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ABSTRACT 
 
This paper deals with to determine the first natural frequency of tall buildings consists of 
framed tube, shear core, belt truss and outrigger system with multiple jumped discontinuities 
in the cross section of framed tube and shear core. In this paper, the continuous approach 
was accepted and by using energy method and Hamilton’s variational principle, the 
governing equation for free vibration of tall building can be obtained. The entire length of 
tall building is partitioned into uniform segments between any two successive discontinuity 
points and therefore partial differential equation of motion, by applying the separation of 
variables method on time and space, is reduced to an ordinary differential equation with 
constant coefficients for each segment. Tall building characteristics matrix can be derived 
based on the boundary conditions and the continuity conditions applied at the partitioned 
points. This matrix is particularly used to find combined system natural frequencies and 
mode shapes. A numerical example has been solved to demonstrate the reliability of this 
method. The results of the proposed mathematical model give a good understanding of the 
structure’s dynamic characteristics; it is easy to use, yet reasonably accurate and suitable for 
quick evaluations during the preliminary durations. 
 
Keywords: Tall building; free vibration; geometrical discontinuity; Hamilton’s variational 
principle; partial differential equation; ordinary differential equation. 

 
 

1. INTRODUCTION 
 

Free vibration analysis plays an important role in the structural design of tall buildings, 
especially in the first mode shape because it is the dominant shape in response to wind and 
earthquake induced vibrations in tall buildings. Therefore, it is important to investigate the 
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calculating methods of natural frequencies and mode shapes for tall buildings. In this 
respect, numerous studies in structural engineering have devoted to obtain accurate 
theoretical results for the free vibration of tall buildings in the past decades. In Ref. [1] an 
analytical solution for the dynamic response of a free-free discontinuous beam with a single 
step change and an aligned neutral axis presented. They considered the case of free-free 
boundary conditions to obtain direct frequency response functions due to harmonic force or 
couple excitation at both ends location. In Ref. [2] an analytical method to calculate the 
frequencies of beams with up to three step changes in cross section presented. They 
considered the combinations of the classical clamped, pinned, sliding, free, general and 
degenerate types of elastic end supports. The governing equations of wall-frame structures 
with outriggers through the continuum approach and the whole structure was idealized as a 
shear-flexural cantilever with rotational springs [3]. The effect of shear deformation and 
flexural deformation of the wall-frame and outrigger trusses were considered and 
incorporated in the formulation of the governing equations. In Ref. [4] Smith and Salim, 
presented formulae that were developed for estimating the optimum levels of outriggers to 
minimize the drift in outrigger braced buildings. They presented the analyses and formulae 
for outrigger structures in which the core and columns were uniform through their height 
and the outriggers had the same flexural stiffness. Then the results of an investigation on 
drift reduction in uniform and non-uniform belted structures with rigid outriggers under 
several lateral load distributions, which were likely to be encountered in practice [5]. Design 
aids in the form of graphical presentations of the somewhat complex solutions were 
provided. Stewart and Andrew [6], presented an approximation dynamics method by using 
Hamilton’s principle about including applications to non-conservative and conservative 
systems. They had shown that this method was suitable for both multi degree of freedom 
and constrained systems. In Ref. [7], free vibration analysis of asymmetric plan frame 
structures demonstrated. They emphasized on analysis of lateral-torsional vibration of the 
structures, where lateral shear vibrations in two orthogonal directions were coupled with St. 
Venant torsion vibration. The governing equation of coupled vibration of the problem was 
derived by them; also the corresponding eigenvalue equation was derived. A theoretical 
method of solution was proposed to solve the eigenvalue problem and a general solution was 
given to determine the natural frequencies and associated mode shapes of the structure. A 
simplified analytical method for outrigger structure has been presented in Refs. [8-11]. 
Geourgoussis [12], presented a simple mathematical model for assessing periods of vibration 
and mode shapes of common cantilever bents used in concrete structures, such as shear 
walls, coupled walls, rigid frames and wall-frame assemblies. He used Dunkerley’s formula 
for calculating natural frequencies of mentioned structures and considered the effect of 
column axial shortenings in the analysis of structural bents. In Ref. [13] the Timoshenko 
beam model and obtained partial differential equation (PDE) of framed tube structure is 
used. This PDE was reduced to an ordinary fourth-order differential equation with constant 
coefficients and was solved over a specified interval by applying appropriate boundary 
equations. In many real applications, the investigation of non-uniform cross-section tall 
building may provide a realistic distribution of mass and stiffness desired for accurate 
structural analysis.  

In this paper, a simple mathematical model is presented to calculate the first natural 
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frequency of combined system including framed tube, shear core, outrigger and belt truss 
system. Framed tube system consists of closely spaced exterior columns along the periphery 
interconnected by deep spandrel beams at each floor. This produces a system of rigidly 
connected jointed orthogonal frame panels forming a rectangular tube, which acts as a 
cantilevered hollow box [14-16]. The effect of belt truss and outrigger system is modeled as 
a concentrated rotational spring located at the belt truss and outrigger system location. Here 
by adopting the Hamilton’s variational principle (HVP); the following items are derived: 
PDE of the structural vibration, boundary displacements (kinematic boundary conditions), 
boundary forces (natural boundary conditions) and eigenvalue solution form. By selecting 
partitioned method along the height of the structure and by using the assumption of the 
harmonic motion, the PDE is reduced to ordinary differential equation (ODE) with constant 
coefficients. By applying boundary conditions and continuity conditions, the eigenvalue 
problem for finding the first natural frequency of tall building is obtained. In order to 
illustrate the efficiency and accuracy of the proposed method a numerical example has been 
carried out by the proposed method and SAP 2000 software. The result is shown in very 
good agreement. 
 
 

2. FORMULATION AND SOLUTION 
 

In this section by adopting the following assumptions and using HVP, the vibration PDE of 
the combined system including framed tube, shear core, belt truss and outrigger system is 
derived. These assumptions are as follows: 

1. The floor slabs of the system are not deformable in their planes and have no motion 
perpendicular to their planes. 

2. The effect of belt truss and outrigger system is considered as a rotational spring with 
constant rotational stiffness, which acts on the position of belt truss and outrigger system. 

3. Spacing of columns and beams are constant throughout the building’s height and the 
dimensions of all beams and columns are the same in each storey and segment. 

4. Shear core and columns are fully fixed at the base. 
5. Member’s connections of the outrigger system are assumed to be rigid and connections 

of members of the belt truss are assumed to be pinned. 
6. The material of structure is linearly elastic, homogeneous and obedient to the Hook’s law. 
7. The structure is assumed symmetric in plan of all stories and therefore cannot twist. 
8. The thickness of the shear core and the dimensions of the columns and beams of 

framed tube structure change in a stepwise in the height of the structure. 
9. The dimension of members of the belt truss and outrigger system are constant and do 

not vary in the height of the structure. 
10. The mass of the outrigger and belt truss system is supposed that distributed uniformly 

in the height of the structure in that segment which this system has been located.   
With above assumption, the structure can be modeled as a beam with a box variable cross 

section in height (Figure 1) and by using HVP, the differential equation of vibration of 
combined system can be obtained. HVP, considering fundamental law of dynamic, 
encompasses Newton’s equations of motion, Lagrange’s equations for structure dynamics, 
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D’Alembert’s principle and the principle of virtual work. Vibration of structures can be 
conveniently formulated in terms of HVP. HVP is energy functional based, the diverse areas 
of structure dynamics, numerical solutions of PDE, finite element methods, and functional 
analysis can all be linked in a single development. Structure energy is expressed in terms of 
the functional Lagrangian energy, and HVP requires that this functional energy have a 
stationary value. The term functional is used to denote a general expression for a continuous 
function of the domain V of the structure in space and time [17]. 

Consider a combined system of framed tube, shear core, belt truss and outrigger system 
as a continuous beam with flexural stiffness  EI(x) shear stiffness  AG(x) mass per unit height 

 m(x)  dynamic displacement t)w(x, and total height L ( figure 1). The effect of belt truss and 
outrigger system is considered as a rotational spring at the location of the belt truss and 
outrigger system. Structure is defined over the closed domains Lx0  , where x is the 
spatial position of any material point of the system and t is the time of vibration of any 
material point of the system. In  figure 1, dashed line shows the variation of thickness along 
the height of structure, and E , G  and ttet  are modulus of elasticity, shear modulus and total 
equal thickness of shear core and framed tube in both of flange and web panel. The dynamic 
system under considering has the kinetic energy as follows: 

 

L 2

0

1
T(x,t) = m(x) [w(x,t)] dx

2    (1)

 
and the potential energy is: 
 

L 2 2 2

0

1 1
V(x,t) (EI(x) [w (x,t)] + AG(x) [w (x,t)] ) dx+ K  [w (a,t)]r2 2

     (2)

 
Which rK  is the equivalent stiffness of the rotational spring including the effect of the 

belt truss and outrigger system on the framed tube acting at ax  and primes and dots on w 
denote partial derivatives with respect to x and t, respectively. By considering Eqs. (1)-(2), 
the total energy of the structure is defined as follows: 

 
B(x,t) = T(x,t) -V (x,t) (3)

 
The action or principle function of dynamics A, can be expressed as the time integral of 

B  between two times 1t and 2t [17]. 

 
t t2 2
t t1 1

A = B(x,t) dt =  [T(x,t) -V(x,t)]   dt  (4)
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Figure 1. Approximate model of tall buildings 

(a) Elevation of combined system                     (b) 3D model of combined system 
 
HVP states that A has a stationary value expressed as  0A  where   is termed as the 

variation operator. The   operator over a structure domain V implies that complete 
description of the structure shape requires an infinite number of degree of freedom- one 
degree of freedom for each shape. HVP requires that the action defined in Eq. (4) has a 
minimum or stationary value over all possible structure variations, that is: 

 
t t t2 2 2
t t t1 1 1

δA = δ B(x,t) dt = δB(x,t) dt = δ[T(x,t) -V(x,t)] dt = 0  
 

(5)
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This expression of HVP in terms of A  utilizing the   operator properties and 
integration by parts provides 

1. The differential equation of motion termed the Lagrange’s equation 
2. The boundary displacements (kinematic boundary conditions) 
3. The boundary forces (natural boundary conditions) 
4. The eigenvalue solution form 
By substituting Eqs. (1) and (2) into Eq. (5), the following equation is obtained: 
 

t L2
t 01

t2
t1

δA = [m(x) w(x,t) δw - EI(x) w (x,t) δw - AG(x) w (x,t) δw ] dx  dt

-  k  w (a,t) δw dtr

    

 

 
 (6)

 
Integration by parts from Eq. (6) with respect to time and space, gives: 
 

2
t L2
t 0 21

t tL2 2
0t t1 1

L
0

δA = - [m(x) w (x,t) +  (EI(x) w (x,t)) -  (AG(x) w (x,t))]  δw  dx  dt
x x

- [  k  w (a,t) + EI(x) w (x,t)]  δw  dt +  (  [EI(x) w (x,t)] -r x

AG(x) w (x,t)) δw  dt

   
 

    






 (7)

 
The equation of vibration and related boundary conditions can be obtained as follows: 
 

for ,
2

2
m(x) w(x,t) +  (EI(x) w (x,t)) -  (AG(x) w (x,t)) = 0    0 x L 0 t

x x

     
 

  (8)

 
and the boundary conditions are:  
 

 [EI(x) w  (x,t)] - AG(x) w  (x,t)= 0       at     x = L
x

k  w  (a,t)+ EI(x) w  (x,t)= 0                  at     x = Lr
w (x,t)= 0                                                at     x = 0

w  (x,t)= 0          

  


 

                                      at     x = 0

 (9)

 
where the first two of Eq. (9) are boundary forces and the last two of Eq. (9) are 

boundary displacements. Using the method of variables separation, we assume: 
 

w(x,t)= φ(x) sin(ωt) (10)
 
where   is the natural frequency and (x)  is the mode shape function of the system. By 

substituting Eq. (10) into Eq. (8) and dividing by )tsin(   yields: 
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2 2

2
2 2

d d φ(x) d dφ(x)
 [EI(x)  ] - [AG(x)  ] = m(x) ω  φ(x) 
dx dx dx dx

(11)

 
For a tall building with parametric discontinuities (e.g., jump in the flexural stiffness, 

shear stiffness and mass distribution) Eq. (11) cannot be solved using conventional 
approaches. An alternative method is to partition the tall building into uniform segments 
between any two successive stepped points and apply the continuity conditions at these 
points.  figure 1, illustrates a tall building with N jumped discontinuities in its spatial height. 
As we known, the tall building with different kinds distribution of stiffness along the height 
can be considered as a cantilever beam that has a uniform cross section at each segment. 
Hence, Eq. (11) can be divided into n uniform equation expressed as: 

 
4 2

2n n
n n n n n-1 n4 2

0

d φ (x) d φ (x)
(EI) - (AG) = m  ω  φ (x)       l x l

dx dx
n = 1,2,3,...,N                 l = 0     

 
 (12)

 
Where )x(n , n)EI( , n)AG(  and nm  are mode shape, flexural stiffness,  shear stiffness 

and mass per unit height of tall building for the nth segment, respectively. Let, 
 

2
n n

n n
n n

(AG) ω m
α =                β =

(EI) (EI)
(13)

 
So far, Eq. (12) can be rewritten in a more recognizable form as follows: 
 

4 2
n n

n n n4 2

d φ (x) d φ (x)
-α - β  φ (x)= 0

dx dx
(14)

 
The general solution of Eq. (14) is 
 

,n n 2,n n 2,n n 1 n n 1,nφ (x)= A  cos( -λ x)+ B  sin( -λ x)+C  cosh( λ x)+ D  sinh( λ x)  (15)

 
where parameters 1  and 2  are defined as follows: 

 
2 2

n n n n
1,n n 2,n n

α α α α
λ = + + β                 λ = - + β

2 4 2 4
 (16)

 
where An, Bn, Cn and Dn are the constants of integration which can be determined by 

applying the boundary and continuity conditions. The continuity conditions for 
displacement, slope, bending moment, and shear force at point of discontinuity are given by: 
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1

1

2 2
1

12 2

3 3
1

13 3

( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

n n n n

n n n n

n n n n
n n

n n n n
n n

l l

d l d l

dx dx

d l d l
EI EI

dx dx

d l d l
EI EI

dx dx

 
 

 

 



















(17)

 
and the boundary conditions of Eq. (9) can be rewritten as follows: 
 

1

1

2

2

3

3

(0) 0

(0)
0

( )( )
( ) 0

( ) ( )
0

jN N
N r

N N N N
N

d

dx
d ad l

EI k
dx dx

d l d l

dx dx






 





 

 

 (18)

 
The characteristics matrix of the system can be formed by applying Eqs. (17) and (18) 

into Eq. (15) at each point of discontinuity as well as at the boundaries. It is remarked that 

n  is function of tall building natural frequency with an explicit expression given in Eq. 

(13). Therefore, the characteristics matrix becomes only function of a single parameter β. 
The characteristics equation is then given by: 

 

4N×4N 4N×1 = 0H C  (19)
 
where H=H(β) is the characteristics matrix and C is the characteristics vector of the 

system: 
 

1 4
T

1 1 1 1 2 2 2 2 N N N N N[A B C D A B C D ...A B C D ] C =  (20)

 
In order to obtain a non-trivial solution for Eq. (19) to find the first natural frequency and 

the associated mode shape, the determinant of matrix H must be zero 
 

det[ (β)] = 0H  (21)
 
Since this matrix is a function of only parameter ),0(  , its determinant can be 

numerically evaluated for its zero values. The values of  , which satisfy Eq. (21), lead to the 
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calculation of the natural frequencies of tall buildings. 
Control of top drift and base overturning moment in the core of a tall structure subjected 

to lateral loads is the main concern in design of tall buildings. There are many structural 
forms such as rigid frame, braced frame and shear-walled frame, frame-tube, braced-tube, 
bundled-tube and outrigger systems that can be used to enhance the lateral resistance in tall 
buildings [18]. Belt truss system restrains the bending of the core by introducing a point of 
inflection in its deflection curve. This reversal in curvature reduces the bending movement 
above the belt truss and outrigger system. The belt truss functions as horizontal fascia 
stiffeners and engages the exterior columns, which are not directly connected to the 
outrigger trusses. A general important or up to 25 to 30 percent in stiffness can be realized in 
contrast to the same system without such trusses because instead of individual columns 
acting as tiedowns, all the façade columns participate in resisting the lateral load. Placement 
of a rigid truss at the top of the building eliminates differential movement between interior 
and exterior columns by providing compressive restraint for exterior columns in expansion 
and tension restraint. 

In order to determine the stiffness of belt truss and outrigger system, the work that are 
done in Refs. [3,8] can be utilized. It has pointed out that magnitude of the reductions 
depends on the flexural rigidities of the core, the outriggers, and the column acting axially 
around the core’s centroid. The reductions depend also on the locations of the outriggers up 
the height of the core [4].  Equivalent stiffness of rotational linear spring rK can be given: 

 

rK = 1/θ  (22)
 
where  denotes the total rotation in the outrigger and belt truss system due to the 

restraining moment, and can be obtained by splitting up the rotation as: 
 

a b sθ = θ +θ +θ  (23)
 
First, the restraining forces in the exterior columns will cause rotation of the outrigger 

resulting from the axial lengthening and shortening of the columns. The outrigger rotation 

a due to the resulting restraining moment can then be defined as the column change in 

length divided by the length of the outrigger (d): 
 

2
aθ = (2 a)/(d AE)  (24)

 
where d  and AE are the distance between center to center of exterior columns and the 

axial stiffness of the exterior columns, respectively. The flexural deformation of outrigger 
due to the action of the column force will cause additional drifts between adjacent floors. 
The resulting rotation b  is given by: 

 

b oeθ = (d)/(12 EI )  (25)
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where oeEI  is the effective flexural stiffness of the outrigger, modeled as though its 

length extended from the column to the centroid of the core. oeEI  can be obtained from the 
outrigger's actual flexural rigidity ouEI by converting the flexural rigidity of a wide-column 
beam,  figure (2a), to that of an equivalent full-spam beam,  figure 2b as follows [4]: 

 
3

oe ou c cEI = EI (1 + ((b /2)/((d - b )/2)))  (26)

 
where cb  is the length of the shear core and ouEI  can be calculated by using theory of 

parallel axes. 
 

 
Figure 2. Wide-column effects of core and outrigger 

(a) Outrigger actual inertia                                             (b) Outrigger effective inertia 
 
The rotation caused by the shear force in the outrigger and belt truss system s  results 

from strain in diagonals, and can be expressed as: 
 

 s ouθ = 1/(h AG )  (27)

 
where h is the height of the outrigger, and ouAG is racking shear stiffness of the outrigger 

and belt truss system. This racking shear stiffness can be calculated for specific outrigger 
truss type. The racking shear stiffness is a property for which the method of determination is 
most particular to the type of belt. It depends on the deformation of the web members as the 
structure racks under the shearing action. It should be noted that the vertical members do not 
have any influence on the racking shear stiffness of the segment. For various type of belts, 
the value of ouAG  have been given [8]. The value of rK which corresponds to stiffness of the 

spring at ax  , can be derived as follows: 
 

2 -1
r oe ouK = [(2 a)/(d AE )+(d)/(12 EI )+(1/h AG )]  (28)
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where A  is the area of the exterior columns in position of belt truss and outrigger system 
that are perpendicular to direction of vibration of structure. 

 
 

3. ACCURATE OF THE RESULTS 
 

To illustrate the accuracy of the proposed approximate method, a numerical example is 
given to demonstrate the ease of application. A high-rise 40-storey reinforced concrete 
consisting of framed tube, shear core and belt truss, as shown in Figs. 3 and 4, is analyzed. 
The sizes of all beams, columns that change in height of the structure have been listed in 
Table 1. The height of each storey is 3m and the center-to-center spacing of the columns is 
2.5m.  The outrigger and belt truss system has been located in 30m from the base. The all 
dimensions of outrigger and belt truss system are equal to m8.0m8.0  . The spacing of 
members of outrigger and belt truss system as shown in  figure 4, are m5SS hv   and 

m5.2SSS bovho  . The Young’s and shear modulus of the material which have been used 

in structural elements such as beams, columns, slabs, shear core, belt truss and outrigger 
system are 29 m.kg102E   and 28 m.kg108G  , respectively. Other specifications that 
are used in numerical example are as follows: 
 

m3y,m120L,m3.0t,m.kg2400,m5.2s,m30L,m35L slab
3

wf    

 
where y , slabt  and  are height of each storey, thickness of the floor slab and mass per 

unit volume of materials of the system, respectively. Dimensions of the core are m5m5  , 
thickness of shear core panels ( sct ) that changes in height of the structure have been listed in 

Table 2. The Poisson ratio assumed to be 0.25. 
 

 
Figure 3. Model of numerical example. 
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Table 1: The properties of combined system framed tube, shear core, belt truss and outrigger system 

No. 
Storey 

Heigh
t from 

the 
base 
(m) 

Dimensi
ons of  
beams 

and 
columns 

(cm) 

Thickness 
of shear 

core (cm) 
)kg(AG  )m.kg(EI 2  )kg(M

 
)m.kg(G 2

eft


 

21 63 80 25 
44.8021*10

8 
1.0548*101

3 
25575578.3

8
1.4596*108 

40 120 60 20 
23.7687*10

8 
5.9091*101

2 
18816566.3

6
7.4387*107 

 

 
Figure 4 Plane of outrigger and belt truss system. 

 
Table 2: The thickness of shear core panels 

No. Step )m(s/At cequ   )m()t2L(*t2A 2
equwequfts   )m(ttt scequtts   

1 0.256 15.6221 0.506 
2 0.144 8.7229 0.344 

 
The moment of inertia of the shear core ( scI ) and framed tube ( ftI ) about the Y-axis that 

changes in height of the structure can be calculated simply and therefore, the total flexural of 
framed tube and shear core ( tEI ) is shown in Table 3. Also, the effective section area of 

shear core ( scA ) and framed tube ( ftsA ) for computing the shear rigidity that changes in 

height of the structure are shown in Table 3. 
 
 

L

L

s

S

Y

X

tequ

S
s
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Table 3: The total flexural and effective section area 

No. Step )m.kg()II(EEI 2
ftsct   )m(t2*)ta(A 2

scscsc   )m(t2*)t2L(A 2
equequwfts   

1 1.0548*1013 2.6250 15.6221 
2 5.9091*1012 2.0800 8.7229 

 
The equivalent elastic parameters for the analogous orthotropic membrane tube ( eftG ), as 

evaluated by Kwan [19] which change in every step of the height of the structure, have been 
listed in Table 4. In calculation of the effective shear area of beams and columns, we use the 
Hutchinson’s k. In rectangular cross section Hutchinson’s k is defined as follows: 

 

2
1

45 2
1 1 1

2(1+ν)
k = -

b9
[ C +ν(1- )]

4a b a

2 5 1
1 1 1

3 2 2 2 1
1 1 1 1 1 5

n=14

nπa
16ν b (nπa - b  tanh( ))

b4
C = a b (-12a -15νa +5νb )+

45 (nπ) (1+ν)


  

 
where the depth of the column or beam (y-direction) is 12a  and the width of the column 

or beam (z-direction) is 
12b  ( figure 5). 

 

 
Figure 5. Plane of a column. 

 
The total shear stiffness ( tAG ) of the structure which changes in every step of the height 

of the structure and the Hutchinson’s k are shown in Table 3. By using Eq. (28), the value of 

rK  is calculated as follows: 

 
4.916467325AG,107591.1EI,kg1092.1AE30m,d,m.kg100115.5K ou

11
oe

109
r 
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The structure has been analyzed and the result of the first natural frequency which has been 
obtained by the proposed approximate method is compared with the result of the finite 
element method which has been obtained from SAP 2000 software. 

 
Table 4: the equivalent elastic parameters 

No. Step )kg()G*A()G*A(A eftftsscGt   k  

1 44.8021*108 0.86623 
2 23.7687*108 0.86623 

 
In this example, the outrigger and belt truss system locate in stories 9-11 or in height 27-

33 (m) from the base of the structure. By inserting these data into Eq. (21) and solving Eq. 
(21) through an iterative numerical process, we obtain )s/rad(9616.11  . The value of 1  
which can be obtained by using the finite element method is )s/rad(0197.2 .The proposed 

approximate method underestimate the natural frequency by 2.96%. Therefore, the proposed 
method shows a good understanding of structural behavior, easy to use, yet reasonably 
accurate and suitable for quick evaluations during the preliminary design stage, which 
requires less time. The main sources of error between the proposed approximate method and 
the finite element method are as follows: 

1. Modeling the frame panels as equivalent orthotropic membranes (framed tube), so it 
can be analyzed as a continuous structure.  

2. The equivalent elastic properties are derived for the frame tube, shear core, and belt 
truss. 

3. The equivalent stiffness of the rotational spring used to model the effect of the belt 
truss and outrigger system on frame tube. 

4. The approximate values of tEI and tAG  are derived for distribution of them in height 
of tall building. 

5. The effect of shear lag has been neglected in approximate method. 
 
 

4. CONCLUSIONS 
 

In this paper, a simple approximate method has been developed to determine the first natural 
frequency of combined system consists framed tube, shear core, belt truss and outrigger 
system. By using the HVP, the governing equation of vibration of mentioned structure 
obtained and by using partitioned method, the governing equation was reduced to an ODE 
with constant coefficients. The accuracy of the proposed method is verified by a numerical 
example. The numerical example shows that the approximate value of natural frequency 
obtained by the proposed method appears to be 2.96% smaller than the more accurate finite 
element method result. From the point of view of a structural engineer, this error within the 
acceptable range of engineering practice and therefore the proposed method may be used to 
estimate the natural frequency at the preliminary stage in the structural’s design, which 
requires less time. 
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