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ABSTRACT 
 
This study is devoted to tracing the equilibrium path of structures with severe nonlinear 
behavior. A new displacement increment is suggested to do the analysis. Moreover, the 
increment of the load factor is obtained by minimizing the residual displacement. To 
evaluate the capabilities of the presented method against existing ones, a comparison study 
is performed. In this process, five benchmark frame and truss problems are solved. Each of 
the structures is analyzed more than 600 times, and the outcomes are compared with each 
other. According to the results, the authors' scheme is more competent than the methods of 
residual load minimization, normal plane, updated normal plane, cylindrical arc length, work 
control, residual displacement minimization, generalized displacement control and modified 
normal flow. 
 
Keywords: Displacement increment; nonlinear analysis; numerical stability; nonlinear 
solution techniques; equilibrium path; load factor. 

 
 

1. INTRODUCTION 
 

Due to the great importance of the structural nonlinear analysis, researchers have always 
been looking for capable schemes to achieve the nonlinear equilibrium path. These strategies 
should be efficient enough to traverse the various snap-through, snap-back and buckling 
points of all equilibrium states. This characteristic should especially be taken into account 
for the structures with intense nonlinear behavior. So far, a variety of tactics have been 
proposed, which are capable and efficient for solving nonlinear problems. Traditional and 
old procedures are not able to achieve the severe nonlinear equilibrium path and diverge in 
passing limit points. It is worth mentioning that researchers have not yet obtained a method 
which can trace all types of load-deflection curves. In other words, the most efficient 
techniques of nonlinear structural analysis fail in some cases, and the intervention of the 
analyst is necessary during the solution process.  
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It should be pointed out that the traditional approaches, such as, pure increment [1,2], 
Newton-Raphson, modified Newton-Raphson, displacement control [3] and its modified 
versions [4-6], have less capability compared with the advanced ones. This disadvantage 
may appear in the case of not passing the load limit points for Newton-Raphson and 
modified Newton-Raphson methods [4,7-9], not passing the displacement limit points for 
displacement control technique [7,10,11], having high cost and analysis time, having low 
convergence rate and increasing drift-off error from the equilibrium path for the pure 
incremental approach. The following is a brief history of the advanced nonlinear solution 
schemes. 

In 1980, Bergan calculated the load increment in each iteration and proposed the residual 
load minimization technique by minimizing the difference between the load applied on 
structure and its internal force [12]. Other capable nonlinear analysis approaches are called 
arc length method. For the first time, this procedure was suggested by Wempner [13] and 
Riks [14, 15]. After that, these schemes were widely employed and developed by other 
researchers [7, 10, 16-18]. In 1981, Crisfield formulated the cylindrical arc length strategy 
and called it the modified Riks approach [10]. In the normal plane arc length technique, the 
locus of the iteration points is perpendicular to the tangent passes through the prior 
equilibrium point [7, 15]. If the perpendicular process is repeated in each iterative step, then 
the algorithm is called updated normal plane [7, 19, 20]. 

In 1981 and 1985, the constant work control technique was used by assuming that the 
work increment is constant [8, 21]. After the Newton-Raphson method, which is unable to 
pass the load limit points on the equilibrium path, researchers presented various approaches 
for overcoming this difficulty. The arc length strategy of Crisfield [10], Riks [14, 15] and 
Ramm [7], the displacement control [4-6] and the constant work control of Powell and 
Simons [8] and Yang [6] were not efficient in some cases. On the other hand, these 
techniques do not follow the shortest path to find the equilibrium points. In 1988, the 
residual displacement minimization tactic was proposed by Chan [22]. Following that, Yang 
and Shieh suggested the generalized displacement control approach in 1990 [23]. In 2008, 
the modified form of the normal flow algorithm [25, 26] was proposed by Saffari et al. [24]. 

Structural nonlinear solvers have been developed extensively in the last few decades. As 
it has been described so far, the literature on this subject is not very limited. In a recent 
attempt, based on the Newton–Raphson algorithm, a two-point method was presented in 
2011 [27]. This tactic worked as a predictor–corrector one, most frequently taking Newton's 
method in the first iteration. In spite of the fact, the presented procedure was faster than the 
classic Newton–Raphson algorithm; it had the problem of passing limit points. In 2012, 
Mansouri and Saffari proposed an efficient function for reducing the computing time and 
number of iterations in the Newton–Raphson method coupled with the two-point 
methodology [28]. They performed the nonlinear analysis of planar frames, and reduced the 
computing time and also the number of iterations, compared with the classic Newton–
Raphson algorithm. It is well known noted that Newton–Raphson scheme, and all related 
techniques cannot pass the limit points of displacement curves. To broadly examine the 
solution techniques' abilities for the structures with geometrical nonlinear behavior, 
formulations of several famous approaches were presented by Rezaiee-Pajand, et al. [29]. 
Moreover, other features of these approaches and their algorithms for tracing of the 
structural equilibrium path were also investigated. In the second part of the mentioned study, 
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robustness and efficiency of the solution tactics were comprehensively evaluated by 
performing numerical analyses [30]. In this investigation, criteria such as, number of 
diverged and complete analyses, the ability of passing load limit and snap-back points, the 
total number of steps and iteration process, the analysis running time and divergence points 
were extensively examined. Furthermore, capabilities and deficiencies of each solver, in 
comparison with the other ones, were discussed and finally superior solution schemes were 
introduced. In another event, a functionally graded plate was analyzed for both thermal and 
mechanical loadings by Phung-Van et al. [31]. A cell-based smoothed three-node Mindlin 
plate element was modeled to find geometrically nonlinear solution. In this study, the 
higher-order shear deformation plate theory was considered. A two-step procedure was 
utilized, including a step of analyzing the temperature field along the thickness of the 
structure, and another step for solving the geometrically nonlinear behavior.  

By reviewing nonlinear solution procedures of the structures, it will be evident that a very 
significant issue of the numerical instability still exists in these solution strategies. The main 
purpose of the authors' algorithm is preventing the divergence of nonlinear solution from the 
load limit and snap-back points. In this paper, a new displacement increment is proposed for 
tracing the equilibrium path of structures. If this formulation and also the load factor 
increment of the residual displacement minimization are used simultaneously, remarkable 
results can be obtained. These outcomes show that the presented approach has a good 
numerical stability in solving the structures with severe nonlinear behavior. This merit will 
be clarified in comparison study with the abilities of the other advanced procedures. 

In the coming lines, the proposed formulation is first addressed. Afterwards, different 
problems are solved by this technique, and the results are compared with the other advanced 
solvers. In this procedure, the ability of the authors' technique is demonstrated against the 
residual load minimization, the normal plane, the updated normal plane, the cylindrical arc 
length, the residual displacement minimization and the generalized displacement control and 
also the modified normal flow methods. 
 
 

2. THE PROPOSED DISPLACEMENT INCREMENT 
 
To find the behavior of structure, there is a need to solve the governing equilibrium 
equations in the load-displacement space. These equations can be written as follows: 
 

(1) ( ) 0, =λuf  
 
Parameters λ  and u  show the scalar load factor and the displacement vector of structure, 

respectively. Tracing the equilibrium path of a structure with N degrees of freedom is done 
in a N+1-dimension space. Therefore, another constraint, like the below one, must be 
utilized to analyze structure and find all unknowns: 

 
(2) ( ) 0,* =λuf  

 
In order to solve the governing system of equations for the structures with nonlinear 
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behavior, incremental-iterative strategy can be used. In these techniques, the following 
equations are employed: 

 

(3) f
uu

ff −=
















∂
∂

∂
∂

δ
δλ

λ
  

 
Where, δλ  and uδ are the load factor increment and the displacement increment in the 

iteration stages, respectively. Researchers have proposed various techniques in order to 
calculate the displacement increment and the load factor for tracing the nonlinear 
equilibrium path of structure. Watson et al. employed the normal flow algorithm in order to 
solve the governing equation of structures' nonlinear behavior [25, 26]. Based on the 
mentioned algorithm, the displacement increment in corrector step is obtained by the 
minimum norm solution of Eq.3, in the following form. 

 

(4) *

**

*

u
uu

uV
Vu

T

T

δ
δδ

δδ −=  

 
Here, the answer V is found by employing an arbitrary constraint. It should be noted that 

the vector V is a particular solution for Eq.3. The parameter *uδ  shows the incremental 
vector of displacement. Although Eq.3 has infinite answers, its minimum norm solution is 
unique, because the iterative steps move on the shortest path or the normal path until 
reaching the equilibrium curve of the structure [32]. Thus, the iterative analyses are 
performed along the lines normal to the Davidenko's flow curve until achieving the 
equilibrium point [33]. Fig. 1 illustrates Davidenko's flow curve and the equilibrium paths. It 
should be mentioned that the equation of the Davidenko's flow lines, utilizing perturbation 
parameter η , is written as follows: 

 
(5) ηλ =),(uf  

 
By changing the parameter η , a set of curves is obtained, which are known as the 

Davidenko's flow curves [33]. Fig. 1 presents the mentioned solution process. Based on Fig. 
2, the displacement increment can be determined by the linear equation of Batoz and Dhatt 
[4]: 

 
(6) n

i
n

i
n
i

n
i uuu ′′+′= δδδλδ  

 
where, n

iu ′δ  is the displacement increment due to the reference load. The displacement 

increment n
iu ′′δ  is also caused by the residual load. These parameters are illustrated in Fig. 2. 

The superscript n is used here to denote the analysis step number and the subscript i 
indicates the iterative cycle i within the analysis step n. The mentioned displacement 
increments are obtained by the following equations: 
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Figure 1. Tracing the equilibrium path utilizing the Davidenko flow curves 

 

(7) ( ) PKu n
i

n
i

1−=′δ  
(8) ( ) n

i
n
i

n
i RKu

1−=′′δ  
 

In these formulations, P  and n
iR  are the reference load and the residual load vectors, 

respectively. K  is the stiffness matrix of the structure.  Referring to Fig. 2, vector n
iR  is 

calculated by the following equation representing the difference between the external load 
applied on structure and the internal force. 

 

(9) n
i

n
i

n
i FPR −= λ  

 
Vector n

iF  is the internal force of structure. This force is calculated using the following 

relation at each point, based on the internal stress of structure: 
 

(10) ∫∫∫= dVBF n
i

Tn
i

n
i  σ  

 
Where, n

iB  is the strain matrix, and niσ  is the vector of internal stresses at the ith stage. 

In the proposed method, the solution V  is replaced with the linear relationship of Batoz 
and Dhatt. After the selection of various parameters by the authors, the minimum norm 
answer of Eq.3 is written as follows. It is formulated based on the displacement due to the 
reference load: 
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Figure 2. Nonlinear analysis of a structure with one degree of freedom 

 
Where, nu1′δ  shows the norm of the displacement increment. It is caused by the 

reference load, in the first iteration. This parameter is employed constantly until the end of 
the iterative cycles. The load factor increment in the equation of Batoz and Dhatt must be 
calculated with an arbitrary constraint. In the authors' technique, the constraint of the 
residual displacement minimization [22] is utilized for finding the load factor increment. 
Consequently, the equations of V  and the load factor increment are expressed in the 
following forms: 
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In the presented strategy, the load factor increment for tracing the equilibrium path is 

obtained employing the residual displacement minimization relationship. The displacement 
and the total load are formulated as follows: 
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The displacement increment and the load factor increment in the first iteration of each 

analysis step are indicated by nu1∆  and n
1λ∆ , respectively. These parameters are shown in 

Fig. 2. The capability of the suggested approach in tracing the equilibrium path of truss and 
frame structures, in comparison with other solution methods, will be demonstrated latter. 
The obtained numerical results indicate that the new solution technique is robust and has 
good numerical stability, when compared to the other advanced algorithms. 

The modified normal flow algorithm was proposed by Saffari et al. in 2008. In this 
solution scheme, the constraint equation of the residual displacement minimization is used. 
Therefore, the load factor increment ( )δλ  is obtained by Eq.13. In the modified normal flow 
algorithm, the load factor increment of Eq.13 and the Eq. 12 is employed to compute the 
particular solution V . Furthermore, the displacement increment in the iterative steps is given 
by the below formula: 
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Notably, the subsequent consideration indicates that the mentioned equation with a little 

simplification gives the displacement increment of the residual displacement minimization 
constraint. It should be noted that the two sides of Eq.16 do not have compatible units. This 
incompatibility is removed by utilizing the exponent of 2 in the denominator of the fraction. 
Employing Eqs.7, 8, the solution V  can be found by Eq.12. The following formulation can 
be achieved by substituting Eq.12 in Eq.16: 
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Clearly, this equation is the displacement increment resulting from the constraint of the 
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residual displacement minimization method. 
 
 

3. COMPARISON STUDY 
 

To obtain accurate results, nine solution techniques will be utilized throughout this study. 
All equilibrium paths of the benchmark problems will be traced with the same load 
increment assigned at the beginning of the analysis. It is aimed to find the number of 
complete curve tracings. At the beginning of each analysis, the load factor increment will be 
given to the computer, as an input data. It is mentioned that the load factor increment is 
calculated based upon the chord length of the predictor step by the next formula: 
 

(18) n
nn

u

L

1

1 ′
±=∆

δ
λ  

 
In the former equation, n

1λ∆  is the load increment in the first iteration, and the parameter 

nL  denotes the chord length of the predictor step. These factors are shown in Fig. 2. It 
should be noted that for each problem, the chord length of the predictor step is identical for 
all methods and remains constant throughout the analysis process. As usual, the achieved 
point from the predictor step returns to the equilibrium path on the iteration surface, by the 
constraint equation of the solution strategy. Based on these assumptions, only the numerical 
performances of the constraint equations in returning to the equilibrium path will be 
compared and evaluated. Some researchers have utilized their techniques by determining the 
chord length in the first iteration. The generalized displacement control method can be stated 
as an example [23]. For implementing similar condition for all techniques, the chord length 
determinations will not be employed throughout this study.  

The benchmark problems will be analyzed several times by each strategy. In this regard, 
maximum allowed iteration, divergence tolerance, maximum and minimum chord length, 
the number of analyses and the target point are specified. The target point is employed to 
terminate the solution. This is determined with a specific load factor or a displacement or 
both. These properties will be given in corresponding tables for each problem. The 
mentioned parameters will be chosen in such a way that the performance capability of the 
tactics can be reliably distinguished from each other. The first load factor increment will be 
calculated as a specific percentage of the first critical load of the equilibrium path. The 
results of this selection will be obtained after many trials and errors. These parameters will 
be similar for all approaches. The analysis procedure commences with the minimum arc 
length and continues to reach the maximum arc length. All the outcomes will be given in the 
corresponding tables. Convergence criterion used throughout this paper, will be based on the 
structural residual load, and it will be formulated by the following inequality: 

 

(19) ε<n
i

Tn
i RR  

 

The parameter  indicates the residual force vector in the ith iteration within the nth 
n
iR
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analysis step. The factorε  shows the solution tolerance, and it is defined by the analyst. 
Iterative calculations continue until the convergence criterion will be satisfied. If the number 
of iterations exceeds the maximum allowed value before satisfying the Eq. 19, the solution is 
recognized as a diverged one. Other kinds of divergence may occur when the answers go 
away from the structural equilibrium path. This is known as a jump failure. In this situation, 
the process cannot trace the correct path. 

After identifying the number of converged and diverged analyses, location of the 
divergence points will be specified in the figures. Therefore, ability or deficiency of the 
solution techniques becomes clear in passing snap-through and snap-back points. It should 
be noted that there are a lot of points in the displacement curve, which make the examining 
of diverged states difficult. To overcome this shortcoming, instead of indicating all diverged 
points, divergence ranges will be specified. It means that just the points of beginning and 
end are drawn in each divergence range. Square points illustrated in the figures show the 
locations that number of negative diagonal arrays of the stiffness matrix changes. For this 
purpose, the number of negative diagonal arrays of the stiffness matrix will be calculated. 
When this number is increased or decreased, analysis step is recorded. These are called 
singular points. It is interesting to note that Huang and Atluri have developed a technique 
based on the mentioned arrays for tracing post-buckling path of the structures, after 
bifurcation points [35]. 
 
 

4. NUMERICAL EXAMPLES 
 
In order to present the efficiency and reliability of the proposed method, some benchmark 
structures with severe nonlinear behaviors will be analyzed in this part. The criteria of the 
comparison are selected in such a way that the various aspects of the techniques' abilities can 
be accurately evaluated and compared. In fact, the number of complete tracings of the 
equilibrium path illustrates the ability to traverse the snap-through and snap-back points. 
The tables of results clarify the numerical stability of the suggested approach in passing the 
load limit and snap-back points. For simplicity, the short form of the methods' name is used 
throughout the article. Table 1 shows the complete and abbreviation name of the solution 
techniques. The authors' approach is shown by RDI. 

 
Table 1: Short form of the solution technique 

Row Solution Technique Short Form 
1 Residual Load Minimization RLM 
2 Normal Plane NP 
3 Updated Normal Plane UNP 
4 Cylindrical Arc Length CAL 
5 Work Control WC 
6 Residual Displacement Minimization RDM 
7 Generalized Displacement Control GDC 
8 Modified Normal Flow MNF 
9 Robust Displacement Increment RDI 
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4.1 Example one 
Fig. 3 illustrates a three-member truss, which has three pinned supports. This structure has 
four nodes and two degrees of freedom. The tip node is subjected to horizontal and vertical 
point loads ( N 10000=P ). Axial rigidity of the members is . Fig. 4 shows the 
load-displacement curve of structure for vertical degree of freedom (u). 

 

 
Figure 3. Three-member truss 

 
Table 2: Analysis properties of the three-member truss 

Target Point Arc Length 
Tolerance 
for Conv. 

Max. of 
Iteration Displacement Load 

Factor 
Num. of 
analyses Increment Minimum 

-5.9 -18.11 45 0.015 0.250 1×10-4 5 
 

Table 3: Numerical results of the three-member truss 

Convergence 
Percentage 

Number 
of Jumps 

Number of 
Failures 

Number of 
Convergences 

Number of 
Analyses 

Analysis 
Method 

68.89 12 2 31 45 RLM 
64.44 5 11 29 45 NP 
77.78 5 5 35 45 UNP 
95.56 0 2 43 45 CAL 

0 0 45 0 45 WC 
100 0 0 45 45 RDM 

13.33 0 39 6 45 GDC 
100 0 0 45 45 MNF 
100 0 0 45 45 RDI 

 

N 102 5×=AE
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Table.3 indicates that the residual displacement minimization, the modified normal flow 
and the suggested techniques have entirely traced the equilibrium path in all analyses. These 
are the superior procedures. Constant work control strategy failed in all the solutions. Other 
results are presented in the corresponding table. 

 

 
Figure 4. Equilibrium path of the three-member truss 

 
As it is shown in Fig. 4, the behavior of this structure has the load, and displacement limit 

points. The residual load minimization method diverged in point A and in the range of EF. 
This technique presents poor performance in passing the load limit points. The constant 
work control procedure diverged before the snap-back point and in the interval BD. The 
diverged analyses of the generalized displacement control method are located in BE. 
Cylindrical arc length, updated normal plane, residual displacement minimization and the 
modified normal flow strategies diverged in the range DE. The diverged analyses of the 
normal plane method occurred in CE. 

 
4.2 Example two 
The arch truss, shown in Fig. 5, is subjected to a vertical downward point load of 10 kN at 
its tip. Arch's radius of the truss is � = 48��. Axial rigidity of the members is identical and 
is considered to be �	 = 50�. The load-deflection curve of this structure for degree of 
freedom u is given in Fig. 23. It should be noted that this truss was investigated by other 
researchers, as well [36-38]. 
 

Table 4: Analysis properties of 101-member arch truss 

Target Point Arc Length 
Tolerance 
for Conv. 

Max. of 
Iteration Displacement Load 

Factor 
Num. of 

Increments Increment Minimum 

NA 200 120 0.0005 0.01 1×10-5 8 
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Figure 5. 101-member arch truss 

 
Table 5: Numerical results of 101-member arch truss 

Convergence 
Percentage 

Number of 
Jumps 

Number of 
Failures 

Number of 
Convergences 

Number of 
Analyses 

Analysis 
Method 

0 120 0 0 120 RLM 
36.67 52 24 44 120 NP 

75 27 3 90 120 UNP 
51.67 3 55 62 120 CAL 

0 45 75 0 120 WC 
75.5 25 2 93 120 RDM 

5 97 17 6 120 GDC 
5.83 14 99 7 120 MNF 
78.33 26 0 94 120 RDI 

 
As it is shown in Fig. 6, the load-displacement curve of this structure has two load limit 

points and two displacement limit points. The proposed strategy is the most efficient 
technique, and it could completely trace the equilibrium path in 78 percent of all solutions. 

 

 
Figure 6. Equilibrium path of 101-member arch truss 

R
= 

48
 c

m
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The residual load minimization method jumped over the equilibrium path in range of AB. 
The diverged analyses of the work control and the normal plane approaches are located in 
CD and CE, respectively. The updated normal plane, the cylindrical arc length, the residual 
displacement minimization and the modified normal flow methods and also the suggested 
technique diverged in the range of DE. It should be noted that the residual load minimization 
tactic returns on the equilibrium path after reaching the first load limit point in all analyses. 
It is obvious that this approach faces difficulties in the snap-through points. 

 
4.3 Example 3 
The truss structure shown in Fig. 7 is subjected to the asymmetrical loading. On the other 
hand, the geometry of the structure is also asymmetric. These characteristics result in intense 
nonlinear behavior in the load-displacement curve. This bridge has 33 members and 32 
degrees of freedom. The cross section areas of all members are . The modulus of 
elasticity is . The nonlinear behavior of this bridge is studied for the 
degree of freedom . Fig. 8 illustrates the equilibrium path. Previously, Powell and Simons 
[8] and also Saffari et al. [24] analyzed this structure. 

 

 
Figure 7. 33-member truss bridge 

 
Table 6: Analysis properties of the 33-member truss bridge 

Target Point Arc Length 
Tolerance 
for Conv. 

Max. of 
Iteration Displacement Load 

Factor 
Num. of 
analyses Increment Minimum 

150 NA 300 0.05 5 1×10-5 5 

 
Table 7: Numerical results of the 33-member truss bridge 

Convergence 
Percentage 

Number of 
Jumps 

Number of 
Failures 

Number of 
Convergences 

Number of 
Analyses 

Analysis 
Method 

0 0 300 0 300 RLM 
56.67 0 130 170 300 NP 
65.67 0 103 197 300 UNP 

74 0 78 222 300 CAL 
0 0 300 0 300 WC 

66.67 0 100 200 300 RDM 

2 3cmA =
24 cm/kN 103E ×=

u

8@10 cm

7 cm 11 cm

P, uPP
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31.33 0 206 94 300 GDC 
0 0 300 0 300 MNF 

68.67 0 94 206 300 RDI 

 
Referring to Fig. 8, several snap-through and snap-back points are seen in the load-

displacement path. Based on Table.7, the Crisfield arc length scheme and the suggested 
technique have the highest convergence efficiency. On the other hand, the work control and 
the modified displacement control solution procedures did not completely trace the curve. 

According to Fig. 8, all analyses of the residual load minimization method diverged in 
AB. This method could trace the equilibrium path before reaching the load limit point. The 
diverged solutions of the normal plane, the work control and the generalized displacement 
control techniques occurred within the range of CD. The diverged analyses of residual 
displacement minimization algorithm and the proposed technique situate in point E. 

 

 
Fig. 8. Equilibrium path of the 33-member truss bridge 

 
4.4 Example four 
The arch frame shown in Fig. 9 is subjected to a point of load  with an eccentricity 
of 200. The span and height of the frame are 10000 and 500 , respectively. 12 identical 
elements have been used to model the structure. There are hinged on the structural supports 
at its two ends. Fig. 10 displays the nonlinear behavior of the frame for the vertical nodal 
degree of freedom under the point load. The cross section area, the second moment of area 
and Young's modulus of elasticity are 1=A , 1=I  and 200=E , respectively. Harrison 
analyzed this structure using the discrete element tactic [34]. Other researchers also studied 
this frame [40-42]. 

 
Table 8: Analysis properties of shallow arch frame 

Target Point Arc Length 
Tolerance 
for Conv. 

Max. of 
Iteration Displacement 

Load 
Factor 

Num. of 
analyses 

Increment Minimum 

1000 NA 100 0.5 20 1×10-4 20 

N 1 =P
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Figure 9. Shallow arch frame 

 
Table 9: Numerical results of shallow arch frame 

Convergence 
Percentage 

Number of 
Jumps 

Number of 
Failures 

Number of 
Convergences 

Number of 
Analyses 

Analysis 
Method 

0 0 100 0 100 RLM 
73 0 27 73 100 NP 
58 6 36 58 100 UNP 
75 0 25 75 100 CAL 
0 0 100 0 100 WC 
94 0 6 94 100 RDM 
17 0 83 17 100 GDC 
0 0 100 0 100 MNF 
97 0 3 97 100 RDI 

 
Fig. 10 shows the complex behavior of this structure with the snap-through and snap-

back points. The mentioned nonlinear algorithms are evaluated by performing 100 analyses. 
Among them, the suggested technique has the best outcomes with 97 converged solutions. 
The residual load minimization, the constant work control and the modified work control 
methods failed before the target point in all analyses. The results are given in Table.9. 

 

 
Figure 10. Equilibrium path of Shallow arch frame 
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Based on Fig. 10, the residual load minimization method diverged in domain AB. All 
analyses of this approach failed to make forward progress before the load limit point. The 
constant work control method diverged in the region CD. The diverged analyses of the 
normal plane, and the generalized displacement control techniques occurred at points E and 
D. The updated normal plane, the cylindrical arc length, the residual displacement 
minimization, the modified normal flow and the proposed methods diverged in point D. 

 
4.5 Example five  
The frame of Fig. 11 was studied by Harrison [39]. Yung et al. have also analyzed this 
structure [23, 35]. The arch radius is . The modulus of elasticity and 

the second moment of inertia are   and  , 
respectively. Moreover, the cross section area of the member is considered to be 

 . The structure is divided into 26 equal elements. According to Fig. 

11, this structure is subjected to a point load ( ) with eccentricity of  
. The load-displacement curve for the vertical direction of the top node (V) is 

presented in Fig. 12. 
 

 
Figure 11. Deep arch frame 

 
 
 

Table 10: Analysis properties of deep arch frame 

Target Point Arc Length 
Tolerance 
for Conv. 

Max. of 
Iteration Displacement Load 

Factor 
Num. of 
analyses Increment Minimum 

-22.6 1.75 40 0.1 5 1×10-4 8 
 
 
 

 cm 127=R ( )in  50=R

kPa 1378=E ( )psi 200=E 4cm 62.41=I ( )4in 1=I

2cm 5.64=A ( )2in 10=A

N 1 =P cm 98.7 b =
( )in .143 b=



STRUCTURAL GEOMETRICAL NONLINEAR ANALYSIS BY ... 
 

 

649

Table 11: Numerical results of the deep arch frame 

Convergence 
Percentage 

Number of 
Jumps 

Number of 
Failures 

Number of 
Convergences 

Number of 
Analyses 

Analysis 
Method 

0 0 40 0 40 RLM 
67.5 0 13 27 40 NP 
52.5 0 19 21 40 UNP 
65 0 14 26 40 CAL 
0 0 40 0 40 WC 

67.5 0 13 27 40 RDM 
5 0 38 2 40 GDC 
0 0 40 0 40 MNF 

100 0 0 40 40 RDI 

 
Referring to Fig. 12, the equilibrium path of the deep arch frame has several snap-

through and snap-back points. In this problem, the proposed method has the best 
performance and could completely trace the path in all analyses. The residual load 
minimization and the constant work control techniques diverged in all analyses. Table 11 
indicates the numerical results. 

 

 
Figure 12. Equilibrium path of the deep arch frame 

 
All solutions of the load minimization and the constant work control methods diverged in 

ranges AB and CD, respectively. Some of the analyses of the generalized displacement 
control approach failed to converge in region DE and some other at the point F. The 
diverged solutions of the normal plane, the updated normal plane and the cylindrical arc 
length techniques occurred in point F. Consequently; the last three methods traced a longer 
path before reaching the divergence point. 
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5. CONCLUSION 
 

In this paper, a displacement increment was proposed for geometrically nonlinear structural 
analysis. This approach can be employed with the various constraints for calculating the load 
factor. According to the numerical results, the authors' method can trace the equilibrium path 
of the structures with severe nonlinear behavior. The advantage of the presented algorithm 
was illustrated in the comparison with eight advanced solution techniques, including 
residual load minimization, normal plane, updated normal plane, cylindrical arc length, work 
control, residual displacement minimization, generalized displacement control and modified 
normal flow. To examine the suggested approach qualifications, five benchmark truss and 
frame problems were solved. These structures were analyzed more than 5000 times. The 
numerical outcomes indicated high capability and reliability of the proposed strategy in 
passing the load limit and snap-back points. As it was demonstrated numerically, the 
presented procedure has numerical stability in the structural analysis. Fig. 13 shows the total 
result of performed analyses. This bar chart presents the percentage of the fully traced 
equilibrium path, in which no fail or jump was occurred. 
 

 
Figure 13. Total result of the fully traced paths 
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