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ABSTRACT 
 

Euler-Bernoulli beam model based non-local elasticity theory is developed for the static 
and buckling analysis of cantilever carbon nanotubes (CNTs). The size effect is taken 
into consideration using the Eringen’s non-local elasticity theory. The derivation of 
governing equation of bending and buckling from the shear and moment resultants of the 
beam and stress-strain relationship of the one-dimensional non-local elasticity model is 
presented. Buckling and deflection values of CNTs are obtained and presented in 
graphical form. Numerical results are presented to show the small-scale effect on 
bending of CNTs. 
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1. INTRODUCTION 
 

The concept of carbon nanotubes was first introduced in 1991 by Iijima [1] in Japan. It has 
many interesting mechanical properties in engineering applications [2]. Thus, the studies of 
mechanical behaviors of carbon nanotubes have being attracted more and more attentions of 
scientists in the world and also have become a new research area of applied mechanics [3, 
4]. In the continuum approach, carbon nanotubes are modeled as elastic beams such as 
Timoshenko, Euler-Bernoulli, shells and elastic rod. Continuum models are more practical 
approach for nanoscale system [5-8]. In the present work, the consistent governing equations 
for the beam model for cantilever CNTs are derived for bending and buckling analysis. The 
results for static bending and critical buckling are obtained by using the differential 
quadrature method. 
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2. NON-LOCAL ELASTICITY THEORY OF ERINGEN’S 
 

It is known that, the stress state of any body at a point x is related to the strain state at the 
same point x in the classical elasticity. Namely, the constitutive equations of classical 
(macroscopic) elasticity are an algebraic relationship between the stress and strain 
components.  But this theory is not conflict the atomic theory of lattice dynamics and 
experimental observation of phonon dispersion. As stated by Eringen [9], the linear theory 
of non-local elasticity leads to a set of integropartial differential equations for the 
displacements field for homogeneous, isotropic bodies. According to the non-local elasticity 
theory of Eringen’s, the stress at any reference point in the body depends not only on the 
strains at this point but also on strains at all points of the body. This definition of the 
Eringen’s non-local elasticity is based on the atomic theory of lattice dynamics and some 
experimental observations on phonon dispersion. In this theory, the fundamental equations 
involve spatial integrals which represent weighted averages of the contributions of related 
strain tensor at the related point in the body. Thus theory introduces the small length scale 
effect through a spatial integral constitutive relation. For Homogenous and isotropic elastic 
solids, the linear theory of non-local elasticity is described by the following equations [9]:  
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where klσ is the non-local stress tensor, ρ is the mass density of the body, lf  is the body (or 
applied) force density, lu is the displacement vector at a reference point x in the body, 

)(xτkl ′ is the classical (Cauchy) or local stress tensor at any point x′ in the body, )(xεkl ′ is 
the linear strain tensor at point x′  in the body, t is denoted the time, V is the volume occupied 
by the elastic body, xxα ′−  is the distance in Euclidean form, λ  and µ  are the Lame 

constants. The non-local kernel xxα ′−  defines as the impact of the strain at the point x′  on 

the stress at the point x in the elastic body. The value of χ  depends on the ratio ( lae /0 ) 
which is material constant. The value a depends on the internal (granular distance, lattice 
parameter, distance between C-C bonds as molecular diameters) and external characteristics 
lengths (crack length or wave length) and 0e is a constant appropriate to each material for 
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adjusting the model to match reliable results by experiments or some other theories. If  xα  
takes on a Green function of a linear differential operator given as  

 
 ( ) ( )xxδxxα −′=−′ℜ  (5) 

 
The non-local constitutive relation given by Eq. (2) is reduced to the differential equation 

 
 klklσ τ=ℜ  (6) 

 
Furthermore the integro-partial differential equation given by Eq. (1) is also reduced to 

the following partial differential equation 
 

 0)(, =−ℜ+ kllkl uρf &&τ  (7) 
 
Eringen [9] proposed a non-local model for this linear differential operator given as 
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where 2∇ is the Laplacian. Consequently, the constitutive relations can be written as 

 
 [ ] klklσae τ=∇− 22

0 )(1  (9) 
 
 

3. NON-LOCAL EQUATIONS OF CARBON NANOTUBES 
 

It is accepted that the some mechanical properties such as vibration, bending and buckling of 
the beam like micro structures based on non-local elasticity theory are entirely different 
from their counterparts based on the classical (macro) beam theory. Thus the theory based 
on size dependent non-local elasticity theory can serve as a more reasonable and proper 
approach in mechanical modeling of micro and nano sized components of nano mechanical 
devices. The non-local theory of elasticity proposed by Eringen [9] has been widely used in 
the past five years in many nano mechanical problems including dislocation, crack, wave 
propagation, vibration analysis of nanobeams, nanotubes, carbon nanotubes, and 
microtubules. For carbon nanotubes in one dimensional case, the non-local constitutive 
relations can be written as below [5] 
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Where xxσ is the axial stress, xxε  is the axial strain, E the Young modulus. Assume that the 
displacement of beam along y axial axis is ),( txw  in terms of spatial coordinate x and time 
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variable t. For transversely vibration of Carbon nanotubes, the equilibrium conditions of 
Euler-Bernoulli beam can be written as  
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According to the linear theory of Euler-Bernoulli beam, the strain-displacements and the 

moment are given by 
 

 2

2 ),(
x

txwyε
∂

∂
−= ,   dAyσtxM

A
∫=),(  (12, 13) 

 
Multiplying on both sides of Eq. (12) by y and integrating over the cross-section area of 

the beam, we obtain 
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After some mathematical manipulations, we have 
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By performing the differentiating of this equation with respect to the variable x  twice we 

have  
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Finally, the following governing non-local equation of carbon nanotubes based on Euler-

Bernoulli beam theory can be obtained:  
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It is exactly seen from the Eq. (17) that the local Euler-Bernoulli beam theory is obtained 

when the parameter 0e is set identically to zero.  In this case, non-local bending moment can 
be written as [2] 
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If we consider the Euler-Bernoulli beam subjected to a distributed load, the general non-
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local equation for this case is given below  
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By using the relation between the load and deflection, that is 
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Substituting the Eq. (20) into Eq. (19) we obtain 
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Similarly, buckling Equation can be written as 
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Clamped boundary conditions are considered. These are: 
 
For clamped (C) end (at x=0) 
 

 
0=w  and 0/ =dxdw                                     (22a) 

 
For free (F) end (at x=L) 
 

 0=V  and 0=M  (22b) 
 
 

4. DIFFERENTIAL QUADRATURE (DQ) METHOD 
 

The advance in computational technology in the past fifty years have led to the born some 
new numerical methods; such as meshless methods, differential quadrature, spectral methods 
and discrete singular convolution methods. Differential quadrature (DQ) method is a 
relatively new numerical technique in applied mechanics. The method of DQ can yield 
accurate solutions with relatively much fewer grid points. It has been also successfully 
employed for different solid and fluid mechanic problems [10,11]. Unlike the DQ that uses 
the polynomial functions, such as power functions, Lagrange interpolated, and Legendre 
polynomials as the test functions, harmonic differential quadrature (HDQ) uses harmonic or 
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trigonometric functions as the test functions. Shu and Xue [10] proposed an explicit means 
of obtaining the weighting coefficients for the HDQ. When the )(xf  is approximated by a 
Fourier series expansion in the form 
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and the Lagrange interpolated trigonometric polynomials are taken as 
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for k = 0,1,2,....,N. According to the HDQ, the weighting coefficients of the first-order 
derivatives Aij

   for  i ≠ j can be obtained by using the following formula: 
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The weighting coefficients of the second-order derivatives Bij

 for i ≠ j can be obtained 
using following formula: 
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The weighting coefficients of the first-order and second-order derivatives Aij

(p)  for i = j  
are given as 
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 By using DQ discretization for example for bending, the Eq. (21) takes the form  
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Similarly, the buckling equation can be written in same form given above. 
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5. NUMERICAL RESULTS 
 

In this section, several examples of CNTs having clamped boundary conditions are 
examined. For this purpose, some numerical results in the forms of graphs are presented 
using the method of DQ. The material and geometric constants of CNTs are given in Table 
1. The symbol C-F, represents the CNT having clamped edge at x=0 and free edge at x=L. 
To determine the accuracy and convergence of the present method for deflection analysis of 
CNTs, numerical experimentation was carried out by varying the number of grid points N.  

  

Table 1: Material and geometric values of CNTs 

Parameter Value 

E 1×1012 N/m2 

I 491×10−36 m4 

ρ 2300 kg/m3 

L 10−8 m 

 
The obtained results of non-dimensional static deflections are computed for different 

number of terms in N is shown in Table 2. Exact analytical solution [3] is also given for 
comparison. Excellent agreement has been achieved between the present results and the 
results obtained by analytical formula given by Reddy [3]. It is seen from this table that 
when the grid point numbers reaches N=7 the present method gives accurate predictions for 
the deflections. Figures 1-3 show the displacement and bending moment along the length of 
CNTs for different value of non-local parameters. It can be seen that the effect of non-local 
parameter on the deflection and bending moment is significant. In general, the non-local 
parameter result in an increase of the transverse deflection and bending moment of a CNT 
under uniformly distributed load. For the case of bending moment, the non-local parameter 
is generally insignificant. It is observed that when the non-local parameter is greater than 
6nm, the deflection values becomes negative.   

 
Table 2: Comparison of non-dimensional maximum deflection (w×EI/qL4) of C-F carbon 

nanotubes under uniformly distributed loading 

Present DQ solutions 
eoa/L Analytical 

result [3] 
N=5 N=7 N=9 N=11 N=13 

0.0 0.1250 0.12518 0.12504 0.12501 0.12501 0.12501 

0.20 0.0250 0.02511 0.02507 0.02506 0.02506 0.02506 
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Figure 1. Deflection of C-F carbon nanotubes a) eoa=0.3×10−9m b) q=0.2 N/m 
 
Critical buckling loads are obtained and results presented in Figures 4-6 for different 

parameters. In general, bucking loads are decrease with the increasing value of non-local 
parameter.  
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Figure 2. Bending moment of C-F carbon nanotubes a) eoa=0.5×10-9 m b) q=0.1 N/m 
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Figure 3. Maximum deflection of C-F carbon nanotubes a) eoa=0.3×10-9 m b) q=0.1 N/m 
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Figure 4. Variation of critical buckling load with different non-local parameter 
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Figure 5. Variation of critical buckling load with length-to-material ratio 
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Figure 6. Variation of critical buckling load with length 
 
 

6. CONCLUDING REMARKS 
 

Static and buckling behavior of single walled carbon nanotubes is investigated in this paper. 
The numerical results show that the effect of non-local parameter is significant on static and 
buckling behaviour of CNTs. The method is suitable for the problem considered due to its 



BUCKLING AND BENDING ANALYSES OF CANTILEVER CNTS... 
 

 

661

generality, simplicity, and potential for further development.  
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