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ABSTRACT 
 

In this paper, the recently developed meta-heuristic optimization algorithm, known as the 
charged system search (CSS), is utilized for the problems of facility locations on a network. 
The CSS is an optimization algorithm that acts on the basis of the interaction between 
charged particles (CPs) considering the governing laws of Coulomb and Gauss from 
electrical physics and laws of motion from Newtonian mechanics. 

 
Keywords: Combinatorial optimization; charged system search; graph theory; medians; 
centers; weighted graphs; facility locations 

 
 

1. INTRODUCTION 
 

The problem of finding optimal facilities on a network or a directed graph as a discrete 
optimization problem has attracted the attention of many researchers. The problems of this 
kind, which have combinatorial nature, are often investigated in the following two forms; 
First, minimax problems in which the maximum cost of serving clients is minimized known 
as center finding, and second the minisum problems in which the sum of the costs of serving 
clients is minimized. The latter is known as the median finding problem. Since the nature of 
these two problems are the same and the only difference between them are on the way costs 
are calculated, many evolutionary algorithms for solving one type is capable of dealing with 
the second type. In this paper, the main focus will be on the second type known as the 
median finding problem. By a small modification in the algorithm, a solution for the center 
problems is easily obtained. 

Layout optimization of facilities such as airports, reservoirs and stores, universities and 
educational centers, and shopping centers are some of the applications of the median finding 
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problem. The layout optimization of emergency services is the main application of the center 
finding problem. For optimum location, finding many parameters such as physical, 
economical, social, environmental and political factors are considered. Each of these factors 
can be incorporated in the solution, by assigning weights to the nodes and/or edges of the 
corresponding graph. In fact, the problem can be formulated as finding some points on a 
network (construction graph). In this way, some facilities or services should be selected such 
that the average cost (or the maximum cost in the center problem) of the trips or the average 
time for reaching these facilities become minimum [1]. Facility layout problem is an NP-
hard combinatorial optimization problem [2], and as it will be discussed, the exact solution 
of the problem is complex and highly time consuming for graphs with a large number of 
nodes. Therefore, many approximate algorithms are developed for finding the location of 
such facilities [3-11]. For selecting k nodes as medians out of N nodes of a graph, the 
number of cases that must be considered, is equal to the number of combinations of N nodes 
taken k at a time. Due to the factorial nature of this selection, the dimension of the problem 
is high and it requires a non-polynomial algorithm. 

Recently, meta-heuristics such as Genetic algorithms and Ant Colony optimization are 
being employed to deal with this problem. An Ant based algorithm was proposed by Kaveh 
and Sharafi [12] for finding k-median of the weighted graphs. 

Meta-heuristic algorithms mostly tend to perform properly for the optimization problems. 
This is because such methods avoid simplifying or making shortening assumptions about the 
original form. Evidence of this is their successful applications to a vast variety of fields, 
such as engineering, art, biology, economics, marketing, genetics, operations research, 
robotics, social sciences, physics, politics and chemistry. As a newly developed type of 
meta-heuristic algorithm, the charged system search (CSS) was introduced for design of 
structural problems by Kaveh and Talatahari [13-15]. 

This method utilizes the governing Coulomb and Gauss laws from electrostatics and the 
Newtonian law of mechanics. Inspired by these laws, a model is created to formulate the 
facility layout optimization problem. CSS contains a number of agents which are called 
charged particle (CP). Each CP is considered as a charged sphere which exerts an electric 
force on other CPs according to the Coulomb and Gauss laws. The resultant forces and the 
motion laws determine the new location of the CPs. Using these laws provides a good 
balance between the exploration and the exploitation of the algorithm. As a result, CSS can 
easily be utilized for both discrete and continues optimization problems [13]. In this paper, 
the CSS is employed for facility location finding as a discrete optimization problem. 

 
 

2. BACKGROUND 
 

2.1 Electrical laws 
In physics, the space surrounding an electric charge has a property known as the electric 
field of that charge. This field exerts a force on other electrically charged objects. The 
electric field surrounding a point charge is given by Coulomb’s law. Coulomb has 
confirmed that the electric force between two small charged spheres is proportional to the 
inverse square of their separation distance ijr . Therefore, it provides the magnitude of the 
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electric force (Coulomb force) between two charged points (CPs). This force on a CP jq  at 

position ir , experiencing a field due to the presence of another CP jq  at position ir  , can be 
expressed as 
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where ek  is a constant known as the Coulomb constant; ijr  is the separation of the two CPs, 
Halliday et. al. [16]. 

Consider an insulating solid sphere of radius which has a uniform volume charge density 
and carries a total charge of magnitude iq . The magnitude of the electric force at a point 
outside the sphere is defined by Eq. (1), while this force can be obtained using Gauss’s law 
at a point inside the sphere as 
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In order to calculate the electric force on a CP ( jq ) at a point ( jr ) due to a group of CPs, 

the principle of superposition can be applied to electric forces as 
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where N is the total number of CPs, and ijF  is equal to 
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Therefore, the resulting electric force can be obtained as 
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(5) 

 
2.2 Newtonian mechanics laws  
Newtonian mechanics studies the motion of objects. In the study of motion, the moving 
object is considered as a particle regardless of its size. In general, a particle is a point-like 
mass having infinitesimal size. The motion of a particle is completely known if the particle’s 
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position in a space is known at all times. The displacement of a particle is defined as its 
change in position. As it moves from an initial position oldr  to a final position newr , its 
displacement is given by 

 oldnew rrr −=∆  (6) 
 
The slope of tangent line of the particle position represents the velocity of this particle as 
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When the velocity of a particle changes with time, the particle is said to be accelerating. The 
acceleration of the particle is defined as the change in the velocity divided by the time 
interval t∆  during which that change has occurred: 
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The displacement of any object as a function of time is obtained by using Eq. (8) as 
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Also according to Newton’s second law, we have 
 

 α.mF =  (10) 
 

where m is the mass of the object. Substituting Eq. (10) in Eq. (9), we have 
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2.3 The rules of the charged system search 
In this section, an optimization algorithm is presented utilizing the aforementioned physics 
laws, which is called Charged System Search (CSS). In the CSS, each solution candidate iX  
containing a number of decision variables (i.e. iX = { j,ix }) is considered as a CP. A CP is 
affected by the electrical fields of the other CPs. The quantity of the resultant force is 
determined by using the electrostatics laws as discussed in Sect. 2.1, and the amount of the 
movement is determined using the Newtonian mechanics laws of section 2.2. It seems that a 
CP with good results must exert a stronger force than the bad one, so the amount of the 
charge will be defined considering the objective function value, fit(i). In order to introduce 
CSS, the following rules are developed: 
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Rule 1:  Many of the natural evolution algorithms maintain a population of solutions 
which are evolved through random alterations and selection [13-15]. Similarly, CSS 
considers a number of CPs. Each CP has a magnitude of charge ( iq ) and as a result creates 
an electrical field around its space. The magnitude of the charge is defined considering the 
quality of its solution as 

 

 worstbest
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where bestfit  and worstfit  are the so far best and the worst fitness of all CPs; fit(i) represents 
the objective function value or the fitness of the ith CP, and N is the total number of CPs. 
The separation distance ijr  between two CPs is defined as follows: 
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where iX  and jX  are the positions of the ith and jth CPs, bestX  is the position of the best 
current CP, and ε is a small positive number to avoid singularities. 

Rule 2: The initial positions of CPs are determined randomly in the search space and the 
initial velocities of charged particles are assumed to be zero. 

Rule 3: Electric forces between any two CPs are attractive. Utilizing this rule increases 
the exploitation ability of the algorithm. It is also possible to define repelling force between 
CPs. When a search space is a noisy domain, having a complete search before converging to 
a result is necessary. In such a condition, the addition of the ability of repelling forces to the 
algorithm may improve its performance.  

Rule 4:  Good CPs can attract the other agents and bad CPs repel the others, proportional 
to their rank, that is 
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where ijc  is a coefficient which determines the type and the degree of influence of each CP 
on the other CPs, considering their fitness apart from their charges. This means that good 
agents are awarded the capability of attraction and bad ones are given the repelling feature, 
which will improve the exploration and exploitation abilities of the algorithm. In one hand, 
when a good agent attracts a bad one, the exploitation ability is provided for the algorithm. 
On the other hand, when a bad agent repels a good CP, the exploration is provided.  

Rule 5: The value of the resultant electrical force affecting a CP is determined using Eq. 
(5) as 
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where jF  is the resultant force acting on the jth CP, as illustrated in Figure 1. In this 
algorithm, each CP is considered as a charged sphere with radius “a” having a uniform 
volume charge density. In this paper, a is set to unity. 
 

 

Figure 1. Determining the resultant electrical force acting on a CP [14] 
 

Rule 6: The new position and velocity of each CP is determined considering Eq. (7) and 
Eq. (11) as follows: 
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where, ak  is the acceleration coefficient; vk  is the velocity coefficient to control the 
influence of the previous velocity; and 1jrand  and 2jrand  are two random numbers 
uniformly distributed in the range of (0,1). jm  is the mass of the jth CP which is equal to jq  
in this paper. t∆  is the time step and is set to one. Figure 2 illustrates the movement of a CP 
to its new position using this rule.  
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Figure 2. Movement of a CP to its new position [14] 
 
The effect of the pervious velocity and the resultant force acting on a CP can be 

decreased or increased based on the values of the vk  and ak , respectively. Excessive search 
in the early iterations may improve the exploration ability; however, it must be deceased 
gradually, as described before. Since ak  is the parameter related to the attracting forces, 
selecting a large value for this parameter may cause a fast convergence and choosing a small 
value can increase the computational time. In fact ak  is a control parameter of the 
exploitation. Therefore, choosing an incremental function can improve the performance of 
the algorithm. Also, the direction of the pervious velocity of a CP is not necessarily the same 
as the resultant force. Thus, it can be concluded that the velocity coefficient vk  controls the 
exploration process and therefore a decreasing function can be selected. Thus vk  and ak  are 
defined as 

 
 )iter/iter-1(0.5k maxv = ,  )iter/iter1(0.5k maxa +=  (18) 

 
Rule 7: Charged memory (CM) is utilized to save a number of the best so far solutions. 

Also, the vectors stored in the CM can have influence on the CPs. This may increase the 
computational cost, and therefore it is assumed that the same number of the worst particles 
cannot attract others. 

Rule 8: Those CPs violating the limits of the variables are regenerated using the harmony 
search-based handling approach as described by Kaveh and Talatahari [13,14].  

Rule 9: Maximum number of iterations is considered as the terminating criterion. 
The general flowchart of the CSS algorithm is illustrated in Figure 3. 
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Figure 3. The general flowchart of the CSS algorithm [14] 
 
 

3. MATHEMATICAL FORMULATION OF THE MEDIAN PROBLEM 
 

3.1 Medians problem (Minisum problems) 
Consider a weighted and directed graph G = (N, E) with N nodes and E edges. If d(i,j) 
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denotes the shortest distance from node i to node j (in general  ),(),( ijdjid ≠ ) and vi  
shows the weight of the node i, then  
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)(0 iσ  and )(itσ  are called the out-transmission and in-transmission of the node i, 

respectively. The number )(0 iσ  is the sum of the entries of row i of a matrix obtained by 
multiplying every column j of the distance matrix [ ijd ] by vj, and )(itσ  is the sum of the 
entries of column i of a matrix obtained by multiplying every row j of the distance matrix by 
vj. The node Nio ∈  for which )( oo iσ  becomes minimum is the out-median of the graph and 

Nit ∈  which corresponds to minimum )( tt iσ  is called the in-median of the graph. Now let 
Nk be a subset of N with k nodes, then each Nk will have its own in- and out-transmissions, 
as follows: 
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where d is defined as follows:  
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Let i′  be the node of KN which produces the minimum in Eq. (21), then we say the node j 

is allocated to i′ . The concept of allocating one node to a node of a subset KN  is the basis 
of the approximate algorithms for finding the medians. Now we find the subset with k 
elements, koN ∈N, such that )( koo Nσ  becomes minimum. Then koN  is a set containing the 
k-out medians. Similarly, the subset ktN ∈N, which makes )( ktt Nσ a minimum, is known as 
the k-in medians. Due to the similarity of the process for finding in- and out-medians, from 
now on the word medians will refer to the out-medians of a graph. Using the algorithms of 
the next section, with small alterations, the in-medians can also be found. For symmetric 
problems and undirected graphs, where the costs or the distances between the nodes are not 
dependent on the directions, these two medians become identical. 

Therefore, the problem of finding k medians of a graph becomes the same as the 
minimization of the function )( kNσ  during which a set of k elements is found which 
minimizes the above function. Now we define allocation matrix [ ijξ ] such that an entry ijξ  
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is 1 if the node j is allocated to i, and 0 otherwise, i.e. 1=ijξ  shows that the node i is a 
median and 0=ijξ  otherwise. 

The problem of k-median can be expressed in an integer programming form as follows: 
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In the above relationships, [dij] is the weighted distance matrix, i.e. it is the distance 

matrix with every column j multiplied by vj. Eq. (23) ensures that any given node j is 
allocated to one and only one median i. Eq. (24) ensures that there are only k medians, and 
Eq. (25) guaranties that allocations are made only to the median nodes. 

Another type of k-median is formulated as the minimization of 

∑
∈

=
Nj

kjk jNDvN ),()( 0σ , where )j,N(D k  is the distance matrix (not the shortest 

distance) between the nodes. Although the nature of this optimization problem seems to be 
different with that of Eq. (20), however, algorithms with small changes in the definitions are 
applicable to this problem as well. 

 
3.2 Centers problem (Minimax problems) 
For the above-mentioned graph, if Np is a subset of N with p nodes each Np will have its own 
in- and out-separation, associated with in- and out-centers, as follows: 
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When each of the following criteria is satisfied for a set of p, it is called p-out centers or p-in 
centers, respectively.  
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4. THE CSS ALGORITHM FOR FACILITY LAYOUT PROBLEM 
 

This algorithm attempts to find the medians or centers of a weighted graph using the CSS 
method. As mentioned before, due to the similarities between the median and center finding 
problems, the basis of these algorithms are identical. The only difference is in defining the 
objective functions. That is, the main procedure of the CSS algorithm for finding the facility 
locations is the same but the objective function for centers finding problem comes from Eq. 
(21) while for medians finding problem it comes from Eq. (28). As a result, in the following 
algorithm the word “location” can be referred to both medians and centers locations. 
Imposing a small modification in the objective function, k-center of the graph can easily be 
found through the k-median algorithm and vice versa. 

The aim is to find k optimum nodes on a weighted graph G = (N, E) with N nodes and E 
edges in order to minimize the objective function of the problem. Each solution candidate 

iX , containing a number of decision variables j,ix , is considered as a CP and each j,ix , 
showing the position of the CP, indicates whether or not the node j is capable of being a 
location. That is, each solution candidate, as an n-dimensional array, contains n elements 

j,ix (j=1,2,…,n) and each j,ix shows the status of a node. The higher amount of each j,ix  
indicates the higher probability of belonging to the locations set for the node j. In fact, for a 
solution candidate iX  the indices of k biggest j,ix ’s are considered as the k desirable 
locations of the solution. 

The algorithm for facility layout follows the nine above mentioned general rules of the 
CSS algorithm. This algorithm consists of nine steps as follows: 

Step 1: The number of CPs, i.e. candidate agents, is determined. For the algorithm of 
finding k locations, this number is set to C=[fix(n/k)+1]. This is because we need to give 
each node a chance of being chosen as a facility location. Using larger number of CPs may 
result in more accurate results, but it significantly increases the computational time. On the 
other hand, using smaller number of them may lead to undesirable results. The considered 
number of CPs is capable to keep the balance in a moderate level. 

Step 2: The CPs are defined and settled in their initial positions. As mentioned, the 
amount of each position element j,ix  of solution candidates is proportional to the probability 
of node j to be chosen as a median in that solution. For this purpose, the positions of CPs are 
defined in a way that all the n elements of each CP are set to zero but k of them, which are 
set to unity provided the CPs cover the entire nodes. That is, for example for defining the 
position of CP1, k random elements are set to unity. Then for defining the position of CP2, 
the next k nodes, which have not been chosen yet, are randomly set to unity and so on until 
the last CP is defined. Obviously, for defining the last CP some elements might be set to 
unity that, have been chosen in last CPs. Therefore, for the agent iX  with n elements 
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1x j,i
(0) =  indicates that j is considered as an initial median for the solution i. In this way, 

every node is given a chance for being chosen as a median. 
Now, the initial candidate solutions iX  and as a result, their positions { j,i

(0)x } are 
randomly nominated. In other words, in this phase, C candidate solution iX  (i=1,2,…,C) 

which are located in their positions presented by j,i
(0)x are defined. (j=1,2,…,n). The initial 

velocity for all the CPs is considered to be zero. ( j,i
(0)v =0   ∀ i,j) 

Step 3: The magnitude of charge for each CP is calculated using Rule 1. For this 
purpose, the objective functions for each agent must be calculated. As mentioned before, 
this is the only phase which is different for the center and median finding algorithms. The 
objective function for median finding problem is obtained from Eq. (21) while for center 
finding this is calculated from Eq. (23). In this step when the objective functions are 
calculated, they should be put in order and the best and the worst ones should be saved. This 
will help the algorithm to judge better in subsequent steps. Then the magnitude of charge for 
each CP, iq , is obtained through the Eq. (12).  

Step 4: The separation distance between CPs are calculated. In the previous step, the 
position of each CP was defined by a coordinate of n elements. Having the iX  for all the 
CPs, the separation distance between them are calculated using the Eq. (13). It should be 
mentioned that in problems where iX  is an n-dimensional array, the intention of calculating 
distance between every two CPs is to find how far the two assumed nodes are in the n-
dimensional space. In fact, the calculations of distance, velocity and acceleration are all 
performed in a multi-dimensional space. 

Step 5: The type and the degree of influence of each CP on the other agents are 
determined. For this purpose, using the rank of the CPs obtained in step 3, a number 
between +1 and −1 is assigned to each agent proportional to its rank. That is, the number +1 
is assigned to the best agent and −1 to the worst one, and so on. Such an assignment leads to 
improvement in simultaneous exploration and exploitation abilities.  

Step 6:  The value of the resultant electrical force affecting a CP is determined using the Eq. 
(15). Each jF is an n-dimensional array and shows the tendency of agent j towards other CPs. 

Step 7: New position and velocity of each CP is determined considering Eqs. (16) and 
(17). As mentioned before, each new position determined by an n-dimensional array shows 
the new probability of each node to be selected as a median for each CP.  

Step 8: The agents violating the limits of the variables are regenerated using the harmony 
search-based handling approach. Then the best so far solutions are saved. 

Step 9: Maximum number of iterations is considered as the terminating criterion.  
 
 

5. NUMERICAL EXAMPLES 
 

In this section three examples are presented and the results are compared to those of the 
ACO algorithm with local search [17] in Table 1. Then the comparisons of convergence 
rates for the two algorithms for each instance are made. 
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The topological properties of the finite element models are transferred to the connectivity 
properties of graphs, by the clique graphs [18]. This graph has the same nodes as those of 
the corresponding finite element model, and the nodes of each element are cliqued, avoiding 
the multiple edges for the entire graph. 

Example 1: Consider a circular finite element mesh (FEM) as shown in Figure 4. The 
element clique garph of this model contain 1248 nodes and 4704 edges. The performance of 
the CSS and ACO are tested on this model, and the results are presented in Table 1. Quality 
of the results is provided in this table. The number of medians in this example are 
considered to be k={5,10}. 

 

 

Figure 4. A graph with 1248 nodes and 4704 elements with the weights of all the edges, and the 
demands of all nodes being taken as unity 

 
Example 2: A graph with 1575 nodes and 2925 elements is considered as shown in 

Figure 5. Similar to the previous example, the performance of the CSS and ACO are 
provided in Table 1. The numbers of the medians in this example are considered to be 
k={5,10}. 

 

Figure 5. A fan-shaped finite element model with 1575 nodes and 2925 elements with the 
weights of all the edges, and the demands of all nodes being taken as unity 
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Example 3: An H-shape finite element mesh (FEM) is considered as shown in Figure 6. 
The element clique garph of this model contain 4949 nodes and 9688 beam element (edges). 
The performance of the CSS and ACO are tested on this model, and the results are presented 
in Table 1. The numbers of medians in this example are considered to be k={5,10}. Figures 
7 and 8 illustrate the convergence history of this example.  

 

 

Figure 6. An H-Shaped graph with 4949 nodes and 9688 elements with the weights of all the 
edges, and the demands of all nodes being taken as unity 

 
Table 1: Results of the CSS and ACO algorithms for the examples 

Medians Centers 
Instance Number of 

Facilities CSS 
Algorithm 

ACO 
Algorithm 

CSS 
Algorithm 

ACO 
Algorithm 

k=5 Cost=17449 Cost=17471 Cost=50 Cost=53 
Example 1 

k=10 Cost=9872 Cost=9888 Cost=31 Cost=31 

k=5 Cost=18195 Cost=18140 Cost=44 Cost=44 
Example 2 

k=10 Cost=10257 Cost=10266 Cost=28 Cost=27 

k=5 Cost=120339 Cost=121004 Cost=119 Cost=127 
Example 3 

k=10 Cost=79663 Cost=79812 Cost=69 Cost=74 
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Figure 7. The convergence history of example 3 for the CSS compared to the ACO with local 
search for finding medians 

 

 

Figure 8. The convergence history of example 3 for the CSS compared to the ACO with local 
search for finding centers 

 
 

6. CONCLUSIONS 
 

The main objective of this paper was to show the applicability and robustness of the CSS for 
facility layout problem as a combinatorial optimization problem. From Table 1, it can be 
observed that the results are quite satisfactory, comparing to those of the Ant Colony 
Optimization algorithm. 

Figures 7 and 8 show that the convergence histories for the CSS and ACO are to some 
extent similar, and move towards their optimum in a relatively identical manner. However, 
the outcomes suggest that the CSS can achieve better results in shorter time compared to the 
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ACO. In fact, in many instances for which the factor of time is more important, one may 
achieve relatively better results by the CSS algorithm. 
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