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ABSTRACT 
 
This paper presents an improved magnetic charged system search (IMCSS) and open 
application programming interface (OAPI) for optimization of double layer barrel vaults. In 
IMCSS algorithm, magnetic charged system search (MCSS) and an improved scheme of 
harmony search (IHS) are utilized and some of the most important parameters in the 
convergence rate of HS scheme are improved to achieve a good convergence and good 
solutions especially in final iterations. The OAPI is also utilized for the process of structural 
analysis, to link the analysis software with the IMCSS algorithm through the programming 
language. The results demonstrate the efficiency of OAPI as a powerful interface tool for 
analysis of large-scale structures such as double layer barrel vaults and also the robustness 
of the IMCSS as an optimization algorithm in fast convergence and achieving the optimal 
results. 
 
Keywords: Magnetic charged system search; open application programming interface; 
optimal design; space structures; double layer barrel vault. 

 
 

1. INTRODUCTION 
 

Barrel vault is one of the oldest type of space structure used since antiquity. This type of 
structures has lightweight and is cost effective structures which are used to cover large areas 
such as exhibition halls, stadium, markets, and concert halls. The earlier types of braced 
barrel vaults were constructed as single-layer structures. Nowadays, double-layer systems 
are utilized for covering large spans [1]. Double layer barrel vaults are generally 
indeterminate from static point of view. In such systems, due to the rigidity, the risk of 
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instability can almost be eliminated. The use of this type of barrel vaults enhances the 
stiffness of the vault structure and provides structural systems of great potential, capable of 
having spans in excess of 100 m. 

In the last decade, structural optimization has become one of the most interesting 
branches of structural engineering and many meta-heuristic algorithms have been developed 
and applied for optimization of truss structures. Every meta-heuristic method consists of a 
group of search agents that explore the feasible region based on both randomization and 
some specified rules. The rules are usually inspired by natural phenomena laws. Recently, a 
new meta-heuristic algorithm has been proposed, by Kaveh and Talatahari which is called 
Charged System Search (CSS) [2]. The CSS algorithm is based on the Coulomb and Gauss 
laws from physics and the governing laws of motion from the Newtonian mechanics. This 
algorithm can be considered as a multi-agent approach, where each agent is a Charged 
Particle (CP). Each CP is considered as a charged sphere with a specified radius, having a 
uniform volume charge density which can insert an electric force to the other CPs. After a 
while the CSS algorithm modified to Magnetic Charged System Search (MCSS) by Kaveh 
et al. [3]. This algorithm utilizes the governing laws for magnetic forces and includes 
magnetic forces in addition to electrical forces, so the movements of CPs due to the total 
force are determined using Newtonian mechanical laws. 

Although many studies have been performed on optimization of truss structures using 
above algorithms, however, there are a few studies on optimization of double layer barrel 
vaults. For optimal design of double layer barrel vaults Kaveh and Eftekhar presented IBB-
BC algorithm [4]. In another study optimal design of some single layer barrel vaults and a 
double arch barrel vault were presented by Kaveh et al. [5]. In several studies, a practical 
model of a braced barrel vault has been optimized by Hasançebi and Çarbaş using ant 
colony search method [6], Hasançebi et al. employed a reformulation of the Ant Colony [7] 
and Hasançebi and Kazemzadeh Azad utilized a reformulations of Big Bang-Big Crunch 
algorithm [8, 9]. 

In this paper, an improved magnetic charged system search (IMCSS) is proposed for 
optimal design of double layer barrel vaults. In this algorithm, in the process of position 
correction of CPs, an improved harmony search scheme is utilized and some of the most 
effective parameters in the convergence rate of the algorithm are improved to achieve better 
convergence and optimal results. 

The present paper is organized as follows: in Section 2, the statement of the optimization 
design problem is presented and mathematically formulated. An introduction to CSS and 
MCSS algorithms are prepared in Section 3. In Section 4, IMCSS algorithm is introduced 
and also its discrete version is described. In Section 5, Open Application Programming 
Interface (OAPI) is presented as a tool for structural analysis. Section 6 contains two 
illustrative examples with continuous and discrete variables to confirm the capability of the 
new algorithm, and finally in Section 7, some concluding remarks are provided. 
 
 

2. PROBLEM STATEMENT 
 

The aim of the size optimization of trusses and space structures is to find the optimum 
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values for cross-sectional areas Ai of members, in order to minimize the structural weight 
W, and simultaneously satisfying the imposed constraints on the problem. Thus, the optimal 
design problem can be expressed as: 
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where X is the vector containing the design variables; for the discrete optimum design 
problem, the variables xi are selected from an allowable set of discrete values; n is the 
number of member groups; Mer(X) is the merit function; W(X) is the cost function, which is 
taken as the weight of the structure; fpenalty(X) is the penalty function which results from the 
violations of the constraints corresponding to the response of the structure; nn is the number 
of nodes; nm is the number of members forming the structure; ns is the number of 
compression elements; i  and i  are the element stress and nodal displacements, 

respectively; min and max mean the lower and upper bounds of constraints, respectively. 
b
i  is the allowable buckling stress in member i when it is in compression.  

The cost function can be expressed as: 
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where i  is the material density of member i; Li is the length of member i; and xi is the 

cross-sectional area of member i as the design variable. 
The penalty function can be defined as [10]: 
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where np is the number of multiple loadings. In this paper 1  is taken as unity and 2  is set 

to 1.5 in the early iterations of the search process, but gradually it is increased to 3 [10]. k
  

is the summation of nodal displacement penalties, k
  is the summation of stress penalties 

and, k
b  is the summation of buckling stress penalties for kth charged particle which 

mathematically expressed as: 
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where i , i  are the displacement of the joints and the allowable displacement, respectively, 

i and i are the stress and allowable stress in member i, respectively, and i , i  are the 

slenderness ratio and the allowable slenderness ratio of member i, respectively [11]. 
The allowable tensile and compressive stresses are used according to the AISC-ASD 

code [12], as follows: 
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where 

i  is calculated according to the slenderness ratio 
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where E is the modulus of elasticity, Fy is the yield stress of steel, Cc is the slenderness ratio 
(λi) dividing the elastic and inelastic buckling regions (

yc FEC 22 ), λi is the slenderness 

ratio (λi=kLi/ri), k is the effective length factor, Li is the member length and ri is the radius of 
gyration. The radius of gyration (ri) can be expressed in terms of cross-sectional areas, i.e., 

b
ii aAr   [13]. Here, a and b are the constants depending on the types of sections adopted 

for the members such as pipes, angles, and tees. In this paper, pipe sections (a = 0.4993 and 
b = 0.6777) were adopted for bars. 

According to AISC-ASD the allowable slenderness ratio can be formulated as follows: 
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where ki is the effective length factor for the member i (ki =1 for all truss members), ri is the 
minimum radius of gyration for the member i and li is the length of member i. 
 
 

3. INTRODUCTION TO CSS AND MCSS ALGORITHMS 
 
The CSS algorithm was proposed by Kaveh and Talathari [2] for optimization. This 

meta-heuristic optimization algorithm takes its inspiration from the physic laws governing a 
group of CPs. These charge particles are sources of the electric fields, and each CP can exert 
electric force on other CPs. The movement of each CP due to the electric force can be 
determined using the Newtonian mechanic laws. 

 In physics, it has been shown that when a charged particle moves, produces a magnetic 
field. This magnetic field can exert a magnetic force on other CPs. Thus, for considering this 
force in addition to electric force, the CSS algorithm is modified to MCSS algorithm by 
Kaveh et al. [3] The MCSS algorithm can be summarized as follows: 

Level 1. Initialization 
Step 1: Initialization. Initialize CSS algorithm parameters; the initial positions of CPs are 

determined randomly in the search space. 
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where (0)

ji,x determines the initial value of the ith variable for the jth CP; mini,x and maxi,x are 

the minimum and the maximum allowable values for the ith variable; rand is a random 
number in the interval [0,1]; and n is the number of variables. The initial velocities of 
charged particles are zero 
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The magnitude of the charge is defined as follows: 
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where fitbest and fitworst are the best and the worst fitness of all particles; fit(i) represents 
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the fitness of the agent i; and N is the total number of CPs. The separation distance rij 
between two charged particles is defined as: 
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where Xi and Xj are the positions of the ith and jth CPs, Xbest is the position of the best 
current CP, and ε is a small positive number to avoid singularities. 

Step 2. CP ranking. Evaluate the values of the fitness function for the CPs, compare with 
each other and sort them in an increasing order. 

Step 3. CM creation. Store CMS number of the first CPs and their related values of the 
objective function in the CM (based on CMS size). 

Level 2: Search 
Step 1: Force determination.  
The probability of the attraction of the ith CP by the jth CP is expressed as: 
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where rand is a random number uniformly distributed in the range of (0,1). The resultant 
electrical force jE,F acting on the jth CP can be calculated as follow: 

 

(15)
























 


....,,2,1

,1,0

,0,1

,)( 21

21

,
2213jE,

Nj

arii

arii

XXpi
r

q
ir

a

q
qF ij

ij

jii
jiij

ij

i
ij

i
j  

 
The probability of the magnetic influence (attracting or repelling) of the ith wire (CP) on 

the jth CP is expressed as: 
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where fit(i) and fit(j) are the objective values of the ith and jth CP, respectively. This 
probability determines that only a good CP can affect a bad CP by the magnetic force. 

The magnetic force FB,ji acting on the jth CP due to the magnetic field produced by the ith 
virtual wire (ith CP) can be expressed as: 
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where qi is the charge of the ith CP, R is the radius of the virtual wires, Ii is the average 
electric current in each wire, and ijpm  is the probability of the magnetic influence 

(attracting or repelling) of the ith wire (CP) on the jth CP. 
The average electric current in each wire Ii can be expressed as: 
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where dfi,k is the variation of the objective function of the ith CP in the kth movement 
(iteration). Here, fitk(i) and fitk−1(i) are the values of the objective function of the ith CP at 
the start of the kth and k-1th iterations, respectively. By considering absolute values of dfi,k 

for all of the current CPs, dfmax,k and dfmin,k will be the maximum and minimum values among 
these absolute values of df, respectively. 

A modification can be considered to avoid trapping in part of search space (local optima) 
because of attractive electrical force in CSS algorithm. 
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where pr is the probability that an electrical force is a repelling force which is defined as 
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where rand is a random number uniformly distributed in the range of (0,1), iter is the current 
number of iterations, and itermax is the maximum number of iterations. 

Step 2: Solution construction. Move each CP to the new position and calculate the new 
velocity as follows: 
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where randj1 and randj2 are two random numbers uniformly distributed in the range of 
(0,1). Here, mj is the mass of the jth CP which is equal to qj. ∆t is the time step and is 
set to unity. ka is the acceleration coefficient; kv is the velocity coefficient to control the 
influence of the previous velocity. In this paper ka and kv are considered as 
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where c1 and c2 are two constants to control the exploitation and exploration of the 
algorithm, respectively. 

Step 3. CP position correction. If a CP violates its allowable boundary, its position is 
corrected using harmony search-based approach. In this paper, the position correction has 
been improved and expressed in the next section. 

Step 4: CP ranking. Evaluate and compare the values of the fitness function for the new 
CPs, and sort them in an increasing order. 

Step 5: CM updating. If some new CP vectors are better than the worst ones in the CM 
(means better objective function), include the better vectors in the CM and exclude the worst 
ones from the CM. 

Level 3: Controlling the terminating criterion.  
Repeat the search level steps until a terminating criterion is satisfied. The terminating 

criterion is considered to be the number of iterations. 
 

 
4. IMPROVED MAGNETIC CHARGED SYSTEM SEARCH 

 
In the process of position correction of CPs using harmony search-based approach (Level 2 - 
Step 3), The CMCR and PAR parameters help the algorithm to find globally and locally 
improved solutions, respectively. PAR and bw in HS scheme are very important parameters 
in fine-tuning of optimized solution vectors, and can be potentially useful in adjusting 
convergence rate of algorithm to optimal solution [14]. The traditional HS scheme uses fixed 
value for both PAR and bw. Small PAR values with large bw values can led to poor 
performance of the algorithm and considerable increase in iterations needed to find optimum 
solution. Although small bw values in final generations increase the fine-tuning of solution 
vectors, but in early iterations bw must take a bigger value to enforce the algorithm to 
increase the diversity of solution vectors. Furthermore large PAR values with small bw 
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values usually led to the improvement of best solutions in final iterations which algorithm 
converged to optimal solution vector. To improve the performance of the HS scheme and 
eliminate the drawbacks lies with fixed values of PAR and bw, IMCSS algorithm uses IHS 
scheme with varied PAR and bw in correction step (Step 3). PAR and bw change 
dynamically with iteration number as shown in figure 1 and expressed as follow [14]: 
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Figure 1. Variation of (a) bw and (b) PAR versus iteration number. 
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where bw(iter) is the bandwidth for each iteration, bwmin and bwmax are the minimum and 
maximum bandwidth, respectively.  

 
4.1 A discrete IMCSS 
IMCSS algorithm is also applied to optimal design problem with discrete variables. One 
way to solve discrete problems using a continuous algorithm is to utilize a rounding function 
which changes the magnitude of a result to the nearest discrete value [15], as follows: 
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where Fix(X) is a function which rounds each elements of vector X to the nearest permissible 
discrete value. Using this position updating formula, the agents will be permitted to select 
discrete values. 

 
 

5. OPEN APPLICATION PROGRAMMING INTERFACE 
 

The Open Application Programming Interface (OAPI) is a powerful tool that allows users to 
automate many of the processes required to build, analyze and design models and to obtain 
customized analysis and design results. It also allows users to link SAP2000 with third-party 
software, providing a path for two-way exchange of model information with other programs. 
Most major programming languages can be used to access SAP2000 through the OAPI [16].  

In this paper the language of technical computing MATLAB is used to access SAP2000 
through the OAPI and MATLAB is also used for the process of optimization via IMCSS. 

 
 

6. NUMERICAL EXAMPLES 
 

In this section, two double layer barrel vaults are optimized via IMCSS algorithm to 
demonstrate the efficiency of this algorithm. For all of examples a population of 100 charged 
particles is used and the value of CMCR is set to 0.95. The values of PARmin and PARmax in 
IMCSS algorithm are set to 0.3 and 0.99, respectively.  

The first Example is a 384-bar double layer barrel vault which is an optimization problem 
with continuous variables, and for this structure both process of optimization and analysis 
are performed in MATLAB. 

The second problem is a 693-bar braced barrel which is a discrete optimum design 
problem, the variables are selected from an allowable set of steel pipe sections taken from 
AISC-LRFD code which is shown in Table 1 [17]. For analysis of this structure SAP2000 
OAPI is used and the optimization process is performed in MATLAB. 
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Table 1: The allowable steel pipe sections taken from AISC-LRFD code [17] 

 Type 
Nominal 

diameter (in) 
Weight 

per ft (lb) 
Area (in2) I (in4) 

Gyration 
radius (in) 

J (in4) 

1 ST 1/2 0.85 0.25 0.017 0.261 0.082 
2 EST 1/2 1.09 0.32 0.2 0.25 0.096 
3 ST 3/4 1.13 0.333 0.037 0.334 0.142 
4 EST 3/4 1.47 0.433 0.045 0.321 0.17 
5 ST 1 1.68 0.494 0.087 0.421 0.266 
6 EST 1 2.17 0.639 0.106 0.407 0.322 
7 ST 1 1/4 2.27 0.669 0.195 0.54 0.47 
8 ST 1 1/2 2.72 0.799 0.31 0.623 0.652 
9 EST 1 1/4 3 0.881 0.242 0.524 0.582 

10 EST 1 1/2 3.63 1.07 0.666 0.787 1.122 
11 ST 2 2.65 1.07 0.391 0.605 0.824 
12 EST 2 5.02 1.48 0.868 0.766 1.462 
13 ST 2 1/2 5.79 1.7 1.53 0.947 2.12 
14 ST 3 7.58 2.23 3.02 1.16 3.44 
15 EST 2 1/2 7.66 2.25 1.92 0.924 2.68 
16 DEST 2 9.03 2.66 1.31 0.703 2.2 
17 ST 3 1/2 9.11 2.68 4.79 1.34 4.78 
18 EST 3 10.25 3.02 3.89 1.14 4.46 
19 ST 4 10.79 3.17 7.23 1.51 6.42 
20 EST 3 1/2 12.5 3.68 6.28 1.31 6.28 
21 DEST 2 1/2 13.69 4.03 2.87 0.844 4 
22 EST 5 14.62 4.3 15.2 1.88 10.9 
23 EST 4 14.98 4.41 9.61 1.48 8.54 
24 DEST 3 18.58 5.47 5.99 1.05 6.84 
25 ST 6 18.97 5.58 28.1 2.25 17 
26 EST 5 20.78 6.11 20.7 1.84 14.86 
27 DEST 4 27.54 8.1 15.3 1.37 13.58 
28 ST 8 28.55 8.4 72.5 2.94 33.6 
29 EST 6 28.57 8.4 40.5 2.19 24.4 
30 DEST 5 38.59 11.3 33.6 1.72 24.2 
31 ST 10 40.48 11.9 161 3.67 59.8 
32 EST 8 43.39 12.8 106 2.88 49 
33 ST 12 49.56 14.6 279 4.38 87.6 
34 DEST 6 53.16 15.6 66.3 2.06 40 
35 EST 10 54.74 16.1 212 3.63 78.8 
36 EST 12 65.42 19.2 362 4.33 113.4 
37 DEST 8 72.42 21.3 162 2.76 75.2 

ST=standard weight, EST=extra strong, DEST=double-extra strong 

 
6.1 A 384-bar double layer barrel vault 
The 384-bar double layer barrel vault shown in figure 2(a), was first optimized by Kaveh 
and Eftekhar using IBB-BC [4]. The material density is 0.288 lb/in3 (7971.810 kg /m3) and 
the modulus of elasticity is 30450 ksi (210000 MPa). In this example, the yield stress of 
steel is taken as 58 ksi (400 MPa). The nodes are subjected to the displacement limits of 
±0.1969 in (5 mm) in x, y and z directions.  
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(a) 

 
(b) 

Figure 2. The 384-bar double layer barrel vault, (a) 3-dimensional view [1] and (b) Member 
groups in top view. 

Table 2: Optimal design comparison for the 384-bar bar double layer barrel vault (in2) for Case 1 

Element group 
Kaveh and Eftekhar [4]  Present Work 

HS BB-BC IBB-BC  MCSS IMCSS 
1 0.786 0.817 0.775 0.8316 0.7752 
2 1.181 1.201 1.048 1.2055 1.2515 
3 1.13 1.253 1.399 0.9916 0.7751 
4 0.778 0.775 0.775 5.4264 5.2906 
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5 6.28 5.753 6.523 0.8125 0.7751 
6 0.776 0.776 0.775 1.2682 1.0878 
7 14.917 14.392 13.288 13.1225 13.432 
8 10.46 10.403 10.352 11.4493 11.2207 
9 15.972 15.906 14.825 14.4281 16.2342 

10 16.133 14.868 15.349 18.0413 16.2034 
11 11.067 9.714 10.219 11.0402 10.687 
12 12.681 14.54 13.747 13.5818 14.17 
13 7.058 6.853 7.033 5.1206 6.4223 
14 4.303 4.483 4.73 4.3391 4.3321 
15 2.398 2.449 2.497 2.3865 2.3384 
16 4.504 4.299 5.03 5.0637 4.3778 
17 6.214 6.289 6.692 6.3834 6.6193 
18 0.782 0.775 0.775 1.1101 0.775 
19 0.789 0.79 0.775 1.0289 0.7767 
20 0.776 0.789 0.775 1.3294 0.7785 
21 0.829 0.793 0.775 0.9242 0.7751 
22 0.787 0.775 0.775 0.8098 0.775 
23 0.782 0.775 0.775 1.0791 0.7752 
24 2.375 3.073 3.011 2.9766 2.436 
25 1.458 1.502 1.811 1.6141 1.1545 
26 1.722 1.617 1.732 1.7112 1.4576 
27 2.368 2.757 2.824 3.0611 2.7649 
28 1.242 1.278 1.217 1.2978 1.2236 
29 1.269 1.419 1.279 1.4260 1.3542 
30 1.327 1.252 1.255 1.6197 1.4034 
31 1.227 1.229 1.231 1.3493 1.2101 

Weight (lb) 62206 62096 61972 63760.08 62150.7 
Penalty for Dispt. 

Constraint 
0.3425 0.3449 0.3684 0 0 

Penalty for Stress 
Constraint 

1.1412 1.0551 1.1257 0 0 

Penalty for Slenderness 
Constraint 

0 0 0 0 0 

No. of analyses 50,000 50,000 50,000 49,500 48,800 

 
This spatial structure is subjected to two loading conditions: 
In Case 1, which is a symmetric loading condition, the vertical concentrated loads of -20 

ksi (-88.968 kN) are applied on free joints (non-support joints). In Case 2, which is 
asymmetric, the concentrated loads of -10 ksi (-44.484 kN) are applied at the right hand half 
of the structure and on non-supported joints. At the left hand half of the structure and on the 
non-supported joints the loads of -6 ksi (-29.69 kN) are applied. 

This structure consists of two rectangular nets and for making it stable, angles of the 
bottom nets are put into the center of one of the above nets, and these are connected through 
diametrical elements as shown in figure 2. All members of this double layer barrel vault are 
categorized into 31 groups, as shown in figure 2(b). According to Ref. [1], the supports are 
considered at the two external edges of the top layer of the barrel vault. 

 figure 3 shows the convergence history for optimization of this structure for two cases 
using MCSS and IMCSS algorithms. Tables 2 and 3 are provided for comparison of the 
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optimal design results with those of the previous studies for both cases. 
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Figure 3. Comparison of the convergence rates between the MCSS and IMCSS algorithms for 
the 384-bar bar double layer barrel vault, (a) Case 1 and (b) Case 2.  

Table 3: Optimal design comparison for the 384-bar bar double layer barrel vault (in2) for Case 2 

Element group 
Kaveh and Eftekhar [4]  Present Work 

HS BB-BC IBB-BC  MCSS IMCSS 
1 0.775 0.775 0.775  0.8251 0.775 
2 0.823 0.868 0.775  0.9330 0.776 
3 2.442 1.891 0.829  0.9315 0.775 
4 1.78 2.077 2.151  1.8058 1.191 
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5 3.006 2.356 2.544  1.4406 1.042 
6 0.918 0.775 0.775  0.9455 0.775 
7 7.768 7.657 7.842  8.5558 8.949 
8 8.002 7.564 7.717  8.0957 8.854 
9 7.768 7.378 7.714  7.2711 8.112 

10 4.833 5.704 5.128  4.4217 5.654 
11 3.286 3.286 3.284  3.4532 3.361 
12 5.024 4.774 4.957  5.8577 5.915 
13 1.709 1.612 1.542  2.3414 1.507 
14 1.435 1.426 1.397  1.5894 1.259 
15 1.936 1.984 1.907  2.0375 1.806 
16 5.371 5.332 5.053  4.0992 5.208 
17 5.082 5.239 5.149  4.6918 4.340 
18 0.775 0.775 0.775  1.3241 0.775 
19 0.775 0.775 0.775  0.9577 0.776 
20 1.537 1.147 0.775  0.8365 0.778 
21 0.78 0.775 0.775  0.8032 0.775 
22 0.775 0.775 0.775  0.9617 0.776 
23 0.775 0.775 0.775  0.8154 0.779 
24 0.799 0.868 0.784  1.2182 0.775 
25 0.775 0.775 0.775  0.7758 0.775 
26 1.373 1.24 1.283  1.3975 0.934 
27 1.96 2.077 2.169  2.1500 1.992 
28 0.775 0.775 0.775  1.0011 0.775 
29 0.975 1.054 0.96  1.0844 0.905 
30 1.621 1.798 1.774  2.2044 1.818 
31 1.16 1.24 1.159  1.2054 1.162 

Weight (lb) 35501 35372 34731  36313.81 35273.85 
Penalty for Dispt. 

Constraint 
0.0806 0.0228 0.0251  0 0 

Penalty for Stress 
Constraint 

0 0 0.0079  0 0 

Penalty for 
Slenderness 
Constraint 

0 0 0  0 0 

No. of analyses 50,000 50,000 50,000  46,200 48,100 

 
In Case 1, MCSS and IMCSS find the best solutions in 495 iterations (49,500 analyses) 

and 488 iterations (48,800 analyses), respectively, while for HS, BB-BC and IBB-BC 
algorithms, it takes 50,000 analyses to reach the best solutions. The best weights of MCSS 
and IMCSS are 63760.08 lb and 62150.7 lb, respectively, and for the HS, BB-BC and IBB-
BC algorithms are 62206 lb, 62096 lb and 61972 lb, respectively.  

In Case 2, the best weight of MCSS and IMCSS algorithms are 36313.81 lb and 
35273.85 lb, but it is 35501 lb, 35372 lb and 34731 lb for the HS, BB-BC and IBB-BC 
algorithms, respectively. The MCSS and IMCSS algorithms get the best solution after 462 
iterations (46,200 analyses) and 481 iterations (48,100 analyses), while for HS, BB-BC and 
IBB-BC algorithms 50,000 analyses is needed. 

However, in both cases it can be observed that the best weights of MCSS and the IMCSS 
algorithms are not better than BB-BC and IBB-BC algorithms, but the MCSS and IMCSS 
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have no violation of displacement and stress constraints and no penalties for them, therefore 
these algorithms have better Merit function than BB-BC and IBB-BC algorithms which is 
the aim of this paper. 

 
6.2 A 693-bar braced barrel vault 
The optimal design of the 693-bar braced barrel vault was first presented by Hasançebi et al. 
[6-9]. This structure is taken from a braced barrel vault which was already built for roofing 
the platform shelters at the Thirumailai Railway Station in India [18]. The geometry of this 
structure is shown in figure 4(a) and the front and plan view are provided in figure 4(b) and 
figure 4(c), respectively. The material density is 0.283 lb /in3 (7833.413 kg/m3) and the 
modulus of elasticity is 29000 ksi (203893.6 MPa). In this example, the yield stress Fy of 
steel is taken as 36 ksi (253.1 MPa). This structure consists of 259 joints and 693 members 
and as seen in figure 4(a) all members are grouped into 23 independent size variables groups 
considering the symmetry of the braced barrel vault about centerline.  
 

 
(a)  
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(b) 

 
(c) 

Figure 4. The 693-bar braced barrel vault, (a) 3-dimensional view, (b) Front view, (c) Plan view. 
 

It is assumed that the barrel vault is subjected to a uniform dead load (DL) pressure of 35 
kg/m2, a positive wind load (WL) pressure of 160 kg/m2, and a negative wind load (WL) 
pressure of 240 kg/m2. For design purposes, these loads are combined under two separate 
load cases as follows: 

Load case 1: 1.5(DL+WL) = 1.5(35 +160) = 292.5 kg/m2 (2.87 kN/m2) 
Load case 2: 1.5(DL-WL) = 1.5(35–240) = –307.5 kg/m2 (–3.00 kN/m2) 
 The nodes are subjected to the displacement limits of ±0.1 in (0.254 cm) in x, y and z 

directions. The strength and stability requirements of steel members are imposed according 
to AISC-ASD [12]. The structural members are selected from a list of 37 circular hollow 
sections taken from AISC-LRFD code [17]. 

Table 4 provides the comparison of the results of MCSS and IMCSS algorithms with 
those of the previous studies for this structure. The convergence history for MCSS and 
IMCSS algorithms are shown in figure 5. 
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Table 4: Optimal design comparison for the 693-bar braced barrel vault (in2) 

Element 
group 

Hasançebi 
and 

Çarbaş 
[6] 

  
Hasançebi, Çarbas, and Saka 

[7] 
  

Hasançebi and 
Kazemzadeh Azad 

[8,9] 

  Present Work 

ACO2   
sACO HS GA 

  BB-BC 
MBB-

BC 
  MCSS IMCSS 

1 3.17  4.03 3.68 3.02  4.03 3.68  3.02 3.68 
2 0.494  0.494 0.433 0.669  0.494 0.494  0.494 0.494 
3 0.669  0.494 0.494 0.639  0.333 0.333  0.433 0.639 
4 0.881  0.494 0.494 0.494  0.669 0.494  0.32 0.333 
5 0.333  0.494 0.433 0.333  0.333 0.333  0.32 0.494
6 4.3  0.333 3.17 4.41  3.68 3.68  3.02 2.66 
7 0.669  0.639 0.669 0.639  0.494 0.494  0.881 0.494 
8 0.881  0.333 0.333 0.333  0.494 0.494  0.494 0.669 
9 3.68  2.68 2.68 2.66  0.494 0.494  0.333 0.32 

10 0.669  4.03 0.494 0.639  0.333 0.333  0.32 0.25 
11 0.433  0.494 0.669 0.669  2.25 2.23  2.25 2.23
12 0.799  0.639 0.881 0.799  0.799 0.799  1.07 0.881 
13 0.799  0.881 1.07 1.07  1.07 1.07  1.7 1.48 
14 0.669  0.639 0.881 0.799  0.494 0.494  0.333 0.25 
15 0.433  0.333 0.333 0.494  0.333 0.333  0.333 0.333 
16 0.799  0.639 0.881 0.669  1.07 0.881  0.669 0.881 
17 1.48  0.881 0.881 1.07  0.669 0.669  0.799 0.799 
18 0.669  0.494 0.669 0.799  1.7 2.23  2.23 2.23 
19 0.669  0.669 0.639 0.669  0.669 0.494  0.433 0.333 
20 0.333  0.333 0.333 0.333  0.333 0.333  0.25 0.333 
21 2.25  1.7 1.7 2.23  0.494 0.494  0.669 0.494 
22 0.799  0.669 0.494 0.669  0.494 0.333  0.433 0.639
23 0.333  0.494 0.639 0.433  0.333 0.333  0.333 0.433 

W(lb) 12133.47  10999.2 11232.1 12029.49  10859.42 10595.33  10812.39 10550.86 
W(kg) 5503.65  4989.15 5095.07 5456.48  4925.75 4805.96  4904.42 4785.81 

NA 50,000   - - -   27,150 27,150   14,300 9,200 

NA: No. of analyses W: Weight 
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Figure 5. Convergence history for the 693-bar braced barrel vault using MCSS and IMCSS 

algorithms. 
The MCSS and IMCSS algorithms find the best solutions in 143 iterations (14,300 
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analyses) and 92 iterations (9,200 analyses), respectively, while, it takes 50,000 analyses for 
the ACO2 and ACO1, and 27,150 analyses for the BB-BC and MBB-BC algorithms to reach 
the best solutions. The best weights of MCSS and IMCSS are 10812.39 lb (4904.42 kg) and 
10550.9 lb (4785.81 kg), respectively, but it is 10595.33 lb, 10859.42 lb, 10999.20 lb for the 
MBB-BC, BB-BC and sACO algorithms, respectively.  

As it can be seen in the results of 693-bar braced barrel vault, the performance of the 
IMCSS algorithm in fast convergence and finding the best solution in a lower number of 
analyses is better than all of the previous studies for this structure. 

 
 

7. CONCLUDING REMARKS 
 

In this study, an improved magnetic charged system search is proposed for optimization 
of double layer barrel vaults. In this algorithm, an improved harmony search scheme is 
utilized in the process of position correction and two of the most effective parameters 
(PAR and bw) in the convergence rate of algorithm are improved. In the process of 
structural analysis, the open application programming interface is utilized to link the 
analysis software with the programming language. 

 Optimal design via the proposed algorithm is performed for two double layer barrel 
vaults with continuous and discrete design variables. As it can be seen, the IMCSS 
algorithm in the first problem has not found better values for weight than the previous 
studies and the reason is that the aim of this algorithm is to find the best merit function 
and this algorithm has the best merit function without any violation of the constraints on 
the problem and therefore without any penalties for that violation than previous studies.  

In the second problem as a more comprehensive and practical optimization problem, 
comparing the results of IMCSS algorithm with those of the previous studies, the 
robustness of the proposed algorithm in fast convergence and achieving the best optimal 
value for weight of the structure with a lower number of analyses, is demonstrated. It 
can also be concluded that the OAPI is a powerful tool for analysis of structural 
optimization problems, especially for practical large-scale structures such as double 
layer barrel vaults. 

 
 

REFERENCES 
 

1. Makowski ZS. Analysis, Design and Construction of Braced Barrel Vaults, Taylor & 
Francis e- Library 2006: 1-144. 

2. Kaveh A, Talatahari S. A novel heuristic optimization method: Charged system search, 
Acta Mechanica, 213(2010) 267–89.  

3. Kaveh A, Motie Share MA, Moslehi M. Magnetic charged system search: a new meta-
heuristic algorithm for optimization, Acta Mechanica, 224(2013) 85-107. 

4. Kaveh A, Eftekhar B. Optimal design of double layer barrel vaults using an improved 
hybrid big bang-big crunch method. Asian Journal of Civil Engineering (Building and 



A. Kaveh, B. Mirzaei and A. Jafarvand 
 

 

154 

Housing), 13(2012) 465-87.  
5. Kaveh A, Farahani M, Shojaei N. Optimal design of barrel vaults using charged search 

system, International Journal of Civil Engineering, 10(2012) 301-8. 
6. Hasançebi O, Çarbaş S. Ant colony search method in practical structural optimization, 

International Journal of Optimization in Civil Engineering, 1(2011) 91-105. 
7. Hasançebi O, Çarbas S, Saka MP. A reformulation of the ant colony optimization 

algorithm for large scale structural optimization, In Proceedings of the Second 
International Conference on Soft Computing Technology in Civil, Structural and 
Environmental Engineering, edited by Y. Tsompanakis and B. H. V. Topping BHV. 
Stirlingshire, Civil-Comp Press, 2011. 

8. Hasançebi O, Kazemzadeh Azad S. Reformulations of big bang-big crunch algorithm 
for discrete structural design optimization, World Academy of Science Engineering and 
Technology, 2013; 74.  

9. Hasançebi O, Kazemzadeh Azad S. Discrete size optimization of steel trusses using a 
refined big bang–big crunch algorithm, Engineering Optimization, Taylor & Francis, 
2013. 

10. Kaveh A, Farahmand Azar B, Talatahari S. Ant colony optimization for design of space 
trusses, International Journal of Space Structures, 23(2008) 167-81. 

11. Salajegheh E, Mashayekhi M, Khatibinia M, Kaykha M. Optimum shape design of 
space structures by genetic algorithm, International Journal of Space Structures, 
24(2009) 45-58. 

12. American Institute of Steel Construction (AISC). Manual of Steel Construction-
Allowable Stress Design (ASD-AISC), 9th edition, Chicago, Illinois, USA, 1989. 

13. Saka MP. Optimum design of pin-jointed steel structures with practical applications, 
Journal of Structural Engineering, ASCE, 116(1990) 2599–620. 

14. Mahdavi M, Fesanghary M, Damangir E. An improved harmony search algorithm for 
solving optimization problems, Applied Mathematics and Computation, 188(2007) 
1567–79. 

15. Kaveh A, Talatahari S. A charged system search with a fly to boundary method for 
discrete optimum design of truss structures, Asian Journal of Civil Engineering 
(Building and Housing) 11(2010) 277-29. 

16. Computers and Structures Inc. (CSI). Sap2000 OAPI Documentation. University of 
California, Berkeley, California 2011. 

17. American Institute of Steel Construction (AISC), Manual of Steel Construction-Load & 
Resistance Factor Design (AISC-LRFD), 2nd edition, Chicago 1994. 

18. Ramaswamy GS, Eekhout M, Suresh GR. Analysis, Design and Construction of Steel 
Space Frames, Thomas Telford Publishing, 2002. 


