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ABSTRACT 
 
In recent years, Pseudo-dynamic (PsD) technique is being adopted as an alternate to 
conventional shake-table technique to evaluate the seismic performance of structures. The 
shake-table technique has the merit of simulating all the three force parameters namely 
inertial, damping and elastic forces in the tested structure realistically; however the 
technique needs sophisticated shake-table driven by servo controlled actuators with 
appropriate control electronics. On contrary, PsD technique simulates the three force 
parameters by using a static actuator through application of an equivalent pseudo-dynamic 
force system with computation of inertial forces in the back-ground. Such a hybrid 
technique needs specialized algorithm based on an appropriate mathematical model for the 
off-line time integration and computation of inertial forces. Several time integrals have been 
proposed for application in PsD testing and majority of them are derived from Newmark-β 
family of algorithms. The traditional PsD testing uses constant acceleration version of 
Newmark time integral in explicit form for mathematical simplicity. This simplified explicit 
formulation results in numerical damping leading to considerable amplitude error in PsD 
testing, limiting its application to simple structures. However, for complicated structures 
improvement is needed in the time integral form leading to unconditional stability and zero 
numerical damping. This paper presents an improved form of Newmark implicit time 
integral for PsD testing. The improvement is based on the inclusion of an additional term in 
displacement predictor, which not only renders the algorithm more consistent, but also 
eliminates numerical damping and makes the algorithm unconditionally stable. The paper 
presents the analytical study carried out on the stability and energy dissipation properties of 
the improved time integral by evaluating its spectral characteristics for verifying its 
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suitability in PsD testing. 
 
Keywords: Pseudo-dynamic testing; shake table testing; seismic performance evaluation; 
newmark implicit time integral; numerical damping; numerical stability. 

 
 

1. INTRODUCTION 
 

Earthquakes are potentially devastating natural events which threaten lives, destroy 
property, and disrupt life-sustaining services and societal functions. Indian peninsula has a 
very real earthquake problem and the past two decades have seen devastating earthquakes 
striking India with frightening regularity. India’s four recently upgraded seismic zones as 
per the Indian Standard Code of Practice (IS 1893(2002): Part 1) [1] also emphasize that 
59% of the land area in India is under moderate to severe earthquake hazard that assumes 
criticality in the context of all scales of the built environment. There are approximately 12 
crore buildings in seismic zones III, IV and V. Most of these buildings are not earthquake 
resistant and are potentially vulnerable to collapse in the event of a high intensity 
earthquake. Hence evaluating the adequacy of seismic performance of civil engineering 
structures has come into focus following the damage and collapse of numerous structures 
during recent earthquakes. In addition, the adequacy of seismic performance of the older 
structures in regions of high seismicity, which were designed prior to the advent of revised 
seismic deign codes, is also a matter of growing concern.  

 
1.1 Seismic performance evaluation methods 
Several experimental methods (Kausel 1998)[2] are used to simulate and evaluate the 
seismic performance of structures and structural systems. These include, quasi-static testing, 
effective force testing and shake-table testing. Among them, the shake-table technique has 
the merit of simulating all the three force parameters namely inertial, damping and elastic 
forces in the tested structure realistically; however the technique needs sophisticated shake-
table driven by servo controlled actuators with excellent control electronics. In the absence 
of such an expensive shake-table facility, it is possible to simulate the three force parameters 
using a static actuator through application of an equivalent pseudo-dynamic force system by 
computation of inertial forces in the back-ground. For such a hybrid Pseudo-dynamic (PsD) 
method, a specialized algorithm based on an appropriate mathematical model (Takanashi et 
al., 1975) [3] is needed for the off-line time integration and computation of inertial forces 
such that the forces are applied statically through static actuators. Restoring forces offered 
by the structure is experimentally measured on-line at each time step and reflects the actual 
in-elastic and energy dissipation characteristics of the structure. 

 
1.2 Pseudo-dynamic testing 
The PsD testing resembles the quasi-static method in that it also consists in applying slowly 
varying forces to the test structure (Yamazakhi et al. [4]; Mahin et al. [5]; Nakashima et al. 
[6]). However, during testing, the motions and deformations observed in the test structure 
are used to infer the inertial forces that the structure would have been exposed to the actual 
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earthquake; this information is then fed back into a control engine so as to determine and 
adjust the effective dynamic displacements/forces that must be applied onto the structure 
(Shing and Mahin [7]). These pseudo-dynamic forces are typically accomplished by means 
of actuators pushing against a large reaction wall. This alternate seismic performance 
evaluation methodology is picking up in the recent years and it is essential for to-days needs 
of growing India with enhanced seismic risk. This method has the advantage of testing large 
and tall test structures with center of mass well above the base which are normally can not 
be tested on a shake table for evaluating their seismic performance. As this method involves 
application of dynamic forces in an equivalent static mean through static actuators, close 
monitoring of the structural behavior including crack initiation, crack growth and stiffness 
degradation is also becomes possible. The draw back in such a hybrid method is the lack of 
simulation of strain rate effects which may not be critical under seismic loads. Also the 
method is time consuming due to its iterative nature. 
 
 

2. MATERIALS AND METHODS 
 

Pseudo-dynamic (PsD) testing is a combined computational and experimental technique for 
evaluating dynamic systems originally proposed by Takanashi et al. [3]. The method relies 
on modeling inertial and damping forces computationally, while the nonlinear restoring 
forces are measured experimentally. Dynamic equilibrium equations can generally be 
expressed as 
 

fxr
dt

dx
C

dt

xd
M  )(

2

2

 (1)

 
Where, M and C are mass and viscous damping matrices and x, r and f are the 

displacement, restoring force and applied force vectors respectively. It is assumed that r(x) is 
the only source of nonlinearity which can be obtained accurate enough through experimental 
measurements. The PsD test method uniquely utilizes both computational and experimental 
terms to form the equation of motion (Equation 1). The response is obtained by discretising 
time and calculating it in a step-by-step manner. 

A time stepping formulation computes a displacement step which is subsequently 
imposed on the structure by means of computer controlled servo-hydraulic actuators as 
shown in Figure 1. Once the structure has been deformed, the resulting restoring forces are 
measured. Based on these restoring forces and the current damping and applied forces, the 
resulting new acceleration may be calculated. A new displacement step can then be 
calculated, and the next step has thus commenced. In comparison to shaking table testing, 
there are some important differences. As the PsD testing is carried out in a step-by-step 
fashion, it is clear that it is unrealistic to be able to progress the test in real time. 
Furthermore, as inertial effects are modeled computationally, such forces need not and 
should not exist in the physical model. The time scale of a typical test is therefore expanded 
in magnitude which has both beneficial and adverse effects. The fact that the structure is 
displaced slowly (and can even be stopped) provides a good opportunity for inspection and 
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any detailed readings to be taken; however, the strain rate effects on material response are 
neglected. 

 

 
Figure 1. Computational and experimental components of a typical pseudo-dynamic (PsD) test 

set-up 
 
2.1 Mathematical formulation of PsD testing  
Several time stepping formulation have been proposed for application in PsD testing 
(Buonopane [10]; Bursi and Shing [11]; Combescure and Pegon [12]; Chang [13]). The 
majority of these formulations are explicit due to the fact that the nonlinear structural 
restoring forces at the end of any time step are unknown and displacement iterations in PsD 
test are undesirable as these might result in partial unloading (Shing and Manivannan [14]). 
Although implicit methods have the advantage of being unconditionally stable, the duration 
of the time steps still has to be limited for accuracy purposes due to rapid changes in both 
loading and stiffness. 

 
2.2 PsD formulation based on Newmark explicit time integral  
The integral form of the Newmark explicit was initially proposed by Chang et al. [15] by 
integrating the equation of motion (Equation 1) in its incremental form once with respect to 
time. It is argued that such a form is better suited for rapidly varying excitation force and 
rapidly varying level of nonlinearity of the restoring force. The improved accuracy 
originates from the fact that by performing the integration, the equilibrium is satisfied over 
the time step as a whole rather than at its start or at its end. The solution involves utilization 
of the time integral of the force for each time step which can be found reasonably accurately 
through some simple numerical integration and sub-stepping. On the other hand, 
linearization of the time-force integral, when sampling the excitation accelerogram at large 
time step intervals, may lead to significant inaccuracies. Similarly, for the restoring force, a 
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linearised relationship between the start and the end values may very poorly represent the 
actual variation of the force over the time step. By linear approximation between the start 
and the end points, it underestimates the restoring force during loading and overestimates it 
during unloading – this evidently adds energy to the system and could potentially lead to 
instability. While the error in the linearization of the excitation force is of a random nature, it 
should be noted that the error associated with restoring force is systematic and cumulative. 
The applicability and the advantages of implementing the integral form method into PsD 
testing have been thoroughly investigated in Chang et al. [15]. The basic Newmark implicit 
relations and integrating Equation 1 yields 
 

fdtdtxrxC
dt

dx
M  )(  (2a)

1
22

1 )()(
2

1
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




  nnnnn atattvdd   (2b)

11 )1(   nnnn tatavv   (2c)
 

Where,  t is the time step duration, d and v the displacement and velocity, respectively, 
and   indicates the change over one time step. The Chang formulation builds on integrating 
the incremental equations of the explicit format of the Newmark method by using β = 0 in 
the Newmark implicit relations. Then the basic Newmark explicit equations are 

 

1111   nnnn frvCaM  (3a)

nnnn attvdd 2
1 )(

2
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1
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Equations 3 are integrated once again with respect to time which leads to the following 

equations: 
 

dtfdtrdCvM nnnn 1111    (4a)

nnnn vttddtddtd 2
1 )(

2

1
   (4b)

)(
2

1
11   nnnn vvtdd  (4c)

 
In the usual Newmark explicit formulation (Equation 3), the equations are solved for the 

change in acceleration, and the equations of motion in the integral form, Equation 4, are now 
solved for the change in velocity. Additionally, the integral form has an expression for the 
time-integral of displacement instead of the displacement predictor  dn+1 in the usual form. 
More importantly, the term in the integral form no longer represents an explicit prediction 
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that may be used as an initial displacement step in pseudo-dynamics. The displacement step 
is now an implicit function of vn and vn+1, and can be found from Equation 4c, which in turn 
requires the solution of Equation 4a to obtain the velocity at the end of the time step vn+!. In 
effect, the action of integrating the set of equations has rendered the method implicit in the 
sense that the predictor displacement cannot be deduced directly any more. The integral 
form formulation also requires an assessment of the integral of the restoring force before the 
displacement predictor can be calculated. Such an estimate enables the solution for  vn+1, 
to be found, which in turn produces an explicit predictor for the displacement Equation 4(c) 
which is needed for the pseudo-dynamic implementation. The restoring force and its time 
integral are nonlinear functions of displacement, and can no longer be obtained directly, as 
no predictor displacement step exists to be imposed. In order to be able to utilize the 
formulation, Chang et al. [15]suggest multiplying Equation 4b by the tangent stiffness, and 
an explicit expression of the integral of the restoring force at t = tn+1 may be found (here 
expressed for an SDOF system) as outlined in Equation 5. 

 

nnnnnnn vt
k

trdtrvt
k

tkddtrdtr 22
1 )(

2
)(

2
   (5)

 
The physical interpretation of the above expression can be seen from the graph of 

restoring force vs. time as shown Figure 2, where dtrn indicates the restoring force time 

area at a given time t, while the sum of the two remaining terms represents the projected 
trapezoidal area assuming that a constant velocity exists until the end of the step. 

 

 
Figure 2. Approximation of restoring force dtrn 1  

 
Such a procedure tentatively assumes that the tangent stiffness is known, or may be 

obtained somehow, which will normally not be the case in PsD testing. Only for the SDOF 
and for certain simple MDOF structures, may the stiffness matrix be computed from 
experimental data, and then, only once a time step has been completed. To overcome the 
problem of the unknown tangent stiffness matrix, Chang et al. [15] suggest replacing it with 
the initial stiffness term. The error involved is not large as the tangent stiffness is required 
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only in the second order term on the right hand side of Equation 5. In any case, once an 
expression for the integral of the restoring force exists, Chang et al. [15] suggest a solution 
procedure where they solve for  vn+1 from Equation 4a by substituting Equation 4c for 
dn+1. When considering an SDOF system, the velocity change can be expressed as 
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
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 
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mv 20
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1
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Where, ko  is the initial stiffness in place of the tangent stiffness term. By substituting this 

result back into Equation 4c, a prediction for the change in displacement can finally be 
expressed as follows: 
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Which, when added on to the previous displacement value, furnishes an explicit 

displacement predictor to be applied in pseudo-dynamic tests similarly to any other 
displacement predictor. However, the method now departs from the traditional procedure in 
PsD testing. While the predictor displacement step is being imposed on the structure, the 
induced restoring force is continuously measured, and its corresponding time integral is 
evaluated numerically. At the end of the step, this will represent an experimentally evaluated 
change in the time integral of the restoring force, the same term as the one which was earlier 
estimated in Equation 5. In general, due to the material nonlinearity, the restoring force will 
not follow the linear extrapolation as estimated, and the change in the time integral of this 
restoring force will in reality be smaller than estimated. For this reason, Chang’s algorithm 
then recalculates  vn+1 based on the measured time integral of the restoring force. At this 
stage,  dn+1 may or may not be recalculated based on the updated  vn+1 in Equation 4c. 
Irrespective of whether the displacement increment  dn+1 is then recalculated, there is a 
numerical damping present which may be negative or positive depending on which 
reference values for the restoring force are used at the beginning of the displacement 
increment. The effect will be present irrespective of whether the tangential or initial stiffness 
term is used in Equation 5. 

 
2.3 PsD formulation based on Newmark implicit time integral 
There is an inconsistency in the integral form of the Newmark explicit formulation when 
recalculating  vn+1 based on the updated  rn+1dt (Algaard et al. [16]).  vn+1 indeed has to 
be recalculated; otherwise, the information about the experimentally measured restoring 
forces is never taken into account. The predictor  dn+1 is based on an estimation of  vn+1 
which in turn build on an approximation of the restoring force as expressed in Equation 5. 
Once the integral of the restoring force has been obtained, the integrated equation of motion, 
Equation 4a, can be applied. Expanding Equation 4c yields 
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Furthermore, Equation 4a assumes the integral of the restoring force over that time step, 

  rn+1dt, to be determined by computing the time integral of the restoring force over the 
time step, as indicated in Figure 2. Assuming linear stiffness for simplicity, the exact 
expression for   rn+1dt will be as follows: 
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Equation 8 can now be substituted for dn+1 in Equation 9 to yield the following: 
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This can be further manipulated into 
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By comparing Equation 11 with Equation 5, it is clear that Equation 11 now contains one 

additional term, ( t2k vn+1)/4. This term corresponds to the term which is omitted in the 
standard implicit Newmark algorithm to render it explicit (i.e., β = 0), and the omission of 
this term is the cause of the numerical damping invariably present in the integral form of the 
algorithm. However, omitting the equivalent term in the integral form of the method does 
not render the method explicit; in fact, its omission has no bearing on the nature of the 
algorithm. 

The integral form of the Newmark algorithm has been made explicit through an 
estimation of the time integral of the restoring force, which enables the calculation of  vn+1 
followed by  dn+1. At this point, it becomes clear that there is no reason why the seemingly 
implicit additional term in Equation 11 cannot be included in the estimation of the time 
integral of restoring force, as the implicit variable is the actual unknown, the expression is 
trying to represent. The situation is clarified through the following argument, where 
Equation 11 has been substituted into Equation 4a and solved for  vn+1 to yield an 
alternative expression for Equation 6. 
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The unknown,  vn+1, is present on both sides of the equation, but through further 

rearrangement 
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an explicit expression for the velocity can finally be found. 
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This equation may now be substituted directly into Equation 8, and rearranged to obtain a 

new explicit expression for the displacement predictor dn+1: 
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By using Equation 14 rather than Equation 7 as the displacement predictor, the time 

stepping formulation has become implicit. To be exact, the formulation still requires a value 
of the tangent stiffness (k0 terms in Equation 14), however this is also the case with the 
earlier explicit version of the formulation and other implicit formulations (Combescure and 
Pegon [12]). The same term is now merely present in one additional place, and as with the 
explicit version, the initial stiffness or an estimate of the tangent stiffness can be used. 
Principal differences between the two PsD formulations are summarized in Table 1. 
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Table 1: Comparison of chang formulation based on newmark explicit time integral and 
improved formulation based on newmark implicit time integral 

Chang formulation based on Newmark explicit time integral 
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3. MATHEMATICAL VERIFICATION OF THE IMPROVED PSD 
FORMULATION 

 
The suitability of the proposed formulation based on Newmark implicit relations is verified 
through evaluating its stability and numerical damping properties. The stability properties of 
a time integral formulation are studied by considering the spectral properties of its recursive 
amplification matrix. Considering the state vector of the system at time t = tn, the integral 
form of the numerical time integral form yields  
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For stability purposes, one can ignore the external load vector and damping forces, thus 

the recurrent relationship between the state vector at t = tn and t = tn+1 can be expressed as 
(Bathe and Wilson [17]). 

 
  nn XAX 1  (16)

 
Where,  A  is the recursive amplification matrix. 
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3.1 Stability and dissipation properties of PsD formulation based Newmark explicit 
relations 
Considering first the explicit time integral form, Equations 4 can be expressed in terms of 
the variables of the state vector as 
 

nnnn vttddtddtd 2
1 )(

2

1
   

)(
2

1
11   nnnn vvtdd  



















 


 dtr

n

n

Mv nn 1

1
1

1  

(17)

 
Depending on the precise implementation of the time integral form, i.e., whether dn+1 is 

updated following the recalculation of vn+1 or not, the exact expressions for dn+1 and rn+1dt 
will differ. 

Assuming initially that dn+1 is not recalculated, the predicted dn+1 remains, and the term 
rn+1dt will be a function of the restoring force both at the start and at the end of the predicted 
step yielding the second of Equations 18. dn+1 will thus no longer be represented by the 
implicit expression in Equation 17, rather by a simplification of Equation 7 containing only 
the terms relevant for stability analyses. rn+1dt may be defined in terms of dn+1 or by the 
expression for the prediction step; however, this will in the end lead to the same 
amplification matrix. Assuming linear stiffness for simplicity, rn+1dt may be expressed as 

),(
2 1


nn dd
tk

 yielding the third equation of Equations 18. 
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tkdtMtvdd 21
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





 


 


 )(

2 1
1

1 nnnn dd
tk

Mvv  

(18)

 
Multiplying the second and third equations by  t and  t2 respectively and substituting 

Ω2 and  t2k/m yield Equations 19. 
 

nnnn vttddtrdtr 2
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2

1
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22
1222

1

2 






 nn

nn

tdtd
vtvt  

 
After sorting terms at t = tn+1 and t = tn and expressing them in matrix form (Geradin and 

Rixen [18]), the amplification matrix is obtained as 
 

A = 
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
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







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











82
1

4
0

4
1

2
10

2

1
11

424
2

22

 (20)

 
Which clearly differs from the normal newmark explicit matrix, Shing and Mahin [19]. 

Stability of a time integral formulation is ensured when the spectral radius of the 
amplification matrix does not exceed unity, Golley and Amer [20]. In the above matrix, one 
eigen value will be equal to unity, while the other two will form a pair of complex 
conjugates. Corresponding moduli have been plotted below as a function of  in Figure 3. 

 

 
Figure 3. Plot of spectral radius variation along   for newmark explicit time integral form 

(Chang et al. [15]) 
 
From Figure 3, both the expected stability limit of 2.0 and the existence of noticeable 

numerical damping can be seen for the values of  exceeding 0.5. If however the dn+1 is 
recalculated once the corrected vn+1 has been found, the situation is somewhat different. 
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Equations 18 will be altered such that the displacement predictor is no longer present in the 
definition of dn+1, but remains in the expression for vn+1. This yields Equations 21, which 
can be represented by the amplification matrix shown in Equation 22, obtained the same 
way as Equation 20. 
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This time integral form exhibits similar stability and damping characteristics as the 

standard Newmark explicit; perfect energy conservation up to the stability limit of 2.0. 
However, as the algorithm stands, it cannot be directly implemented into a PsD test. This is 
because rn is in fact unknown at the start of the time step. The reason for this is that dn was 
recalculated after the completion of the previous step, and the restoring force caused by it is 
thus unknown. The correct procedure would require the recalculated dn+1 to be imposed 
separately, and the corresponding restoring force re-measured. Such a procedure would lead 
to a double step implementation, but employing iterations in a PsD algorithm that is still 
only conditionally stable seems inappropriate. 

 
3.2 Stability and dissipation properties of the improved PsD formulation based on Newmark 
implicit relations 
The effects of using the implicit version of the time integral form with the modified 
displacement predictor are substantial. Not only does the method avoid the numerical 
damping associated with the Newmark explicit – integral form algorithm, but owing to the 
fact that the algorithm is now genuinely implicit, it also becomes unconditionally stable. 
This was initially noted through numerical experiments, but can also be confirmed 
analytically. By considering the expression for the time integral of displacement, the 
displacement and the velocity and using a similar procedure as with Equation 19, it leads to 
the following equations: 
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Where,   and   are the parameters normally present in the Newmark algorithms which 

typically take the values of 0.25 and 0.50 respectively. Expressing the above equations in a 
matrix form yields again the recursive amplification matrix of the integration operator, 
Geradin and Rixen [18]: 
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The complex expression for the eigen values of [A] can be simplified to 
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Where,   are the eigen values and 2  is expressed as 
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Eliminating  1 = 1 leaves the remaining second order equation: 
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By plotting the real and imaginary parts of the solution and computing the moduli, it can 

be seen that the moduli for  2,3 are also equal to unity for all  , as shown in Figure 4. This 
clearly yields the overall solution that ρ(A) = 1 for all  t, which implies unconditional 
stability and perfect energy conservation without any numerical damping. 
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Figure 4. Plot of spectral radius variation along   for the proposed algorithm based on 

Newmark implicit time integral form 
 
The modifications carried out on the Newmark explicit time integral form have shown to 

eliminate the numerical damping (or) amplitude error of the algorithm, and also improve the 
stability properties such that it is now unconditionally stable. Hence, the proposed algorithm 
(Sathish Kumar et al., [21]; Sathish Kumar et al. [22]) based on Newmark implicit time 
integral form found to be more appropriate for implementation in PsD testing. 

 
 

4. SUMMARY AND CONCLUSIONS 
 

The genesis, development and mathematical formulation of pseudo-dynamic (PsD) testing 
for experimental seismic performance evaluation of structures are presented in the paper in 
detail. The suitability of Newmark implicit time integral for PsD testing is verified 
numerically through studying its stability and numerical damping characteristics. The study 
showed that the Newmark implicit time integral is found to have unconditional stability and 
zero numerical damping leading to near-zero amplitude error in PsD testing for seismic 
performance evaluation of structures. 
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