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ABSTRACT 
 

Performance control (PC) is a new design philosophy that aims at rational and efficient 
selection of structural members rather than probing their usefulness through iterative 
proceses. The basic notion behind PC is that structural response is mainly a function of 
design and detailing, rather than numerical analysis. PC is a design approach in which the 
properties of the structural elements are selected in accordance with predetermined 
performance related objectives, such as limiting displacements at first yield and/or at 
incipient collapse, rather than compared against arbitrary criteria. PC procedures result in 
highly predictable structural behavior and economically efficient designs for the class of 
regular, space frames considered in this paper. Neither irregular boundary conditions nor 
non-uniform loading have been addressed in this paper. The proposed methodology is 
suitable for both manual as well as spreadsheet computations. The applications of the 
proposed solutions have been illustrated through a number of generic examples. 
 
Keywords: Space structures; regular grids; performance control; plastic design; 
displacements at failure; load sharing  
 
 

1. INTRODUCTION 
 
Multi-member space frames are ideally suited for plastic limit state design. The plastic 
design of grillages [1-8], interconnected trusses [9-12] and similar systems [13, 14] has been 
the subject of ongoing studies since early1950s. Notwithstanding, the progress and 
widespread use of the concept has been hindered due to absence of practical methods of 
plastic displacement analysis, for decades. The manual computation of plastic deformations 
of indeterminate structures, especially at the onset of collapse, remains one of the most 
challenging [14-18] aspects of space frame design. However, recent advances [19-21] in the 
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plastic design of moment frames and similar structures have helped revive interest in the 
manual as well as computer analysis of plastic deformations at incipient failure. The ability 
to predict plastic response at first yield and at incipient collapse empowers the engineer to 
design otherwise complicated structural systems with reference to several, predictable target 
displacements. Most importantly, it provides a simple means of plotting accurate, idealized 
load-displacement (pushdown) curves for grillage type space structures considered in this 
paper. 

In the forthcoming presentation attention is focused on design analysis, rather than 
analyzing designs. Traditional plastic analysis and design methods involve the investigation 
of best-guessed members for specific loading with arbitrary displacement limits, and may 
entail several iterations before a desirable solution is established. Plastic design analysis, on 
the other hand, avoids generalities and focuses attention on structure/loading specific 
response modes at target conditions. By performing design analysis, as opposed to analysing 
designs, most unnecessary guesswork and substantial amounts of preliminary computations 
can be avoided. In other words the design effort may be directed towards rational selection 
rather than routine investigation. Design analysis is the basis of the recently introduced 
performance control [22-24, 36] for the design of regular moment frames under seismic 
loading. 

PC is somewhat reminiscent of the pushover analysis that is commonly used to predict 
the response of upright structures under extreme lateral loading conditions. PC, on the other 
hand, utilizes the same concepts to design ductile structural systems under similar conditions 
with a view towards pre-assigned target displacements, and, as such may also be classified 
as a displacement based [25] pushdown procedure or a performance based plastic design 
[26] for horizontally arranged three dimensional systems. Two specific target displacements 
and their limiting values are introduced as part of development of PC. Maximum transverse 
displacements at first yield are obtained through well established elastic finite difference 
analysis[27, 28]. The corresponding displacements at the onset of collapse are then related to 
the positions of formation of the first and last sets of plastic hinges within the framework. 

The development of PC for any structural configuration, whether 2D or 3D, depends on 
the ability to predict accurately the maximum displacements at incipient collapse. Therefore, 
the paper primarily focuses attention on the establishment of an algorithm for the 
determination of maximum, transverse, nodal plastic deformations as part of development of 
PC procedures for ductile gridworks under monotonously increasing normal joint forces. It 
has been shown that the entire loading history of the subject systems, i.e., the idealized 
elastic-plastic force-displacement relationship starting from zero up to first yield, from first 
yield up to incipient collapse and the upper ductility limit can be constructed using only two 
points of reference, normal nodal displacements at first yield and at incipient collapse. In 
PC, structural response is controlled rather than investigated. To appreciate the essence of 
this contribution, suffice to consider the possibilities arising from the use of the yield line 
analysis [29, 30] in association with displacement data at incipient collapse. Yield line 
theory augmented with corresponding displacement analysis could still result in more 
rational as well as economical flat plate/slab designs compared to those using the currently 
popular strip and/or equivalent frame methods of analysis. Needless to remark that the 
current discussion is closely related to yield line philosophies introduced some 80 years ago. 
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Finally, as in many regular grillage studies, the use of the finite difference calculus has 
considerably facilitated the formulation and solution of the constitutive equations revisited 
in this paper. 

 
1.1 Basic assumptions 
The following basic assumptions and design conditions are fundamental to the development 
and implementation of PC methodologies, that; 

 the structure will not fail prematurely due to formation of inactive plastic hinges, 
 neither the conditions of static equilibrium, boundary support restrains nor the yield 
criteria  are violated within the members of the structure, 
 neither local nor  global stability of the sets of the intersecting beams is compromised, 
 the prescribed target displacements are not exceeded, 
 the plastic hinge rotations can take places without any restricting effects from the 
connections or other components, and 
 the differences between nodal and corresponding inter-nodal displacements can be 
ignored for practical design purposes. See Appendix B. 

It has also been assumed, for the sake of expediency, that the effects of plastic hinge offsets 
from beam center lines, shear strain, yield over strength and strain hardening can 
conservatively be ignored for practical design purposes. 
 
 

2. THORETICAL DEVELOPMENT 
 
The purpose of this section is not only to propose a new closed form solution for a 
frequently occurring design problem, i.e., simply supported twistless grids under uniform 
loading, but also to introduce the applications of PC to grillage type structures in general. 

The theoretical procedures expounded in this section are presented in three distinct but 
related parts. In part 1, an effort has been made through classical methods of analysis, to 
establish an exact relationship between the maximum normal nodal displacement at first 
yield, YY  and the corresponding distributed force .YP  The essence of this contribution is 
presented in Parts 2 and 3. Part 2 discusses a method of determination of the collapse 
load .CP Part 3 introduce an algorithm for the computation of the plastic component of the 

same displacement CY at incipient collapse. Suffices Y and C refer to first yield and incipient 

collapse respectively. 
This implies that the first plastic hinge to form at or near the centre of the grillage would 

most likely correspond to the larger of the two bending moment ratios P
Y MM /  and 

P
Y NN /  at 2/max   and 2/nby  , where 
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PM and PN stand for plastic moments of resistance of the x and y direction beams, 

respectively. The coefficient of orthotropy is defined as ./ PP MN  

 

(a) (b) 
Figure 1. (a) Regular rectangular grid, co-ordinates layout and loading; (b) Maximum 

displacements, properties and incipient collapse 
 
2.2 Illustrative design example 1 
Consider the controlled design of a simply supported, isotropic, regular, twistless grillage 
under uniform distribution of normal nodal forces YP  such that its maximum elastic 

displacement does not exceed a certain allowable ratio ./max YL   maL max  or nb whichever 

is the longer side. 

Y is a prescribed limit at first yield. For this particular case, consider the maximum 

central displacement of a square, 4 nm  grid at first yield. Assume the load factor is 

unity, 1 , and .1   Let baaEIDDD yx  ,/ 3 and .PP NM   

Solution: Eqs. (1a) and (1b) give; EIaPY yY /8974.1 3  and aPMM Y
P

Y 1716.1  

respectively. Now if YPP   and YY aY /4 , then EaMI P
Y /4048.0  , would present a 

safe and economical design for the subject grillage. The solution can be said to be related to 
the formation of the first set of plastic hinges developed simultaneously on both sides of the 
central joint (positions 1 and 4, Figure. 2a. While the exact elastic solution of the subject 
grillage depends on the satisfaction of the corresponding constitutive equation, Eq. (A1) of 
Appendix A, and the relevant boundary support conditions, the determination of its collapse 
load requires the establishment of a plausible failure mode together with the satisfaction of 

the yield criteria P
x MM  and P

y NN  , as well as the equilibrium and kinematic 
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boundary conditions. Once an acceptable plastic failure mechanism, satisfying the 
requirements of the uniqueness theorem [31, 32] has been established, an attempt can be 
made to determine a physical relationship between the first and the last sets of plastic hinges 
forming within the members of the grillage. Two such modes of collapse, pertaining to odd 
and even numbers of beams are depicted in Figures. 2a and 2b respectively. The numerals 1, 
2 etc. refer to a plausible sequence of formation of the active plastic hinges. 

 
2.3 Part 2- Plastic collapse load analysis 
It is highly probable, in multimember space frames, to encounter situations of over-collapse 
with many rotationally inactive plastic hinges that neither participate nor contribute toward 
the development of the failure mechanism. However, for the purposes of ultimate load 
studies it is sufficient to engage only the active plastic hinges that are needed to generate 
kinematically admissible collapse patterns, without due regards to the sequence of formation 
of active/inactive sets of plastic hinges. Figures. 2a and 2b depict two such plausible failure 
patterns for the purposes of the current presentation. Let the doubly symmetric patterns of 
Figures. 2a and 2b, with maximum central displacements PZ  depict the true failure 

mechanisms of the grillage at collapse load CPP  . It may therefore, be argued that each 

quadrant of the grid can sink into a virtual curved space defined by 
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The finite difference operators x  and x  are defined in Appendix A. xy  and xy  are 

the corresponding virtual rotations about y and x-axis respectively. 2/]1)1[(1  mm , i.e., 

11 m  for m=odd and 01 m  for m=even. This allows the virtual work equation for the 

collapsing grid to be expressed as: 
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as an indication of the plastic limit state load carrying capacity of the structure. Now if CxP  
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and CyP , are the components of CP  at collapse, then 
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Eq. (2d) presents a unique solution that may be verified through the use of the load 

sharing theorem [33, 34]. 
 

(a) (b) 
Figure 2. (a) Collapse mechanism, n being even; (b) Collapse mechanism, n being odd 

 
The determination of maximum displacements associated with CP  is a function of the 

location of the first and last sets of plastic hinges forming within the members of the grid 
and is discussed in the following section. 
 
2.4 Part 3- Maximum displacements at incipient collapse 
However, since from a practical design point of view, displacements at first yield and 
incipient collapse are of greater importance than their interim counterparts, a simpler method 
can be devised to study the elastic-plastic performance of regular grid systems under 
uniform loading. This may be achieved by computing the maximum displacements due to 
the development of the first and last sets of plastic hinges formed within the structure. 
Figure.1b shows the locations of the first and last set of plastic hinges together with the 
deformed shape of the last stable beams, without reference to the sequence of formation of 
intermediate sets of hinges. 

The key to the successful computation of plastic displacements at incipient collapse is in 
the exact determination of the bending moment distributions and the location of the last set 
of plastic hinges prior to failure. Both of these issues may be addressed through the rational 
application of the elastic state in Eqs. (1a) and (1b) to the stable condition of the structure 
prior to complete failure. Eq. (1a) can be uncoupled to describe the compatible 
displacements of the last stable beam, containing the anticipated positions of the last sets of 
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hinges, and the failed intersecting beam at right angles containing the set of plastic hinges 
formed at first yield, i.e.; 

 

xyxCxxx MYD  ,)(  and yxyCyyy NYD  ,)(  (3a)

 
Consequently; 
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Eqs. (3a) lead to the following simple bending moment distributions at the onset of 

collapse; 
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xyM  and xyN  correspond to xyM  and xyN  respectively at plastic limit state. Eqs. (3d) 

can also be used to determine the distributions of reactions along the supported edges [35]. 
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Substitution of (3d) into (3c) results in the confirmation of Eq. (2d). Substitution of Eq. 

(3d) in Eq. (3a) gives, after performing the pertinent difference operations we obtain 
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as the uncoupled displacement equations of the x and y direction beams provided  that x>i 
and y>j. Displacement CyY  is a maximum at x=a, y=bn/2 and x=(m−1)a, y=bn/2, i.e. 
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According to the load sharing concept (see [33, 34]), which is an interpretation of Eqs. 

(2d) and (2e):  
“The collapse load intensity of regular twistless grillages is the sum of the collapse load 

intensities of two typical intersecting beams.” 
The load sharing concept suggests, inherently, that if the global failure load of the 

grillage can be computed as the sum of two physically well defined components then the 
magnitude of the corresponding displacements should also be related to similarly 
meaningful components. In other word, CyCxC PPP  , implies that the maximum 

transverse displacement of the grillage at incipient collapse may be computed by adding the 
maximum transverse displacements of two such intersecting beams, i.e., 

 

CxxCyyC YfYfY   (3i)

 
where, xf  and yf are as yet unknown dimensionless multipliers. However, the best way to 

determine xf  and yf , with fewer theoretical complications, is to link the displacements of 

the first and last yielding beams by the use of the virtual work equation; 
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where 
xm  is any distribution of bending moments in equilibrium with the unit load 1xf  

applied in the same sense and location, say x=m/2, y=n/2, for both m and n as even numbers, 
where CxY  is to be computed. For m and/or n as odd integers 1xf  would be applied at 

centrally/doubly symmetric node x= (m-1) /2, y= (n-1) /2. Since at incipient collapse, the last 
set of plastic hinges associated with rotation   are just forming, they may be set to zero in 
Eq. (3k) to estimate the desired displacement as; 
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The effect of the virtual force 1xf  at the central node of the first yielding member is 

reflected as 2/mf y   and 2/)1(  mfy at (x=a, y=bn/2) for m being even and m being odd 

respectively. The multiplier 2/)( 1
m

y mf   in Eq. (3p) reflects the effect of the unit load 

at x=am/2, y=bn/2. A clarification of this condition, for m=even, is presented in Appendix C. 
Having established exact solutions for PyY  and PxY  it can be shown that; 
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as the exact, closed form, maximum normal nodal displacement prior to collapse . CyY  is the 

maximum nodal transverse displacement of a prismatic simply supported beam under n or 
(n-1) equidistantly applied normal nodal forces CyP , CxY is the tip displacement of the x-

direction beam under similarly distributed normal nodal forces CxP , and suspended from the 

supporting y-direction beam as shown in Figures (2a) and (3). 2/CymY or 2/)1( CyYm  , 

depending on m being even or odd, is the rigid body tip displacement of the same beam 
pivoting about the point of maximum displacement of the supporting cross beam. Hence, it 
may be stated that: 

The maximum normal nodal displacements of simply supported, regular, rectangular, 
twistless grids under uniformly distributed normal joint forces at incipient collapse, is given 
by the sum of the maximum central displacements of the first and last yielding beams plus 
the rigid body displacement of the former beam pivoting about the common joint of the two 
beams. 

A graphical interpretation of this statement as well as Eq. (3p) is presented in 
Figure.3.The preceding statement pertaining to maximum displacements at incipient collapse 
may be restated as: 

  

 
Figure 3. Components of transverse displacement of beam containing the first set of plastic 

hinges (m bieng even) 
 
The maximum normal nodal displacements of simply supported, regular, rectangular, 

twistless grids under uniformly distributed normal joint forces, at incipient collapse, is given 
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by the 2/)( 1
mm   times the maximum central displacement of the last yielding beams 

minus the maximum displacement of the first yielding beam. 
For the sake of brevity only grids with m and n even have been addressed in the 

remainder of this paper. 
 
 2.5 Illustrative design example 2 
Consider the controlled design of the grillage of the previous example, such that its 
maximum nodal displacement at incipient collapse does not exceed a certain allowable ratio 

,/max CL   where C  is a prescribed limit at incipient collapse. 

Solution: For m=4, i.e., m even .04
1   Eqs. (2d) and (2e) give; aPamPM CC

P  16/2  

and 2/CCyCx PPP  respectively. Eqs. (3h) and (3m) yield upon 

substitution; EIaPY CCy 6/19 3 and EIaPEIaMY C
P

Cx 3/26/4 32   respectively, i.e.
 

,/5.23/2)2/()6/19( 333 EIaPEIaPmEIaPY CCCyC   compared with EIaPY YY /8974.1 3   

at first yield. Therefore, EaMI P
C 8/5 .  Obviously the final design would depend on the 

selection of the larger value associated with Y or C . Both solutions offer safe designs since 

the grillage is still capable of undergoing larger displacements before failure.  
 

2.6 Illustrative design example 3 
The purpose of example 3 is to illustrate that the seemingly complex problem of elasto-
plastic grillage displacements can be reduced to the insertion of simple digits in the 
appropriate formulae presented in this paper. 

Compute the maximum elastic and plastic transverse displacements of an m=5 6n , 
equal mesh, isotropic grillage. 

Solution: 15
1 m  and .06

1 n  Eq. (1b) gives for i=1,3 and j=1,3,5; 

EIaPY YY /2278.3 3 . Eq. (2d) gives; .5/9 aPM C
P  From Eq. (2e) we have 

5/39/3 C
P

Cx PaMP  and .5/29/2 C
P

Cy PaMP  Since n>m then the first set of 

plastic hinges will form simultaneously at x=(m−1)/2 and x=(m+1)/2, on each side of the 
center of the x direction beam along y=n/2. Whence, from Eqs. (3h) and (3n), 

 EIaPY CyCy 2/33 3  and EIaPY CxCx 6/11 3  respectively. Eq. (3p) upon substitution 

yieds: 
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3. THE PERFORMANCE CONTROL CUTVE 
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The two distinct transverse displacement values, YY at YP and CY  at CP provide sufficient data 

for the construction of an accurate, bilinear load-displacement (push-down) curve for the 
class of regular grids addressed in this work, Figure. 4. The tri-linear curve 0YCP, including 
the commonly accepted ductility limit PY  at P, represents the complete, mathematically 
derived load displacement relationship for the example grillage of section 2.5. It is apparent 
that for the particular example, YC YY 54.1 , and that all three points Y, C and P represent 

legitimate design limits as well as reliable PC criteria. However, the approximate, bilinear 
curve CPY 0 , can also be used for equally reliable design and/or investigative purposes, 
without resorting to complicated analysis for intermediate values of PY YYY  , 

corresponding to CY PPP  . While segments Y 0 , CY   and CP of the PC curves may be 

associated with allowable stress (ASD), load and resistance factor (LRFD) and plastic 
design (PD) philosophies respectively, the same segments may also be used to estimate 
percentage damage, assess global integrity or to propose intermediate control criteria, such 
as restricting maximum displacements to )360/( .maxL  at 50% first yield or to )240/( .maxL  

at 75% of the collapse load. Any design based on CY and CP  might still be conservative due 

to basic assumptions presented under section 1.1 and that PY could be several times larger 

than .CY  

 

 
Figure 4. Load-displacement (push-down) curves for example grillage, section 2.5 

 
It may be deducted from Figure. 4 that even for sparsely meshed, small gridworks, a two 

point bilinear plot can represent the response history of the system to a good degree of 
accuracy. The energy absorption capacities of the exact and approximate plots, signified by 
the areas under each curve are sufficiently close to suggest that the proposed plot is 
sufficiently accurate for all practical design purposes. 
 
 

4. CONCLUSION 
 
While the elastic analysis of grillages has received considerable attention in the past, their 
complete plastic treatment including the determination of displacements at incipient collapse 
has remained a challenging proposal until recent years.  
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A new, closed-form, exact formula for the computation of maximum transverse 
displacements of regular, rectangular, twistless grillages under a uniform distribution of 
normal nodal forces at incipient collapse has been introduced. 

The applications of the proposed solutions have been demonstrated through simple 
generic examples. In fact a simple solution to a rather complex problem has been found. The 
determination of maximum plastic displacements of the class of grids discussed in the paper 
has been reduced to the summation of maximum displacements of two simple beams. The 
simplicity of the proposed solutions may be attributed to the regular formation of the 
gridwork that makes the analysis conducive to finite difference treatment. The proposed 
formulae are entirely suitable for manual as well as spreadsheet computations. The proposed 
designs satisfy all conditions of the uniqueness theorem, and as such, cannot be far from 
minimum weight solutions. However, they are limited to regular grid systems with members 
possessing no torsional resistance and meeting the boundaries at right angles. 

The availability of reliable displacement values at first yield and incipient collapse 
provides the necessary data for performance control (PC) of regular grillages, interconnected 
truss systems and similar structures. It is hoped that PC will be recognized as a useful design 
method for ductile space frames and similar structures. 

The use of the present methodology can be extended to study the maximum plastic 
displacements of similar gridworks with different combinations of free, fixed and hinged 
boundary support conditions. Given the availability of high powered means of computations, 
there is no reason why PC philosophies as described in this work, can not be extended to all 
types of space structures with complex geometries and non-uniform loading. 
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APPENDIX A- THE CONSTITUTIVE EQUATION 
 
Consider the elastic displacements, ,xyY of the regular grillage of Figure.1a under normal 

nodal forces .xyP  Let I and J represent the sectional inertias of the x and y direction beams 

respectively. 3/ aEIDx  and 3/bEJDy  are the corresponding rigidities of the two sets of 

intersecting beams and ./ xy DD  The constitutive difference equation of bending of 

regular, flat, twistless  grids may be presented [27,28] in matrix form as ; 
 

 

(A1)

 

where, 11 
xx E  and 11  xx E  are the finite difference forward and backward shift 

operators, respectively.
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   is the symmetric central difference 

operator that can also be identified as the second derivative of a continuous function with 

real values at equal intervals a. The finite difference operator 
xE  performs the operation 

)1()(  xFxFEx  on any function of the variable x. The solution to Eq. (A1) for a simply 

supported grillage under a uniform distribution of normal nodal forces can be expressed as 
[12, 27 and 28 ]; 
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where, 
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APPENDIX B- INTER-NODAL DISPLACEMENTS 
 
The additional maximum inter nodal displacement, .InterY , of an x-direction beam with even 

number of normal nodal forces, i.e., m=odd, between nodes 2/)1( n  and 2/)1( n , as 
shown in Figure.5, may be expressed as; 

 

EIMaYInter 4/2
.           and      EImaPEIaMY x

P
Inter 32/)1(4/ 232

.   
 

(B1)
 
Before first yield and after first yield respectively. From the design example 3, section 

2.6 above; 
 

 
Figure 5. Inter nodal displacement for beams with m bieng odd 

 
 

5/9 aPM C
P  , and EIaPY CC 10/121 3 , compared with EIaPY CInter 20/9 2

.  , i.e. 

,242/9. CInter YY   or less than 4% of the maximum nodal displacement ay incipient 

collapse. 
 
 

APPENDIX C- BASIC STEPS 
 
The basic steps involved in the computation of CxY (for m=even) may be presented as 
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follows. 

 
Figure 6. Displacement compatibility between first and last failing beams 

 
 
(a)-First failing x-direction beam at y=nb/2, loading and interactive reactions xyP at 

collapse. (b) Free body diagram of first failing beam along y=nb/2. (c) Same beam under 
virtual unit load 1xf  at point of maximum deflection and its effect 2/mfy   . (d) Effect of 

unit load 1xf  on the last stable y-direction beam, (e) bending moment distribution 

corresponding to (b). (f) Bending moment distribution corresponding to (c). Obviously, a 
similar set of steps can be presented for m as an odd integer. 

 


