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ABSTRACT 
 
Composite laminates have many applications as advanced engineering materials, primarily 
as components in civil engineering structures, aircrafts, power plants, ships, cars, rail 
vehicles, robots, sports equipment, etc. Due to widespread use of these materials in various 
fields in this paper the minimum thickness design of laminated composite plates under in-
plain loading is explored using a hybrid charged system search algorithm (CSS) and particle 
swarm optimization (PSO) where ply numbers and fiber orientations are considered as 
design variables. This optimization method is obtained by adding searching abilities of the 
PSO algorithm to those of the CSS approach. Static failure criteria are utilized to determine 
whether the load bearing capacity is exceeded for a configuration generated during the 
optimization process. In order to check the feasibility of solutions during an optimization 
procedure, both the Tsai–Wu and the maximum stress safety factors are employed. 
Numerical results are obtained and presented to evaluate the performance of the proposed 
algorithm for different loading cases. Compared to other approaches, the algorithm has 
proven to be quite reliable in performing these designs. 
 
Keywords: Optimal design; laminated composite structures; hybrid algorithm; charged 
system search; particle swarm optimization 
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1. INTRODUCTION 
 

Design of a structural component using composites involves both material and structural 
design. Unlike conventional materials (e.g., steel), the properties of the composite material 
can be designed considering the structural aspects. Composite properties (e.g., stiffness, 
thermal expansion, etc.) can be varied continuously over a broad range of values under the 
control of the designer. Since 1960 composite materials have become common engineering 
materials and are designed and manufactured for various applications including automotive 
components, sporting goods, consumer goods, and have found applications in the marine 
and oil industries. The growth in composite usage also came about because of increased 
awareness regarding the product performance and increased competition in the global 
market for lightweight components [1]. Designing with laminated composites, on the other 
hand, has become a challenging problem for the designer because of a wide range of 
parameters that can be varied, and because the complex behavior and multiple failure modes 
of these structures require sophisticated analysis techniques. Finding an efficient composite 
structural design that meets requirements of a certain application can be achieved not only 
by sizing the cross-sectional areas and member thicknesses, but also by global or local 
tailoring of the material properties through selective use of orientation, number, and stacking 
sequence of laminae that make up the composite laminate. The possibility of achieving an 
efficient design that is safe against multiple failure mechanisms, coupled with the difficulty 
in selecting the values of a large set of design variables makes structural optimization an 
efficient tool for the design of laminated composite structures [2]. 

The mentioned potential capabilities of laminated composites have led many researchers 
to implement different algorithms to produce the most suitable structure for a typical 
application. Schmit and Farshi [3] first used linear programming (LP) to obtain minimum 
weight optimum design of composite plates subjected to multiple in-plane loading 
conditions. Mesquite and Kamat [4] employed nonlinear mixed integer programming 
(NLMIP) to maximize frequencies of stiffened laminated composite plates subject to 
frequency separation constraints and upper bound on weight.  Hajela and Shih [5] utilized a 
methodology based on a piecewise linear representation of nonlinear problem to optimize a 
cantilever composite laminate beam for minimum weight and constraints on strength 
displacements, and natural frequencies. 

These methods use gradient information to search the solution space near an initial 
starting point. In general, gradient-based methods converge faster and can obtain solutions 
with higher accuracy compared to stochastic approaches in fulfilling the local search task. 
However for effective implementation of these methods, the variables and cost function of 
the generators need to be continuous. Furthermore, a good starting point is vital for these 
methods to be executed successfully [6]. 

As an alternative to the conventional mathematical approaches, the meta-heuristic 
optimization techniques (genetic algorithm, ant colony optimization, particle swarm 
optimization, tabu search, etc) have been used to obtain global or near global optimum 
solutions. Due to their capability of exploring and finding promising regions in the search 
space in an affordable time, these methods are quite suitable for global searches and 
furthermore alleviate the need for continuous cost functions and variables used for 
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mathematical optimization methods [6]. For the first time, Callahan and Weeks [7] applied 
genetic algorithm (GA) to demonstrate that GA can be a viable alternative to traditional 
search procedures in the design of composite laminates. Kogiso et al. [8] used GA with local 
improvement to optimize a laminated composite plate for buckling load maximization. 
Many others utilized this method or the modified type to optimize strength-to-weight ratio or 
other parameters [9–11]. Niranjan et al. [12] optimized stacking sequence of a laminate for 
buckling response, matrix cracking and strength that were conducted using a heuristic search 
technique known as tabu search (TS) and compared to the results obtained by GA. 
Aymerich and Serra [13] explored the potential of ant colony optimization (ACO) meta-
heuristic for stacking sequence optimization of composite laminates. Again Aymerich and 
Serra [14] demonstrated application of the ant colony optimization (ACO) meta-heuristic to 
the lay-up design of laminated panels for maximization of buckling load with strength 
constraints. Omkar et al. [15] used VEPSO as a novel, co-evolutionary multi-objective 
variant of the popular particle swarm optimization algorithm (PSO) to achieve a specified 
strength with minimizing weight and total cost of the composite component. Erdal and 
Sonmez [16] maximized buckling load capacity using simulated annealing (SA). Also 
Akbulut and Sonmez [17] carried out direct simulated annealing (DSA) to minimize 
thickness of laminated composite plates subject to in-plane loading. Tabakov [18] showed 
the efficiency of big bang – big crunch optimization (BB-BC) method by an example of the 
lay-up optimization of multi-layered anisotropic cylinders based on a three-dimensional 
elasticity solution and proved to be more accurate than GA in such examples.  

In this paper a new meta-heuristic optimization method based on charged system search 
(CSS) and PSO is utilized to achieve the minimum thickness by optimizing the number of 
laminates using Thai–Wu Failure and maximum principle stress criteria. The variables are 
ply orientation and ply numbers. The angles are supposed to be continuous and ply thickness 
is pre-assigned. The CSS utilizes a number of solution candidates which are called charged 
particles (CPs). Each CP is treated as a charged sphere and it can exert electrical forces on 
the other agents (CPs) according to the Coulomb and Gauss laws of electrostatics. The 
resultant force acts on each CP creating acceleration according to the Newton's second law. 
Finally, utilizing the Newtonian mechanics, the position of each CP is determined at any 
time based on its previous position, velocity and acceleration in the search space [6]. 

The remaining of this paper is organized as follows. Review of the hybrid CSS and PSO 
is briefly presented in Section 2. Structural optimization problem is formulated in Section 3. 
Design examples are studied in Section 4 and the results of the proposed method are 
presented. Finally, the conclusion is drawn in Section 5 based on the reported analyses. 

 
 

2. HYBRID CHARGED SYSTEM SEARCH AND PARTICLE SWARM 
OPTIMIZATION 

 
2.1 Standard CSS 
The Charged System Search (CSS) algorithm is a meta-heuristic based on the Coulomb and 
Gauss laws from electrical physics and the governing laws of motion from the Newtonian 
mechanics [19]. This algorithm can be considered as a multi-agent approach, where each 
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agent is a Charged Particle (CP). Each CP is considered as a charged sphere with radius a, 
having a uniform volume charge density and is equal to: 
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where fitbest and fitworst are the best and the worst fitness of all the particles; fit(i) 

represents the fitness of the agent i, and N is the total number of CPs. 
CPs can impose electric forces on the others, and its magnitude for the CP located inside 

the sphere is proportional to the separation distance between the CPs, and for a CP located 
outside the sphere is inversely proportional to the square of the separation distance between 
the particles. The kind of the forces can be attractive or repelling and it is determined by 
using arij, the kind of force parameter, defined as 

 

⎩
⎨
⎧
−
+

=
1
1

ijar   
t

t

k
k
−1  w.p.
       w.p.

 (2) 

 
where arij determines the type of the force, with +1 representing the attractive force and 

−1 denoting the repelling force, and kt is a parameter to control the effect of the kind of 
force. Therefore, the resultant force is redefined as: 
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where Fj is the resultant force acting on the jth CP; rij is the separation distance between 

two charged particles defined as: 
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where Xi and Xj are the positions of the ith and jth CPs, respectively; Xbest is the position 

of the best current CP, and ε  is a small positive number to avoid singularity. Pij determines 
the probability of moving each CP toward the others as: 
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At the movement stage, each CP moves towards its new position under the action of the 

resultant forces and its previous velocity as 
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where ka is the acceleration coefficient; kv is the velocity coefficient to control the 

influence of the previous velocity; and randj1 and randj2 are two random numbers uniformly 
distributed in the range (0,1). If each CP moves out of the search space, its position is 
corrected using the harmony search-based handling approach as described in [20]. In 
addition, to save the best design, a memory (Charged Memory) is utilized. 

 
2.2 Hybridization of PSO and CSS 
A hybrid CSS and PSO algorithm is proposed by Kaveh and Talatahari [21,22]. This 
algorithm was applied to optimal design of some engineering problems. Also comparing the 
results with other meta-heuristic methods demonstrates that the proposed approach has a 
good capability of determining the approximate optimum solutions. The Particle Swarm 
Optimization (PSO) utilizes a velocity term which is a combination of the previous velocity, 
Vk

i, the movement in the direction of the local best (i.e. the best visited position by the 
particle itself), Pk

i , the movement in the direction of the global best (i.e. the best visited 
position of all the particles in its neighborhood), Pk

g . In the present hybrid algorithm [21] 
the advantage of the PSO consisting of utilizing the local best and the global best is added to 
the CSS algorithm. The CM updating process is defined as follows: 
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Considering the above new CM, the electric forces generated by agents are modified as 
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where subtitles S1 and S2 denote two sets of the numbers which determine the number of 

the agents utilized to calculate the resultant force by employing the agents sorted in the CM 
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and the current agents positions, respectively. If the coefficient ki is defined as 
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Then the resultant force formula can be simplified as 
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where the subtitle g denotes the number of the stored so far good position among all CPs. 

Therefore the first term directs the agents towards the global best position. When i = j, then 
the CMi,old is treated similar to Pk

i in the PSO as considered in the second term of the above 
equation. This will direct the agents towards the local best [22].  

 
 

3. PROBLEM STATEMENT 
 

3.1. Laminate analysis 
The structure is considered to include in-plain orthotropic plies with similar orientations in 
each lamina. The laminate itself consists of a number of laminae in the way that the whole 
structure becomes symmetric (Figure 1).  
 

 
 

Figure 1. Schematic view of a plate composite laminate 
 
The general relation between strain and curvature with force and moment components in 

composite materials is as 
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Where the blocks A and D are the extensional and flexural stiffness matrices, 

respectively. The blocks A relate the in-plane stress resultants to the mid-plane strains, and 
the blocks D relates the moment resultants to the curvatures. The blocks B, on the other 
hand, relates the in-plane stress resultants to the curvatures and moment resultants to the 
mid-plane strains, and hence is called the bending-extension coupling matrix. If it is 
undesirable, the blocks B can be avoided by a symmetric placement of the plies with 
different orientations with respect to the mid-plane of the laminate [2]. Figure 2 shows the 
resultant stress and moments in a laminate of composites. 

 

 
Figure 2. Stress and moment resultants for a plate 

 
Due to symmetry, as mentioned above, Bij blocks are equal to zero and since external 

loading is limited to in-plane forces, Dij blocks are similarly zero. According to plane stress 
analysis and considering moment resultants to be zero, there is no out-of-plane deformation, 
so the curvature is dismissed and our analysis is independent of laminate height compared to 
mid-plane. Thus the general form of the relation above reduces to: 
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The index n is related to the number of the specified lamina for which the strain 
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components will be calculated. Each lamina is comprised of plies with similar angles and a 
laminate consists of several laminas. Since the composite analysis in here is limited to in-
plane loading and the geometry is symmetric, therefore strain components for each lamina is 
the same and independent of the index number. Accordingly, strain calculation is carried out 
for the entire structure in which extensional matric A components are calculated as: 
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where h is the thickness of each ply and has a constant value for all plies, since most 

commercially available composite materials come in fixed ply, and k is the number of plies 
in the specified lamina and n is the lamina number. The whole equation is multiplied by 2 
because of symmetric geometry of structure. The mean reduced stiffness matric, Qij , relates 
the stresses to strains as follows: 
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The stiffness matric components are obtained using 
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where m=cos(θ) and n=sin(θ) and 
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Using Eqs. (14), (15), (17), and (18), strain components for the composite are found. 
Thus the stress matric for lamina n is obtained and using transformation tensor principle, 
stress matric is calculated as: 
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where the coefficient matric is named as tensor transformation. 
 

3.2. Failure limits control 
In order to be able to compare different structures with similar thickness, we use failure 
theories to compare the identical structures through the design factor. To control the failure 
limits, two failure criteria are used. The first major constraint is Thai-Wu criterion in which 
the function T should be less than 1.0 (T ≤ 1): 
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where Sxt, Sxc are tensile and compressive strengths along x direction, Syt, Syc are tensile 

and compressive strengths along y direction and Sxy is shear strength in the x–y plane. 
The advantage of this theory is that there is an interaction between stress components and 

the theory does distinguish between the tensile and compressive strengths. This failure mode 
is conservative but in order to make sure all stress components do not exceed the limits we 
use another constraint known as the maximum principle stress theory as the second failure 
criteria to put more strict control on stress outputs.  

In the maximum stress failure theory, failure of the lamina is assumed to occur whenever 
any normal or shear stress component equals or exceeds the corresponding strength. In this 
method the stress components are not related to each other and failure control is practiced 
over any of them individually. This theory is written mathematically as follows: 
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where σ11 and σ22 are the maximum material stresses in the lamina, and τ12 is the 
maximum shear stress [23]. Using this criterion, we ensure the constraints over the 
composite failure is practiced strictly. 
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3.3. Optimization approach 
The main goal of this article is to optimize the weight of structure by minimizing total 
thickness and maintaining in situ strength through failure control theories. The optimization 
process must continue in a way that the stress components do not go beyond the limits and 
no ply encounters failure. That is why the failure control procedure is practiced over the 
plies individually. In order to handle the constraints, a penalty function is utilized. If the 
constraints are between the allowable limits, the penalty is zero; otherwise the amount of 
penalty is obtained due to the violation of the maximum stress criterion and the Tsai–Wu 
criterion. Therefore the aim of the optimization is redefined by introducing the objective 
function (F) as 
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in which H is the total thickness of the composite, fP is the penalty function, Pms and Ptw 

are penalty values calculated based on the maximum stress and the Tsai–Wu criterion, ω1 
and ω2 are the penalty factors, respectively. PMS and PTW are defined as: 
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where FSk

x, FSk
y and FSk

xy are components of factors of safety for the maximum stress 
failure mode, and FSk

TW is the factor of safety according to Tsai–Wu criterion for the kth 
lamina. The related safety factors are determined as 
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In summary, the safety factor of the laminate according to the maximum stress criterion 

is calculated as follows: First, the principal stresses in each lamina are determined; then 
safety factors for each failure mode are calculated. In addition, the safety factor for the kth 
lamina according to the Tsai–Wu criterion is defined as the multiplier of the stress 
components at lamina k, which makes the right hand side of the Eq. (20) equal to 1.0. 

 
 

4. NUMERICAL RESULTS AND DISCUSSION 
 

In this section, some design examples are optimized in order to demonstrate the numerical 
efficiency and reliability of the proposed method. All programs are coded in MATLAB. 
These examples include 

• Tension loading 
• Compression loading 
• Shear loading 
• Reliability evaluation 

For each example, 20 independent runs are carried out using the new hybrid algorithm. 
The number of 300 individuals for CPs is used and the value of constants kv, ka, ω1 and ω2 
are set to 1.2, 0.9, 100 and 100, respectively. Also the maximum number of iteration is set to 
120. The material properties of the composite used in this paper are the same as materials 
used in [17]. The materials include epoxy resin with long unidirectional graphite fibers with 
the properties as shown in Table 1. 

Variables to consider here consist of the ply orientation and the number of plies in a 
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lamina. In order to be able to obtain better results in the solution, angles are considered to be 
continuous in the range of [–90°, 90°] and the thickness is supposed to be constant equal to 
0.00127 mm. Thus the ply angle and the ply number in a lamina are the design variables and 
total thickness minimization will occur through optimization of these two factors. Since 
different failure control methods influence the results, reliability factor for each one should 
be taken into consideration and logically the method with lower factor will be more 
conservative. 

Table 1: Material properties of graphite-epoxy composite 
Properties Value Unit 

11E  40.91 GPa 

22E  9.88 GPa 

12G  2.84 GPa 

21G  4.18 GPa 

12ν  779 MPa 
Sxt -1134 MPa 
Sxc 19 MPa 
Syt -131 MPa 
Syc 75 MPa 
Sxy 779 MPa 

 
4.1 Tension loading 
In the first loading case according to Table 2, we increased the tension loading in biaxial 
state and considered no shear loading. As it is demonstrated, the laminate thickness is 
affected by changing tension loading and the general form of the stacking sequence is in the 
form of [θ1, –θ2] and they are getting closer to unidirectional condition also orientations are 
becoming nearer to each other with rising of loading, the reason is the tendency of fibers to 
turn into the direction of the growing component to acquire the best resistance. 
 

Table 2: The optimum layups using CSS+PSO under tensional loading  
Nyy=5 MN/m, Nxy=0 

Load 
case 

Nyy 
(MN/m) 

Stacking 
sequence 

Number of 
plies 

Failure 
mode 

FSTW 1.0043 1 10 [–3528 , 3926 ]s 108 
FSMS 1.0249 
FSTW 1.0046 2 20 [–2925 , 3421]s 92 
FSMS 1.1883 
FSTW 1.0061 3 40 [–2620 , 2620]s 80 
FSMS 1.1885 
FSTW 1.0440 4 80 [–2126 , 2027]s 106 
FSMS 1.2123 

5 120 [–1837 , 1934]s 142 FSTW 1.0044 
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FSMS 1.0955 
Thickness decrease at the beginning of the loading can be according to no shear loading 

and increasing role of tension load that increases the uniaxial behavior and as we know fiber 
accesses the most strength in its direction. But in higher loads, in order to avoid the failure, 
thickness increases to improve its resistance to delamination. 

 
4.2 Compression loading 
According to material properties, compression strength in the direction of y axis is less than 
x axis. THUS the compression loading is increased in the direction of y to verify the failure 
limits (Table 3). In this case thickness increases with loading and fibers can not become 
closer and merge to decrease required thickness. The possible reason can originate from the 
fact that the strength limits for compression in y direction is low for this material, so fibers 
have to remain in the direction of loading to avoid failure. One of the orientations is forced 
to tend toward the loading angle in order to prevent structure from failure; on the other hand 
they are susceptible to failure in the vertical loading because they own weakest resistance in 
that direction so other fibers had to align in the nearly vertical direction to reinforce the 
structure and support the first oriented group of fibers.  

 
Table 3: The optimum layups using CSS+PSO under compression loading 

Nxx=10 MN/m, Nxy=0 
Load 
 case 

Nyy  
(MN/m) 

Stacking  
sequence 

Number of 
plies 

Failure  
mode 

FSTW 1.0332 1 –10 [737 , 014]s 42 
FSMS 1.2147 
FSTW 1.0022 2 –20 [–415 , –7815]s 60 
FSMS 1.1432 
FSTW 1.0072 3 –40 [–421 , 8924]s 90 
FSMS 1.0991 
FSTW 1.0054 4 –80 [–821 , –9051]s 144 
FSMS 1.0912 
FSTW 1.0086 5 –120 [–819 , 8979]s 196 
FSMS 1.0982 

 
4.3 Shear loading 
As it is observed, shear load increase in Table 4 leads to drastic rise in composite thickness 
which shows the weakness of composite structures toward shear forces. That is because of 
low shear module of composites. Another reason can be that fibers can not bear shear load, 
so the load is not transferred from the matrix to fibers and the matrix itself has to stand it. 
Therefore the only way to increase the strength is the thickness improvement. 

 
4.4 Reliability evaluation 
In order to check reliability and superiority of the proposed optimization method, we used 
another similar problem based on [24] in which nonlinear programming (NLP) as a 
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deterministic method was used and two different approaches were adopted, one of which 
took thickness as constant and ply angle as varying variable, and the other considered both 
as changing parameters. Since ply thickness is not categorized as our optimizing variable, 
we compared the results of example one. The objective function in this problem is 
maximization of safety factor leading to safer design. 
 

Table 4: The optimum layups using CSS+PSO under shear loading 
Nxx=10 MN/m, Nyy=10  MN/m 

Loade 
 case 

Nxy  
(MN/m

Stacking 
sequence 

Number o
plies 

Failure  
mode 

FSTW 1.1223 1 10 [612 , 409]s 22 
FSMS 1.0753 
FSTW 1.0012 2 20 [4330 , –7684]s 68 
FSMS 1.0801 
FSTW 1.0032 3 40 [4659 , –2219] 156 
FSMS 1.1909 
FSTW 1.0018 4 80 [47107 , –6753] 320 
FSMS 1.1932 
FSTW 1.0027 5 120 [68101 , –48146 494 
FSMS 1.2072 

 
Different failure criterion was brought into the algorithm. Matrix tensile failure constraint 

similar to the one used in [25] was adopted where ply transverse tensile and shear strength 
were critical parameters specifying failure limits and modified expressions were included 
the same as [25] to have a fair judgment. Optimum results for 4 and 8 ply angles obtained in 
[24] were fetched into the algorithm and safety factors related to the mentioned failure 
method were extracted from [25] which was chosen as our comparing tool. Material 
properties and strength limits are illustrated in Table 5. Thickness of each lamina is 0.14 mm 
and the number of plies in each lamina is considered to be constant and equal to four.  

 
Table 5: Material properties of graphite-epoxy composite for the reliability evaluation example 

Properties Value Unit 
11E  138 GPa 

22E  11.7 GPa 

12G  4.56 GPa 

12ν  0.29 MPa 
Yt

0 44.5 MPa 
St

0 48.2 MPa 
 

As shown in Table 6, with the same stacking sequence, the present hybrid method 
displays comparable results with the larger safety factor indicating the advantage gained by 
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global search algorithms. Optimum stacking sequence obtained for the maximum safety 
factor by DSA (direct simulated annealing) method proposed in [17] was also used which 
was carried out the method for the same problem. In order to compare the present hybrid 
approach with other meta-heuristic tool we added results accessed by the DSA. Again, the 
numbers extracted from the hybrid CSS and PSO is promising, showing its superiority for 
structural optimization problems. 

 
Table 6: Comparison between different methods for a four ply angle laminate with constant 

thickness 

 
[Nxx , Nyy , Nxy

(kN/m) 
Optimum layup 

Optimization 
approach 

Factor of 
safety 

[62.684 , –54.204 , 81.234 , –1.964]s NLP 1.27 
[50.804, -49.804, 26.594, -49.734]s DSA 1.51 

(a) 
 [200, 200, 0] 

[52.764 , –37.214 , 33.144 , –55.584]s CSS+PSO 1.58 

[32.34 , –56.614 , –7.784 , 33.874]s NLP 1.57 
[31.724, 31.724, 31.724, 31.724] s DSA 1.00 

(b) 
 [200, 0, 200] 

[41.074 , 26.194 , –59.994 , 31.724]s CSS+PSO 2.04 

[–27.464 , 57.584 , –43.614 , 20.114]s NLP 1.04 
[30.984, -36.574, 37.674, -37.20]s DSA 1.21 

(c) 
 [400, 200, 0] 

[34.574 , –37.664 , 37.054 , –34.854]s CSS+PSO 1.26 

[45.454 , 51.724 , 43.384 , 39.584]s NLP 11.94 
[454, 454, 454, 454]s DSA 7.6041×1014 (d) [200, 200, 

200] 
[45.394 , 45.124 , 44.814 , 44.714]s CSS+PSO 7.6041×1014 

 
Case d shows a drastic size value for safety factor which shows the best optimal loading 

for in-plane combined loading with similar identical values is [45n] s layup. To understand 
better, the safety factor for [4516] s with the same loading as d is 7.6041×1014. Similar 
alignment of fibers and resultant forces could be the main reason. Thickness of laminate in 
Table 7 is again constant and is proportionally increasing with load rising. Case d is similar 
to Table 6 and total loading is transferred to the fibers and resin has no roll in bearing the 
applied load. Therefore composite has the safest design in this case. Equations for safety 
factor calculations are available in [25]. 
 

Table 7: Comparison between different methods for an eight ply angle laminate with constant 
thickness 

 
[Nxx , Nyy , Nxy] 

(kN/m) 
Optimum layup 

Optimization 
approach 

Factor of 
safety 

(a) 
 [400, 400, 0] 

[–3.084 , -90.008 , –28.514 , 88.004 , – NLP 2.51 
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28.494  –27.594 , 40.054]s 

[-73.684, 33.574, -50.694, 30.894, -
51.554,      -51.554, 30.754, 30.754] s 

DSA 2.61 

[–89.004 , –1.004 , –74.94 , –12.044 , 
50.844 ,  –33.374 , 23.44 , 85.774] s 

CSS+PSO 3.14 

[36.664 , –57.684 , 36.474 , 90.004 , 
37.314 , 24.584 , –57.774 , 31.654] s 

NLP 3.57 

[31.728, 31.728, 31.728, 31.728] s DSA 1.00 
(b) 

 [400, 0, 400] 
[28.974 , –60.54 , 30.564 , 30.944 , –
57.784 , 31.044 , 64.884 , 30.874] s 

CSS+PSO 4.01 

[–26.944 , 49.264 , –37.544 , 40.904 , 
–42.784 , 55.364 , -24.164 , 10.864] s 

NLP 2.14 

[-29.944, 35.604, -36.694, 36.314, 
36.314, 36.314, -36.754, -36.754] s 

DSA 2.10 
(c) 

 [800, 400, 0] 

[–43.004 , 31.314 , –31.154 , 41.244 , 
–35.074 , 22.204 , –38.004 , 44.984] s 

CSS+PSO 2.23 

[49.294 , 49.274 , 49.294 , 26.604 , 
49.424 , 11.914 , 50.144 , 49.334] s 

NLP 5.32 

[454, 454, 454, 454]s DSA 7.6041×1014 
(d) [400, 400, 

400] 
[43.914 , 43.174 , 46.604 , 43.004 , 
50.004 , 38.134 , 48.894 , 46.004] s 

CSS+PSO 7.6041×1014 

 
 

5. CONCLUDING REMARKS 
 

Since the early dawn of civilization, the strong and light material has always fascinated 
mankind for different applications. The idea of combining two or more different materials 
resulting in a new material with improved properties exists from ages. It was discovered 
long ago that composite materials have the combined advantages with superior performance 
compared to each of its constituting material. These materials are blended in special 
structures, one of which is stacking sequence. Stacking sequence is highly dependent on 
loading condition including sign of loading, magnitude of loading and material properties of 
the composite. The influenced variables are fiber orientation, and number of plies. 
According to previous studies, two orientation states often give the best answer with the two 
variables and composite withstand in-plane stress with the minimum thickness. Thus we 
used two angle–ply structures for the laminate layup. For some loading cases, many global 
or near-global optimum designs are found to exist. The proposed method proved to be quite 
reliable in locating these designs. In a single optimization run, the hybrid CSS and PSO 
algorithm could find one or more of them even with a large number of design variables. The 
resulting hybrid algorithm, tested over 460 runs on the different load cases, needs on 
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average 30,000 analyses to locate a practical optimum with a high reliability. 
In the case of shear loading, composite thickness makes strong change with increasing 

the load. This problem originates from nature of fiber interaction with the matrix and high 
shear loading may lead to delamination. In addition, in-plane loadings with equal values 
faces over design condition with nearly infinite safety factor which is because of complete 
transfer of loading to the fibers, removing the effect of resin in the composite.  However the 
optimization procedure successfully managed to provide proper layup with the minimum 
possible thickness and weight in an acceptable criterion.  

Safety factor values illustrated in the tables proved the feasibility of the design. In order 
to understand which constraint is more active similar penalty weighting coefficients 
(ω1=ω2) were allocated to the penalty function. The obtained safety factors from Thai-Wu 
method displayed lower values, showing more conservative behavior than maximum stress 
criterion, which means one can use different penalty weighting coefficients where ω1 < ω2. 
The future works should focus on the extension of the approach to a multi-objective based 
design of laminated composite structures for example simultaneous maximization of 
fundamental frequency and minimization of cost or maximization of the load carrying 
capacity and minimization of the mass of a graphite-epoxy laminate subjected to biaxial 
moments. 
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