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ABSTRACT 
 

In this paper, a new hybrid Particle Swarm Optimization (PSO) and Harmony Search (HS) 
algorithm, denoted by PSOHS is presented. This hybrid algorithm is designed to improve the 
efficiency of the PSO and remove some of the disadvantages which reduce the capability of 
the PSO. The main problem of the PSO is the lack of balance between exploration and 
exploitation of the algorithm. Another problem is how to handle the violating particles from 
feasible search space without reduction in the performance of the algorithm. The problem of 
unbalanced exploration and exploitation is solved using linear varying inertia weight. The 
second problem is solved in some other algorithms via reproduction of the violating particles 
using the HS algorithm. In this paper, these two approaches are combined to achieve a more 
efficient algorithm for engineering design problems. To show the higher capability of this 
approach compared to other works, several benchmark engineering examples, which have been 
considered previously and solved utilizing a variety of optimization algorithms, is solved by 
the present hybrid algorithm. Results illustrate a desirable performance of the PSOHS in both 
obtaining lower weight and having a higher convergence rate. 

 
Keywords: Particle swarm optimization; harmony search algorithm; PSOHS; engineering 
optimization 

 
 

1. INTRODUCTION 
 

Nowadays, economy plays an important role in all aspects of human life. Since engineering 
projects are time, energy, and cost consuming. Economy has a great influence on them and 
optimization is an inevitable part of engineering design and practice. This is the why 
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optimization methods are growing with a high rate. An engineering project is considered 
valuable if it has two main features: to be “safe” and to be “optimal”. The term of “safe” 
means that engineering projects must be consistent with their conditions, such as applied 
forces, temperature, chemical effects, quakes, and etc. with no problem for users. Also, the 
term “optimal” means that the project must be economically reasonable, and maximum 
efficiency with minimum possible costs should be achieved. Thus, the term optimization, 
engulf the whole aspects of the project and should be considered in three levels of the 
project: design, practice, and operation. The aim of this study is to present a new approach 
for optimization of engineering projects at the stage of designing. For the purpose of optimal 
design, there are two main methods: mathematical programming and meta-heuristic 
algorithms. Mathematical programming methods have many limitations. For example, initial 
values should be reasonable; search space should be continuous and etc. But meta-heuristics 
have not these limitations. Thus, meta-heuristic methods have become more popular and are 
used in optimization more than mathematical programming methods. 

Particle Swarm Optimization PSO is a meta-heuristic optimization method which has been 
presented by Eberhart and Kennedy [1]. This algorithm is inspired from social interaction 
among animals and insects which are living in swarms and flocks having social behavior. In 
fact, in this algorithm each member (particle) of the society (swarm) tends to follow the 
member which has better position and this following causes search in space. PSO is hybridized 
with other meta-heuristic by Kaveh and Talatahari [2,3]. Some advantages of PSO consist of 
ease of implementation and directional search which results in popularity of the PSO. This 
algorithm has been extensively applied by researchers and has had different enhancements. But 
there is still an important problem which reduces the search capability and convergence rate of 
the PSO. The problem is how to handle the constraint violation from feasible search space. 

Harmony Search (HS) algorithm is another meta-heuristic algorithm based on natural 
musical performance that occur when a musician searches for a better state of harmony, such 
as jazz improvisation. HS have been introduced by Geem, Kim and Loganathan [4] and 
works as: the engineers seek for a global optimum of an objective function, just like the 
musicians seek to find a musical pleasing harmony as determined by aesthetics [5]. This 
algorithm has been used by Kaveh and Talatahari [6] to handle the constraint violation in a 
hybrid algorithm from PSO, HS, and ant colony optimization ACO. 

In this paper, a new hybrid algorithm consisting of an enhanced version of PSO and HS 
is presented. In fact, an enhanced PSO, which has a good performance, acts as the skeleton 
of the algorithm and HS is used to handle violating prticles from feasible search space to 
master the performance of the PSO. In order to prove the improvement of the PSO, some 
benchmark functions which have been considered with many different algorithms and are 
suitable for comparison, are selected and optimal design is performed utilizing the PSOHS. 
Results illustrate the success of this algorithm and better solutions are reached. 

 
 

2. PARTICLE SWARM OPTIMIZATION 
 

Particle Swarm Optimization (PSO) is a multi-agent meta-heuristic optimization algorithm 
which has been introduced by Eberhart and Kennedy [1]. This algorithm makes use of 
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velocity vector to update the current position of each particle in the swarm. The velocity 
vector is updated utilizing a memory in which the best position of each particle and the best 
position among all particles are stored. This can be considered as an autobiographical 
memory. Therefore, the position of each particle in the swarm which adapts to its 
environment by flying in the direction of the best position of the entire particles and the best 
position of particle itself, provides the search of the PSO. The position of the ith particle at 
iteration k+1 can be calculated using: 
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Where, i

kx 1  is the new position; i
kx  is the position at iteration k; i

kv 1  is the updated velocity 

vector of the ith particle; and t  is the time step which is considered as unity. The velocity 
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   

t

xp
rc

t

xp
rcvwv

i
k

g
k

i
k

i
ki

k
i
k 







 22111 ....  (2) 

 
Where, i

kv  is the velocity vector at iteration k; 1r  and 2r  are two random numbers between 0 

and 1; i
kp  represents the best ever position of ith particle, local best; k

gp  is the global best 

position in the swarm up to iteration k; 1c  is the cognitive parameter; 2c  is the social 

parameter; and w  is a constant named inertia weight.  
With the above description, the PSO algorithm can be summarized as follow: 
 
 

2.1 Initialization 
Initial position, ix0 , and velocities, iv0 , of the particles are distributed randomly in the feasible 

search space. 
  minmaxmin0 . xxrxxi   (3) 
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Where, r is a random number uniformly distributed between 0 and 1; minx  and maxx are 

minimum and maximum possible variables for the ith particle, respectively. 
 

2.2 Solution evaluation 
Evaluate the objective function values for each particle,  i

kxf , using the design variables 

correspond to iteration k . 
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2.3 Updating memory 
Update the local best of each particle, i

kp , and the global best, k
gp , at iteration k . 

 
2.4 Updating positions 
Update the position of each particle utilizing its previous position and the updated velocity 
vector as specified in Eqs. (1) and (2). 

 
2.5 Stopping criteria 
Repeat steps 2~4 until the stopping criteria is met. 

 
 

3. HARMONY SEARCH ALGORITHM 
 

Harmony Search (HS) algorithm is a meta-heuristic algorithm based on the natural musical 
performance that occurs when a musician searches for a better state harmony, such as jazz 
improvisation. This algorithm has been presented by Geem, Kim and Loganathan [4] and 
works as: the engineers seek for a global optimum of an objective function, just like the 
musicians seek to find a musical pleasing harmony as determined by aesthetics [5]. This 
seeking for a new improvised harmony is a search which if can be regulated in optimization 
it can find the global minimum of the objective function. 

The HS algorithm includes a number of optimization operators, such as the harmony 
memory HM which is a memory that some best so far results are saved in it and if, in a 
stage, better solution is obtained, it is saved in the HM and the worst one is excluded from it; 
Harmony memory size HMS, which is the number of solution vectors saved in the HM; 
Harmony memory considering the rate HMCR varying between 0 and 1 sets the rate of 
choosing a value in the new vector from the historic values stored in the HM; and the pitch 
adjusting rate PAR. The pitch adjusting process is performed only after a value is chosen 
from HM and sets the rate of choosing a value from neighboring of the best vector. Steps of 
the HS are as follow: 

A new harmony vector is improvised from the HM based on HMCR and PAR. With the 
probability of HMCR, the new vector is generated from HM and with the probability of 
(1HMCR) the new vector is generated randomly from possible ranges of values. The pitch 
adjusting process is performed only after a value is selected from HM. The value (1PAR) 
sets the rate of doing nothing. A PAR of 0.25 indicates that the algorithm will select a 
neighboring value with 25.0 HMCR. It is recommended not to set HMCR as 1.0 because it 
is probable that the global minimum does not exist in the HM. With the aforementioned the 
search of the HM is summarized in Eq. (5), in which the term “w.p.” represents “with the 
probability”. 

If the generated harmony vector is better than a harmony vector in HM, judged in terms 
of the objective function value, the new harmony is included in the HM and the worst one is 
excluded from it. 
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w.p. HMCR 

 

 

 

w.p. 

(1−HMCR) 

 

   select a value for a variable from HM 

  w.p. (1−PAR) do nothing  

  w.p. PAR choose a neighboring value 

 

  select a new variable randomly 

 (5) 

 
 

4. HYBRID PARTICLE SWARM OPTIMIZATION AND HARMONY SEARCH 
ALGORITHM 

 
In this section, the hybrid PSO and HS is presented. For this purpose, it is necessary to 
explain why this modification is performed. There are two main problems in the PSO: first, 
the lack of balance between exploration and exploitation; second, there is no efficient 
approach to control the violating particles. For definition of the first problem it should be 
mentioned that in meta-heuristic optimization algorithms, there should be a balance between 
exploration and exploitation in a way that at initial iterations, the algorithm should perform a 
global search and this search should cover the whole search space in a suitable manner. In 
this stage, some points which are expected to be near the global minimum of the cost 
function are found. Then at the later iterations, the algorithm should perform a local search 
using the solution vectors found so far. Form Eq. (2) it can be seen that the velocity vector 
definition of the PSO which is the search engine of the algorithm has not this specification 
and at early iterations it is the same as in the subsequent iterations and this issue causes the 
lack of balance between exploration and exploitation of the PSO. 

However, this problem has been solved using dynamic variation of inertia weight by 
linearly decreasing the value of w  in each iteration of the algorithm presented by Shi and 
Eberhart [7] as 
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Where, maxw  is the maximum considered inertia weight, minw  is the minimum considered 

inertia weight, and maxk  is the number of iterations. 

In this paper, the linearly varying inertia weight is changed slightly and is defined as: 
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The multiplier rand results in a fast convergence because it prevents the particles to be 
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dispersed when they are near the global minimum at initial iterations and the velocity of 
particles are high due to global search. 

Utilizing Eq. (6) or Eq. (7), at initial iterations there will be a large value of inertia weight 
providing a global search and by progression of the algorithm, this value will reduce until at 
the latest iterations there will be only local search based on position of the best particle and 
the best ever position of particles as seen in Eq. (2). 

The second problem with the PSO is that like many other optimization algorithms, the 
method for controlling the violation of constraints. One of the simplest approaches is 
utilizing the nearest limit values for the violating particle. Alternatively, one can force the 
violating particle to return to its previous position, or reduce the maximum value of the 
velocity to allow fewer particles to violate the variables in the boundaries. Although these 
approaches are simple, they are not efficient enough and may lead to the reduction of the 
exploration of the search space. This problem has previously been addressed and solved 
using the harmony search based handling approach [4]. According to this mechanism, any 
component of the solution vector violating the variable boundaries can be regenerated from 
the HM by using Eq. (5). This approach is an efficient one which improves the convergence 
rate of the algorithm because of simultaneous action of the two algorithms. If the particle is 
in the feasible search space, the PSO will work and if it violates the boundaries, HS will be 
activated. However, in the PSOHS it is necessary that the memory in which the global best 
is stored be extended and some of the best designed vectors stored. This memory can be 
utilized as the HM when a particle violates and the HS should become active. 

With the above mentioned explanation, the steps of the PSOHS are shown in the 
flowchart of Figure 1. 

In this paper, the linear varying inertia weight is changed slightly and is defined as 
follow: 

 
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The multiplier rand results in a fast convergence because it prevents the particles to be 

dispersed when they are near the global minimum at initial iterations and the velocity of 
particles are high due to global search. 

 
 

5. NUMERICAL EXAMPLES 
 

To show the higher performance of the PSOHS compared to the standard PSO and other 
algorithms, the present algorithm is applied to optimal design of five benchmark examples. 
These examples have been implemented using a variety of optimization algorithms and are 
suitable for comparison of new algorithms with the existing ones. For each example, 20 
independent runs are performed and the number of particles is assumed to be 20. Then the 
best, the mean and the worst result along with the standard deviation of each example are 
obtained and compared to those of the other methods. Also, the number of iterations, as a 
criterion of the performance of algorithm, is compared to those of the other methods for 
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some examples. 
 

5. Handling the Violated Variables 
If the new position of some particles does not exist in the 

feasible search space, reproduce them using Eq. (5) 

1. Initialize 
Define random positions and velocities using Eqs. (3) and (4) 
Determine the operational parameters of the HS consisting of 

HMCR, HMS, and PAR 
k=1 

2. Solution Evaluation 
Evaluate the objective function values for each particle 

3. Updating Memories 
Update the HM of particles and determine the  new 

global and local bests 

4. Updating Positions 
Update the position of each particle using Eqs. (1) and (2) 

6. Updating velocities 
Update the velocity of each particle using Eqs. (2) and (7) 

7. Stop? 

8. End 

Yes

No 

k
=

k
+

1

 

Figure 1. Flowchart of the PSOHS 
 

5.1 A tension/compression spring design problem 
This problem is optimized by Belegundu [7] and Arora [8]. It consists of minimizing the 
weight of a tension/compression spring subjected to constraints on shear stress, surge 
frequency, and minimum deflection, as shown in Figure 2. 
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Figure 2. Geometry and the parameters of the tension/compression spring design 
 
The design variables are the mean coil diameter  1xD  , the wire diameter  2xd  , and 

the number of active coils  3xN  . The problem can be stated with the cost function 
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The variables are selected from the following regions: 
 

 

,21.0 1  x

,3.125.0 2  x

.152 3  x  

 (11) 

 
This problem has been solved by Belegundu [7] using eight different mathematical 

optimization techniques (only the best results are shown). Arora [8] has also solved this 
problem using a numerical optimization technique called constraint correction at the 
constant cost. Coello [9] as well as Coello and Montes [10] solved this problem employing a 
GA-based method. Additionally, He and Wang [11] utilized a co-evolutionary particle 
swarm optimization (CPSO). Recently, Montes and Coello [12] and Coelho [13] used 
evolution strategies to solve this problem. Table 1 presents the best solution of this problem 
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obtained using the PSOHS algorithm and compares the PSOHS results to the solutions 
reported by other researchers. From Table 1, it can be seen that the best feasible solution 
obtained by the PSOHS is better than those of the previously reported ones and it is equal to 
that of the Coelho [13]. 

 
Table 1: Optimal result of the tension/compression spring design 

Author or 
method 

x1 (d) x2 (D) x3 (N) 
Best 

result 
Mean of 
results 

Worst 
results 

SD 

Belegudu [7] 0.050000 0.315900 14.250000 0.012833 N/A N/A N/A 

Arora [8] 0.053396 0.399180 9.185400 0.012730 N/A N/A N/A 

Coello [9] 0.051480 0.351661 11.632201 0.012705 0.012769 0.012822 3.939E-05 

Coello and 
Montes [10] 

0.051989 0.363965 10.890522 0.012681 0.012742 0.012973 5.900E-05 

He and Wang 
[11] 

0.051728 0.357644 11.244543 0.012675 0.012730 0.012924 5.199E-05 

Montes and 
Coello [12] 

0.051643 0.355360 11.397926 0.012698 0.013461 0.164850 9.660E-04 

Coelho [13] 0.051515 0.352529 11.538862 0.012665 0.013524 0.017759 1.268E-3 

PSOHS 
(present 
work) 

0.051625 0.355176 11.379955 0.012665 0.013550 0.017398 1.3864E-3 

 
5.2. A pressure vessel design problem 
A cylindrical vessel clapped at both ends by semispherical heads as shown in Figure 3 is 
considered as the second design example. The objective is to minimize the total cost, 
including the cost of material, forming and welding [14]: 
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2
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Figure 3. Geometry and parameters of the pressure vessel 
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Where 1x  is the thickness of the shell (Ts); 2x is the thickness of the head (Th), 3x  is the 

inner radius (R), and 4x  is the length of cylindrical section of the vessel (L), not including 

the head. Ts and Th are integer multiples of 0.0625 inch, the available thickness of the rolled 
steel plates, R and L are continuous. 

The constraints can be expressed as: 
 

 

  ,00193.0 311  xxXg  

  ,000954.0 322  xxXg  
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4 3
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2
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  .024044  xXg

 (12) 

 
The design space is specified as: 

 

,990 1  x  

,990 2  x  

,20010 3  x

.20010 4  x

 (13) 

 
The approaches applied to this problem include a branch and bound technique [14], an 

augmented Lagrangian multiplier approach [15], genetic adaptive search [16], a GA-based 
co-evolution model [13], a feasibility-based tournament selection scheme [14], a co-
evolutionary particle swarm optimization [15], an evolution strategy [16] and a Gaussian 
quantum-behaved PSO approach [17]. The best solutions obtained by the above mentioned 
approaches and their statistical simulation results are listed in Table 2. From Table 2, it can 
be seen that the best solution found by PSOHS is 2.50% less than the best solution among 
other methods. Also, from this table, it can be seen that the standard deviation quantity of 
the PSOHS is less than those of other methods.  

 
5.3 A 25-bar element space truss 
As the third example, a 25-bar space truss as transmission tower is considered as described 
by Schmit and Fleury [17] and shown in Figure 4. The design variables are the cross-
sectional areas of the members, which are categorized into eight groups as shown in Table 3. 
Loading of the structure is shown in Table 4. Constraints are imposed to cross sectional 
areas of the members between 0.01 in2 to 3.4 in2, and to the allowable stresses which are 
included in Table 5. Another considered constraint is the allowable displacement which is 
taken as 35.0 in for every direction. 
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Table 2: Results of the optimal design of the pressure vessel 

Author or 
Method 

x1 (Ts) x2 (Th) X3 (R) x4 (L) 
Best 

result 
Mean of 
results 

Worst 
result 

SD 

Sandgren [14] 1.125 0.625 47.7 117.701 8,129.10 N/A N/A N/A 

Kannan and 
Kramer [15] 

1.125 0.625 58.291 43.69 7,198.04 N/A N/A N/A 

Deb and Gene 
[16] 

0.9375 0.5 48.329 112.679 6,410.38 N/A N/A N/A 

Coello [9] 0.8125 0.4375 40.3239 200 6,288.74 6,293.84 6,308.15 7.4133 

Coello and 
Montes [10] 

0.8125 0.4375 42.09739 176.654 6,059.95 6,177.25 6,469.32 130.9297 

He and Wang 
[11] 

0.8125 0.4375 42.09126 176.7465 6,061.08 6,147.13 6,363.80 86.4545 

Montes and 
Coello [12] 

0.8125 0.4375 42.09808 176.6405 6,059.75 6,850.00 7,332.88 426 

Coelho [13] 0.8125 0.4375 42.0984 176.6372 6,059.72 6,440.38 7,544.49 448.4711 

PSOHS 
(present work) 

0.7943 0.3890 41.1578 188.65810 5,902.67 6,594.868 7264.889 424.4998 

 

 

Figure 4. Geometry and element grouping of the 25-bar element space truss 
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Table 3: Truss member grouping of the 25-bar space truss members 

Group Truss members 

1 1 

2 2~5 

3 6~9 

4 10~11 

5 12~13 

6 14~17 

7 18~21 

8 22~25 

 
Table 4: Nodal load of the 25-bar space truss 

Node Fx (lb) Fy (lb) Fz (lb) 

1 10,000 10,000 10.000 

2 0 10,000 10.000 

3 500 0 0 

6 600 0 0 

 
Table 5: Allowable stresses for the 25-bar space truss members 

Element group 
Allowable compressive 

Stress ksi (MPa) 
Allowable tensile 
stress ksi (MPa) 

1 35.092 (241.96) 40.0 (275.80) 

2 11.590 (79.913) 40.0 (275.80) 

3 17.305 (119.31) 40.0 (275.80) 

4 35.092 (241.96) 40.0 (275.80) 

5 35.092 (241.96) 40.0 (275.80) 

6 6.759 (46.603) 40.0 (275.80) 

7 6.959 (47.982) 40.0 (275.80) 

8 11.082 (76.410) 40.0 (275.80) 

 
Table 6 shows the history of the solution of this example and also the result of the 

PSOHS is included. From this table it can be seen that PSOHS has also a better solution for 
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this example. Thus, we can say PSOHS is more reliable and in a few runs we can be sure 
that a good optimum weight is obtained. The progression curves of PSOHS and some other 
works are shown in Figure 5 and Figure 6, respectively. In these figures it can be seen that 
the convergence rate of the PSOHS is significantly higher than that of PSO and PSOPC. As 
a comparison, in Figure 5 it is shown that the PSOHS is converged in 300 iterations where 
this number for the PSO and PSOPC is 3000. Also, a detailed result which is obtainable 
from Figures 5 and 6 is the search trend of the algorithms. In the curve resulted from 
PSOHS, a global search at initial iterations is obvious. This trend is performed by the 
algorithm when there is no information about the minimum cost function and in the latest 
iteration when the particles travel to near the global optimum, then the local search is 
performed. On the contrary, PSO and PSOPC algorithms have not efficient phase alternation 
between the exploration and exploitation. This is due to the following two reasons: 

1. There is no difference in velocity definition of the PSO and PSOPC as the search 
engine of these algorithms in initial, median and latest iterations. Thus, in these 
algorithms only global search is performed and the local search is not done, and 
when the particles are near the minimum of cost function, due to the large value of 
the velocity, they get far away in the next iteration. 

2. In most of the structural design optimization problems, the real minimum of the cost 
function is located out of the feasible space. For example, when the cost function is the 
sum of the element weights, when cross-sectional area of some elements become 
negative in value, penalty function, not only does not force the particles to return to the 
feasible space, but also motivates them to get far from the possible boundaries. In PSO 
and PSOPC, when the particles violate from feasible search space, they are returned to 
the previous location or reproduced randomly. This problem is more significant when 
global search is being performed because of searching many locations. 

 Both of these problems are solved in this work because of the following reasons: 
1. The first problem is solved by the use of the linearly varying inertia weight. At initial 

iterations, a large value of velocity covers the search space. As iterations are 
continued, the particles get nearer to optimum location. Thus, proportional to the rate 
of algorithm, it is necessary to reduce the value of the velocity and perform the local 
search. Fortunately, in velocity definition of the PSO, the term 
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2211 ...  can do the local search and a separate velocity 

definition for local search is not requisite. Therefore, with linearly varying inertia 
weight, the PSO has a progressive phase transformation which alters global search to 
local search with progression of algorithm and provides a continuous stream for the 
optimization process. 

2. The second problem is solved by the use of the HS. As mentioned previously, the 
probability of violation from feasible search space is significant at initial stages of 
the algorithm. When HS is used, two benefits are obtained. Firstly, the HS saves the 
progression of algorithm and the search is not returned or stopped using pre-
mentioned methods of handling the violating particles. Secondly, the HS has a 
unique search in which the new vectors are generated from the best vectors and their 
neighbors from the HM. When HS is applied for handling the violating particles, 
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new particle is generated among best particles and their neighbors. Thus, it is more 
probable that the new variable be nearer to the optimum location. 

 
Table 6: Results of the optimal design of the 25-bar space truss structure 

Element 
Group 

Zhou and 
Rozvani 

[18] 

Haftka and 
Grdal [19] 

Erbatur 
[20] 

Zhu 
[21] 

Wu and 
Chow [22] 

Prez and 
Behdinan 

[23] 

PSOHS 
(present 
work) 

1 0.01 0.01 0.1 0.1 0.1 0.1 0.010 

2 1.987 1.987 1.2 1.9 0.5 1.0227 0.393 

3 2.994 2.991 3.2 2.6 3.4 3.4 3.389 

4 0.01 0.01 0.1 0.1 0.1 0.1 0.01 

5 0.01 0.012 1.1 0.1 1.5 0.1 1.992 

6 0.684 0.683 0.9 0.8 0.9 0.6399 0.978 

7 1.677 1.679 0.4 2.1 0.6 2.0424 0.479 

8 2.662 2.664 3.4 2.6 3.4 3.4 3.399 

Best Result 
(kips) 

545.16 545.22 493.8 562.93 486.29 485.33 482.46 

Mean of 
Results (kips) 

N/A N/A N/A N/A N/A N/A 487.7325 

Worst Result 
(kips) 

N/A N/A N/A N/A N/A 534.84 493.5095 

SD N/A N/A N/A N/A N/A N/A 0.60718 

 

 

Figure 5. Convergence history of the PSOHS for the 25- bar space truss 
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Figure 6. Convergence history of the 25-bar space truss [6] 
 

5.4 120-bar dome space truss 
Design of a 120-bar dome truss, shown in Figure 7, is considered as the next example in 
order to compare the practical capability of the PSOHS algorithm with those of the PSO and 
PSOPC. This dome is utilized in literature to find size optimum design. The modulus of 
elasticity is 210,000 MPa (30,450 ksi), and the material density is 7971.810 kg/m3 (0.288 
lb/in3). The yield stress of steel is taken as 400 MPa (58.0 ksi). The dome is considered to be 
subjected to vertical loading at all the unsupported joints. These loads are taken as −60 kN 
(−13.49 kips) at node 1, −30 kN (−6.744 kips) at nodes 2 through 14, and −10 kN (−2.248 
kips) at the rest of the nodes. The minimum cross sectional area of all members is 2 cm2 
(0.775 in2) and the maximum cross-sectional area is taken as 129.03 cm2 (20.0 in2). The 
stress constraints of the structural members are calculated according to the AISC 1989 
specifications as illustrated in Eq. (14). The 120 bar truss members are categorized into 7 
groups as shown in Figure 7. 
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Where, 

i  is calculated according to the slenderness ratio using: 
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 (15) 

 
Where, E is the modulus of elasticity; Fy is the yield strength of steel; Cc is the slenderness 

ratio which divides the elastic and inelastic buckling regions  yc FEC 22 ; and i is 

the slenderness ratio. 
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Figure 7. Geometry and element grouping of the 120-bar dome space truss 
 
Figure 8 shows the convergence history of the PSOHS. In Figure 9, the PSO, PSOPC and 

HPSACO convergence curves are shown. In these figures, the convergence rate of the 
PSOHS is significantly higher than those of the PSO and PSOPC. In Figure 8 it can be 
shown that fewer than 300 iterations are sufficient for the PSOHS to converge, while nearly 
3000 iterations are needed for the PSO and PSOPC for convergence. Results of different 
methods are included in Table 7 for comparison. From this table, similar to other examples, 
results obtained from PSOHS the are significantly better in weight. These results also 
indicate the improvement of the PSO when it is hybridized with HS. From Table 7, the 
HPSACO results are better than other methods for this dome design problem, and from 
convergence curve of this algorithm it can be concluded that fewer than 400 iterations are 
needed for convergence of the algorithm (see Figure 9). However, the weight obtained from 
PSOHS is less than that of the HPSACO. Thus, PSOHS performs well in both convergence 
and finding optimum design while HPSACO only has fast convergence. 

Figure 10 shows the number of violated variables vs. number of iteration. In this figure, it 
can be seen that at initial iterations nearly half of the particles violate the feasibility 
boundaries and this amount decreases as the global search gets altered to the local search. 
Also, in this figure, it can be observed that in the 120-bar truss spatial dome problem, fewer 
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particles tend to violate the boundaries compared to 25-bar truss structure. This reason 
becomes obvious from the obtained results. In the 25-bar truss structure, some members 
need the minimum amount of cross-sectional area and when the local search is done near the 
boundaries, some particles violate from search space, however, in the 120-bar truss dome 
problem, the variables are not on the boundaries. Thus fewer particles violate from the 
search space and the PSO have fewer halts. 

 
Table 3: Results of the optimal design of the 120-bar truss dome 

Lee and Geem [4] 
Kaveh and 

Talatahari [6] 
Present 
work Element group 

HS PSO PSOPC HPSACO HCSSPSO

1 3.295 3.147 3.235 3.311 3.037 

2 3.396 6.376 3.37 3.438 3.867 

3 3.874 5.957 4.116 4.147 3.241 

4 2.571 4.806 2.784 2.831 2.246 

5 1.15 0.775 0.777 0.775 1.637 

6 3.331 13.798 3.343 3.474 2.492 

7 2.784 2.452 2.454 2.551 2.301 

Best result (kips) 19707.77 32432.9 19618.7 19491.3 18292.8 

Mean of results 
(kips) 

N/A N/A N/A N/A 18377.6 

Worst result (kips) N/A N/A N/A N/A 18489.5 

SD N/A N/A N/A N/A 176.525 

 

 

Figure 8. Convergence history of the PSOHS for the 120- bar dome space truss dome 



A. Kaveh and A. Nasrollahi 

 

218 

 

Figure 9. Convergence history of the 120-bar dome space truss [6] 
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Figure 10. Number of violated variables vs. number of iteration for the 25-bar space truss 
problem and the 120-bar truss dome 

 
5.5 A 10-story, 3-bay steel moment frame 
The last example considered in this paper is a 10-story and 3-bay steel moment frame which 
is shown in Figure 11. The loading of the structure and element groups are depicted in this 
figure. For this example, the modulus of elasticity and yield stress of steel are assumed as 
210 GPa and 230 MPa, respectively. The elements are selected from W-sections and 
moment of inertia of the elements and the elastic section modulus are considered based on 
the following relationships: 
 1

1
 AI   (16) 

 
 2

2
 AS   (17) 

 
Where ,3162.11   ,165.21   ,016.12   and .571.12   
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Figure 11. Geometry, element grouping, and loading of the 10-story and 3-bay steel moment 
frame problem 

 
Table 8 shows the present and a previous solution of this example. From this table, it can 

be concluded that the PSOHS has the best solution compared to the other considered 
optimization methods in the obtained weight and standard deviation. The convergence 
history of the PSO, PSO with linearly varying inertia weight (LPSO) and PSOHS for the 
best solution and average of 20 independent runs are shown in Figure 12 and Figure 13, 
respectively. These figures show that the PSOHS has the fastest convergence rate because of 
an adjusted exploration and exploitation. From Figure 13, it can be noted that the average of 
20 independents runs of the PSO is larger than other two methods, although it has a solution 
near to the LPSO and PSOHS. This figure and the standard deviations in the Table 8 show 
that the PSO has a disperse trend in different runs and is not a reliable algorithm. For further 
explanation, Figure 14 is presented which shows that the obtained weight vs. different runs. 
From this figure, it can be seen that the PSO provides a design result larger than LPSO and 
PSOHS and only in one run it has a design result near the others; but other methods have 
less fluctuation in different runs. 
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Figure 12. Convergence of algorithms in design of 10-story and 3-bay steel moment frame 
 

 

Figure 13. Convergence of algorithms in design of the 10-story and 3-bay steel moment frame in 
20 independent runs 

 
Table 4: Result of the design optimization of the 10-story, 3-bay steel moment frame 

Design output Saka & Kameshki [22] PSO LPSO PSOHS 

A1 (cm2) 176.30 85.03 82.44 80.00 

A2 (cm2) 288.20 128.45 125.38 122.87 

A3 (cm2) 125.10 53.38 62.46 57.43 

A4 (cm2) 176.60 90.93 81.97 85.68 

A5 (cm2) 84.77 50.42 52.87 51.32 

A6 (cm2) 111.50 55.32 55.91 54.32 

A7 (cm2) 57.77 50.00 50.13 50.02 

A8 (cm2) 61.77 50.85 50.70 50.01 

A9 (cm2) 110.10 127.21 126.91 127.40 

Best Result (kg) 29430.00 23272.58 23184.60 23095.20 

Average of Results (kg) N/A 30741.03 23338.60 23190.19 

Worst Result (kg) N/A 34284.83 23974.21 23326.23 

Standard Deviation N/A 2147.24 179.56 69.65 
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Figure 14. Design weight in different runs of the PSO, LPSO, and PSOHS 
 
From Table 8, it is infermed that the differences of the ontained weight in different rus 

for LPSO are larger than those of the PSOHS. To portrait it more visible, Figure 15 is 
presented which shows that the differential of obtained weight from run of the LPSO and 
PSOHS. From this figure, it can be concluded that the PSOHS has less variation in different 
runs and thus it can provide a reliable designed frame in fewer runs. 

 

 

Figure 15. Differential of Weight vs. Number of runs for the LPSO and PSOHS in design 
optimization of the 10-story and 3-bay steel moment frame 

 
 

6. CONCLUSIONS 
 

In this paper, a new hybrid PSO and HS optimization algorithm is presented. PSO has some 
advantages consisting of having fewer parameters and its implementation is simple. Since 
velocity definition of the PSO is the search engine of this algorithm, constant parameters in 
velocity, provide a constant search phase. Therefore, PSO performs well only in global 
search. The most effective parameter in velocity of particles in the PSO is the inertia weight 
which controls the amount of global and local search in this algorithm. Thus, fixed inertia 
weight results in a fixed trend of search. The PSO with linear varying inertia weight can 
provide an efficient balance between global search and local search. 

On the other hand, one of the most important problems in many meta-heuristic 
algorithms is the way of handling the violating particles. Since, in most of the engineering 
design optimization problems, the real minimum of objective function is located out of the 
feasible search space, thus it is probable that some particles defined in the PSO, violate from 
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feasible boundaries. This problem has been solved previously by utilizing the HS. By this 
method of handling the violating particles, the algorithm has a continuous search. 

In this paper, PSO with linear varying inertia weight has been hybridized with the HS. 
With this hybridized algorithm, all of the above mentioned problems are solved. The hybrid 
PSO and HS algorithm, PSOHS, have a good balance between exploration and exploitation, 
and violating particles are reproduced from a memory in which some of the so far best 
design variables are saved. To show the effectiveness of this way of hybridizing, several 
benchmark structures are considered and designed using this new approach. Results show a 
significant improvement in the designed weight of structure and the convergence rate. 
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