.  

In details the highly nonlinear problem is solved by applying a sequential quadratic 
mathematical programming algorithm (SQP) with the following iterative procedure: 

Step 1. Assuming the initial cross-sectional dimension ix  with almost failure free 

solution [ 0 0( 3 )f p wF W  P ] determine shm  using Eqs. (9.a-h). 

Step 2. Using shm  determine the optimal cross-sectional dimension ix  as solution of the 

mathematical programming problem (9.a-h). 
Step 3. Using ix  obtained in step 2 determine the new reliability index ,calc i  in problem 

(9) increase the probability of failure 0fP  by appropriate fP . 

Step 4. Using shm and ix  obtained in step 3 repeat steps 2-3 as long as the difference of 

the results ,target calc i   of two consecutive steps 4 are acceptable small. 

 
3.1.1 Alternative design formulation for trusses 
Interchanging the objective function -Eq.(9.a)- and the last constraint -Eq. (9.h)- an 
alternative design formulation can be formulated. This formulation yields to the classical 
minimum volume problem: 

 

 Minimize i i
i

V A     (10.a) 

Subject to 
 * r

h G N 0 ; (10.b) 

 
 -1 -1e

d dN F GK P ; (10.c) 

 
 -1 -1e

h sh hmN F GK Q ; (10.d) 

 
 ( )maxe r e

y di hi hi yNA N N A       , ( 1, 2,..., )i n ; (10.e) 

 
 ( )mine r e

y di hi hi yNA N N A       , ( 1, 2,..., )i n ; (10.f) 
 

 0;target calc    (10.g)  
 

 0 0.shm m   (10.h)  
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Here all the equations have the same meanings as it was before in Eqs. (9.b-g) while  
Eq. (10.h) gives an upper bound for the external loads. 

Trough the optimality condition it can be proved that this nonlinear mathematical 
programming problem Eqs. (10.a-h) leads to the same optimal solution as problem  
Eqs. (9.a-h). 

 
3.2 Basic design formulations of frames  
A simplified method is introduced here for the design of frames with limited rotational 
capacity at the beam-column connections. For sake of simplicity only the bending moments 
are considered. According the recommendation of Eurocode [11] the design buckling 
resistance moment of a laterally unrestrained beam should be taken as: 

 
 , 0b Rd LT yM S  . (11.a) 

 
Here LT  is the reduction factor for the lateral-torsional buckling. The calculation of  the 

value of LT  for the appropriate non-dimensional slenderness LT  should be determined as 

follows: 
 

 
2 2

1
1LT

LT LT LT




 
   

 (11.b) 

 

where   20.5 1 0.2LT LT LT         . The imperfection factor LT  corresponds to the 

appropriate buckling curve.   
Similarly to the truss problem also a mechanical model can be created where one has to 

determine the maximum load multiplier shm and cross-sectional dimensions under the 

conditions that (i) the structure with given layout is strong enough to carry the loads 
( d sh hmP Q ), (ii) satisfies the constraints on the limited beam-to-column strength capacity, 

(iii) satisfies the constraints on plastic deformations and residual displacements, (iv) safe 
enough and the required amount of material does not exceed a given limit. The solution 
formulation based on the static theorem of shakedown analysis is formulated as below: 

 
 Maximize     shm  (12.a) 

Subject to 
 * r

h G M 0 ; (12.b) 

 
 -1 -1e

d dM F GK P ; (12.c) 

 
 -1 -1e

h sh hmM F GK Q ; (12.d) 
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 0 0( ) 2S max Se r e
LT i y di hi hi i yM M M       , ( 1,2,..., )i n ; (12.e) 

 0 0( ) 2S min Se r e
LT i y di hi hi i yM M M       , ( 1, 2,..., )i n ; (12.f) 

 

 - ( max )
p pe r e
j jdj hj hjM M M M M    , ( 1,2,..., )j k ; (12.g) 

 

 ( min )
p pe r e
j jdj hj hjMM M M M     , ( 1,2,..., )j k ; (12.h) 

 
 0;target calc    (12.i)  

 
 

0 0.i i
i

A V    (12.j)  

 

Here Eq. (12.b) expresses the self equilibrated internal force (bending) conditions. Eqs. 
(12.c-d) are the calculations of the elastic fictitious internal forces (moments) from the dead 
load and from the live (pay) loads, respectively. Eqs. (12.e-f) are the yield conditions for 
shakedown. Eqs. (12.g-h) are used as yield conditions of the semi-rigid connections. Eq. 
(12.i) is the reliability condition. The material redistribution is controlled by Eq. (12.j). The 
goal is to find the maximum of the statically admissible load multiplier shm . 

Similarly as before this is a constrained nonlinear mathematical programming problem 
and it can be solved by any appropriate solution method (e.g., SPQ method) which is 
governed by an iterative procedure for Eq. (12.i). Selecting one of the semi-rigid connection 
models for each loading combination Q ;( 1, 2,...,5)h h   gradually a shakedown multiplier 

shm  can be determined, then the limit curve of shakedown can be constructed and the 

unknown cross-sectional dimensions can be obtained.  
 

3.2.1 Alternative design formulation for frames 
The “classical” minimum volume design model can be created similarly to Section 3.1.1. 
Interchanging the objective function - Eq. (12.a) - and the last constraint - Eq. (12.j) - an 
alternative design formulation can be formulated as bellow: 
 
 Minimize  i i

i

V A    (13.a) 

Subject to 
 * r

h G M 0 ; (13.b) 

 
 -1 -1e

d dM F GK P ; (13.c) 

 
 -1 -1e

h sh hmM F GK Q ; (13.d) 

 
 0 0( ) 2S max Se r e

LT i y di hi hi i yM M M       , ( 1,2,..., )i n ; (13.e) 
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 0 0( ) 2S min Se r e
LT i y di hi hi i yM M M       , ( 1, 2,..., )i n ; (13.f) 

 - ( max )
p pe r e
j jdj hj hjM M M M M    , ( 1,2,..., )j k ; (13.g) 

 

 ( min )
p pe r e
j jdj hj hjMM M M M     , ( 1,2,..., )j k ; (13.h) 

 
 0;target calc    (13.i)  
 

 0 0.shm m   (13.j)  
 

Here all the equations have the same meanings as it was before in Eqs. (12.b-i) while Eq. 
(13.j) gives an upper bound for the external loads. 

Trough the optimality condition it can be proved that this nonlinear mathematical 
programming problem Eqs. (13.a-j) leads to same optimal solution as problem Eqs. (12.a-j). 

 
 

4. NUMERICAL EXAMPLES  
 

To demonstrate the theories and solution strategy introduced above, a nonlinear 
mathematical programming procedure is elaborated where one has to determine the safe 
loading domain and cross-sectional dimensions of a simple frame with deterministic loading 
data and with probabilistic bound for the magnitude of the complementary strain energy of 
the residual forces. 

 
4.1 Example 1.  
The application of the design method is illustrated by a simple test example shown in  
Figure 4. At the joints 2 and 4 the portal frame has semi-rigid connection. The working 
loads are 1 10 P kN , 2 15 P kN  and 0dP  .  

 

ss 

m1P1 

m2P2

H=4.00m

L=2.00m L=2.00m
1 

2 

3 

4

5

 

Figure 4. Portal frame as test problem 
 
The yield stress and the Young’s modulus are y=21kN/cm2 and  E=2.07.106kN/cm2. The 

non-variable cross-sectional dimensions are (see Figure 4): d=22cm, tw=2cm, tf=2cm. The 
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applied beam-to-column rigidity values are varied gradually from fix to hinge connection 
( rS =1.0e+10,...,0.0kNm/rad).  

 

Load domain with mean value 1,5 and standart deviation 0,15

0

0,5

1

1,5

2

2,5

0 0,2 0,4 0,6 0,8 1 1,2

m1

m
2

Exp Prob=0,000013

Exp Prob=0,00069

 

Figure 5a. Safe loading domain for the design 
 
The results are presented in Figures 5.a-b. and 6. In Figure 5.a one can see the safe loading 

domains with different expected probability and beam-to-column connection rigidity, 
respectively. In Figure 5b the safe loading domains are presented in function of the different 
structural volume and rigidity, respectively. As it is seen the stiffnesses of the semi-rigid 
connection influence significantly the plastic behaviour of the frame. The results are in very 
good agreement with the expectations that the safe loading domain is convex and the increase 
of the safety level decrease the safe loading domain in case of the same volume limit. 

 

 

Load domain with mean value 1,5; standart deviation 0,15

and exp prob 0,00069
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Figure 5b. Safe loading domain for the design 
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Figure 6. Variation of the flange width 
 
In Figure 6. optimal cross-sectional widths are presented in function of the total volume. 

The beam-to- column rigidity is connected to some semi-rigid case ( rS =1.0e+6 kNm/rad) 

and the design is elaborated by the target reliability index 3.2  . 

 
4.2 Example 2 
A two-storey frame is investigated as an analysis example shown in Figure 7. At the beam to 
column connections (joints 1, 3, 4 and 6) the portal frame has semi-rigid connection. The 
working loads are 1 10 P kN , 2 30P kN  and 0dP  .  

The yield stress and the Young’s modulus are 221y kN / cm   and 
6 22 07 10  E . kN / cm  . The assumed connection rigidity is rS =0.1kNm/rad. The cross-

sectional data of the beam are: 2
BeamA  = 28.5cm , 4

BeamI = 1943 cm , 3
BeamS  = 130.0 cm , while for 

the columns are : 2
columnA  = 39.0cm , 4

columnI = 3891 cm , 3
columnS  = 210.0 cm .  

The results of the solution are presented in Figures 8.-10. where different target reliability 
indexes, mean values and standard deviations are considered. In Figure 8. the safe limit load 
domain is presented in case of different mean values of the complementary strain energy of 
the residual forces ( p0W 90;  80; 70; 60 ;kNcm ) with standard deviation 6w kNcm   and 

target reliability index 3.2target  . One can see that increasing the mean values result in 

bigger safe loading domain. In Figure 9. the evaluation of the load multipliers are presented 
in function of the mean values of the complementary strain energy of the residual forces 
( p0W 90;  80; 70; 60 ;kNcm ), different standard deviations ( 2;  6;  10; 14w kNcm  ) and 

target reliability index 3.2target  . 
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Figure 7. Two-storey frame  
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Figure 8. Safe loading domain  
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Figure 9. Safe loading surface 1 
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In Figure 10. the variation of the load multipliers are presented in function of different 
target reliability indexes (target=3.2; 4.2;)), fix mean values of the complementary strain 
energy of the residual forces ( p0W 60 ) and different standard deviations 

( 2;  6;  10; 14;w  ).  
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Figure 10. Safe loading surface 2 
 
The shapes of the surfaces are in good agreement with the expectation that the increase of 

the reliability level and the amount of the complementary strain energy of the residual forces 
results in bigger load multipliers. 

 
 

5. CONCLUSIONS 
 

In this paper mechanical models are introduced for the extended shakedown design. The 
semi-rigid behaviour is described by appropriate models and to control the plastic behaviour 
of the structure probabilistically given bound on the complementary strain energy of the 
residual forces is applied. Limit curves and optimal cross-sections are presented for the 
shakedown multipliers. The numerical analysis shows that the stiffness of the semi-rigid 
connections, the mean value and the standard deviation of the bound of the complementary 
strain energy of the residual forces can influence significantly the magnitude of the 
shakedown multipliers and in some cases the results are very sensitive on the stiffness of the 
semi-rigid connections. The presented investigation drowns the attention to the importance 
of the problem but further investigations are necessary to make more general statements.  
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