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ABSTRACT 
 

A time integration scheme is proposed for dynamic analysis of linear elastic problems. This 

method assumes higher order variation of the acceleration at each time step. Two variable 

parameters are used to increase the stability and accuracy of the method. In the proposed 

method, second order accuracy and unconditionally stable method is achieved for all values 

of the assumed parameters with and without numerical damping. Moreover, the proposed 

method controls numerical dissipation in the higher modes. Finally, the numerical results of 

the proposed method are compared with two classical methods; namely the average 

acceleration and the Wilson-  methods. 

 

Keywords: Time integration; stable scheme; numerical damping; structural dynamics. 

 

 

1. INTRODUCTION 
 

One of the procedures for calculating the dynamic response of structures is the direct 

numerical integration of the differential equation of motion. It can be used for both linear and 

nonlinear systems. Providing dynamic response at time t needs to be determined, the first step 

would be to subdivide the time interval between 0 and t into n time intervals (Δtj). The time 

interval Δtj between times tj and tj+1 is usually taken to be of uniform duration Δt, therefore 

Δt=t/n. Then, it is assumed that the variation of acceleration, velocity, and displacement within 

each time interval Δt follows a special pattern (a polynomial of certain degree). Dynamic 

equilibrium is usually satisfied at those discrete times. Equations of step-by-step integration 

methods can be derived by using the Taylor series expansion. Classical methods such as the 

Newmark method [1] or the Wilson-θ method [2] assume a constant or linear variation for the 

variation of acceleration at each time step [3]. By increasing order of the variation of 

acceleration, higher accuracy is achieved as more terms are kept in the Taylor series expansion 

[4]. Another interesting technique is composite time integration. This method has a good 
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efficiency in nonlinear dynamic problems [5-8]. In addition to the order of accuracy, stability, 

dissipation and dispersion errors are other significant factors for evaluating a time integration 

method. Numerical dissipation and dispersion are measured with the numerical damping ratio 

and the relative period error respectively [9].  

In several time integration methods, the equation of motion is satisfied at the beginning of 

each time step in order to calculate the unknown values at the end of the step. These methods 

are called explicit methods. However, in implicit time integration methods, it is required to 

satisfy the equation of motion at the end of time step in order to calculate the unknown values 

at this point. A review of several implicit and explicit methods is found in [7, 10-16]. For large 

multi-degree of freedom systems, it is essential to apply unconditionally stable methods due to 

the fact that in conditionally stable methods, the time step Δt must be smaller than a critical 

time step, Δtcr (proportional to the smallest natural period of the system). Consequently, it 

often involves using time steps that are much smaller than those needed for accuracy [9]. 
In this paper, a new implicit time integration scheme is introduced. In the proposed method, 

the acceleration varies in quadratic manner within each time step. Equations of presented 

method are developed from the Taylor series expansion. Considering those assumptions and 

employing the two parameters δ and α, a family of unconditionally stable schemes is obtained 

with high accuracy for solving the structural dynamic problems. Next, the requirements for 

unconditional stability of the new technique are presented. Finally, the accuracy of the 

proposed technique is evaluated. 

 

 

2. PRESENT METHOD 

 

In dynamics, the linear equation of motion is described as:  

 

PKUUCUM 


 (1) 

 

where M, C and K are mass, damping and stiffness matrices while P is the vector of applied 

forces; U , 
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U  are the displacement, velocity and acceleration vectors, respectively. 
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The above two equations are truncated and expressed in the following forms: 
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If the acceleration varies in quadratic way from t-Δt to t+Δt, then the following equations 

can be written:  
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Substituting equations (6) and (7) into equations (4) and (5), and rearranging the results 

produce:  
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Here, equations (8) and (9) are used to approximate the velocity and displacement vectors at 

time t+Δt respectively. Although the Newmark method can be derived through similar 

procedure [17], more terms in the Taylor series expansion are kept in the proposed method. 

Later in Appendix A, it is shown that this strategy guarantees the second order accuracy for 

any values of   and  . The parameters   and   are introduced in order to improve 

accuracy and to obtain unconditional stability state for each time step. Special case is taken 

place when δ=1/4 and α=1/12 that leads to the presented method turning into the linear 

acceleration scheme. Equations (8) and (9) must be solved for 


U
tt

, meaning that 

calculation of U
tt 

 and 


U
tt

 require value of 


U
tt

. Therefore, the proposed method is 

considered as an implicit integration scheme. Equations (8) and (9) are in fact two-step 

integration schemes; meaning that the solution at time t+Δt depends on the solution at times 

t and t-Δt. Note that U
0

 and 


U
0

 are known and 


U
0

 can be calculated using equation (1) at 

time t=0. To start the time integration scheme, the solution at time Δt is required before 

applying equations (8) and (9). This can be computed by using any one-step methods such 

as the linear acceleration or the average acceleration methods. Once the value of the 

acceleration is obtained for Δt, the values for the next time steps are calculated using 

equations (8) and (9). 
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3. NUMERICAL STABILITY 
 

To examine the stability of the new implicit method, the equation of motion for a single 

degree of freedom system at time t+Δt is considered; as follows:  

 

rxxx tttttttt 



  22   (10) 

 

where x is the displacement, mc /2  ; mk /2  ; and mpr
tttt /

  . The natural 

frequency of vibration is ω and the time period of the motion is T=2π/ω. If vector U is 

replaced by the single dependent variable x, then equations (8) and (9) are expressed as 

follows:  
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Substituting equations (11) and (12) into equation (10), one can find an equation with 


 xtt  as the only unknown. Solving for 


 xtt  and substituting into equations (11) and (12), 


 xtt  and xtt   are calculated. Thus, the following recursive relationship can be established.  
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The matrix  A  and vector L  are called the “integration approximation” and “load” 

operators respectively. The coefficients of the above two matrix and vector for the proposed 

method are found in Appendix B. The spectral radius of  A , )(A , is defined by:  

 

i
iA  max)( 

 
(14) 

 

where λi are the eigenvalues of  A . The presented method is stable if the eigenvalues of 

 A  are not larger than one in modulus; which means 1)( A . Moreover, it is also required 

that the eigenvalues of  A  of multiplicity greater than one are strictly less than one in 

modulus [18]. Thus, in order to examine the stability of the proposed method for various 

values of δ and α, the spectral radii,  , are plotted versus ω.Δt. Figures 1 to 3 show that for 
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δ≥1/3 and α=δ-1/6, the value of spectral radius becomes one. It is proven in Appendix C that 

the unconditional stability is reached in the following ranges:  

 

6

1

23

1
 


      ;      (15) 

 

It is obvious that for δ=1/3, the unconditionally stable exists only if α=1/6.  

 

 
Figure 1. Spectral radii versus ω.Δt for various values of δ and α 

 

 
Figure 2. Spectral radii versus ω.Δt for various values of α and δ=0.366 
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Figure 3. Spectral radii versus ω.Δt for various values of α and δ=0.4 

 

 

4. ACUURACY OF THE PRSENTED METHOD 
 

The accuracy of any numerical integration scheme is assessed by measuring the order of 

accuracy, numerical dissipation, and numerical dispersion of the method. In the new 

unconditionally stable method, any choices of parameters δ and α yield a second order 

accurate scheme (see Appendix A). The choice δ≥1/3 with α=δ-1/6 yields unconditionally 

stable methods with no numerical damping. However, to damp out any spurious 

participation of the higher modes, it is necessary to use algorithmic damping which can be 

introduced by selecting δ>1/3. For a fixed value of δ>1/3, the parameter α can control the 

amount of numerical dissipation in the higher modes. Maximal high frequency numerical 

dissipation is obtained when the value of  


 
t

A
.

lim


  is minimized [9]. For instance, for 

δ=0.35, the highest possible high frequency dissipation is obtained by selecting α=0.1752, as 

shown in Figure 1. Similarly, for values of δ=0.366 and δ=0.4, the minimum value of   is 

achieved by selecting α=0.1836 and α=0.2027 respectively as illustrated in Figures 2 and 3. 

For various cases, numerical damping ratios are plotted versus Δt/T in Figure 4. As 

illustrated in Figure 4, both choices of δ=0.366 with α=0.1836 and δ=0.4 with α=0.2027 

maintain better accuracy in the low frequencies than the Wilson-θ method with θ=1.4 and 

the damped Newmark method1 with β=0.3025 and γ=0.6. Figure 4 shows that in the 

proposed method, the higher modes are damped more effectively when δ=0.4 with α=0.2027 

than by δ=0.366 with α=0.1836. It is important to note that numerical damping can be 
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introduced in the presented scheme while maintaining its second order accuracy; whereas in 

the Newmark method, numerical damping can be introduced, although it reduces the level of 

accuracy from second order to first order [9]. 

 

 
Figure 4. Numerical damping ratios for the Newmark, Wilson-θ and proposed methods 

 

Relative period errors are also plotted versus Δt/T in Figure 5 for various cases. The 

average acceleration method possesses the smallest period error of second order accurate, 

unconditionally stable linear multistep methods and thus its period errors may be used as a 

basis to compare the period errors of the numerically dissipative methods [19]. The least 

relative period error, while having unconditional stability, is obtained by selecting δ=1/3 and 

α=1/6. For this case, the proposed method and the average acceleration method have the 

same relative period errors as shown in Figure 5. This can be proven analytically through 

comparing the principal roots of the characteristic polynomial of the integration 

approximation operator in both methods. Despite the fact that selecting δ>1/3 increases 

period error, small period error with high dissipation is obtained by selecting a reasonable 

combination of parameters δ and α. For instance, engineering accuracy dictates that relative 

period error and amplitude decay2 (per cycle) are less than 5 percent. In the new dissipative 

scheme, for δ=0.366 with α=0.1836 and δ=0.4 with α=0.2027, Δt/T must be smaller than 

0.115 and 0.107 respectively. However, for other dissipative methods such as α-method [20] 

with α=-0.3, Wilson-θ method with θ=1.4 [3], and Houbolt method [21], Δt/T must be 

smaller than 0.1, 0.08, and 0.04 respectively [9]. Therefore, comparing the time step 

increment of all the well-known methods with the presented scheme indicates that the 

largest time step is permitted by the proposed method with values of δ=0.366 and α=0.1836. 

It means that in the proposed scheme a small number of time steps need to be used for 

engineering accuracy compared to the other dissipative methods mentioned above. 

                                                   
2
 For small numerical damping ratio,  , the amplitude decay is 2AD  
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Figure 5. Relative period errors for the Average acceleration,  

Wilson-θ and proposed methods 

 

 

5. SOLUTION PROCEDURE 
 

Table 1 presents summary of the solution algorithm for the new implicit time integration 

scheme that can be used for computer programming. As indicated, once the stiffness, mass 

and damping matrices are calculated, one needs to select the time step increment along with 

the pertinent δ and α parameters. By applying the self starting scheme, the acceleration, 

velocity and displacement of the first two time steps are estimated. Then the constants of the 

integration is obtained; followed by assembly of the effective stiffness matrix. For the time 

step increment, the effective load vector is constructed and then from the effective stiffness 

and load matrices, the displacement vector is determined. Finally from the displacement 

vector, the corresponding acceleration and velocity vectors are obtained. 

 

Table 1: Solution procedure for a linear elastic system 

Input: 

1. Input the stiffness matrix [k], mass matrix [m], and damping matrix [c] 

2. Select time step t  and parameters   and   

6

1

23

1
 


      ;      

3. Using a self starting procedure, calculate acceleration, velocity, and displacement vectors 

at the first two time steps 

Calculations: 

1. Calculate the integration constants 
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2. Form the effective stiffness matrix  k̂ :          camakk 10
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Time step: 

1. Calculate the effective load vector at time tt  : 
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76514320


 UaUaUaUaCUaUaUaUaMRR

tttttttttttttt
 

2. Solve for the displacement vector at time tt  : 

  RUk
tttt ˆˆ 

  

3. Calculate the acceleration and velocity vectors at time tt  : 
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6. BENCHMARK PROBLEMS 

 

For the first benchmark problem, consider the following second order ordinary differential 

equation: 

 

0


xx  (16) 

 

with initial conditions 10 x  and 

 00 x . The exact solution of the above initial value 

problem is as follows: 

 

 tcosxexact   (17) 

 

For the presented method, the following values of δ=1/3 and α=1/6 are used. Using 
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Δt/T=0.1 (T being the time period of the system which is 2π), the time step is Δt=0.2π. The 

error at a given time t is defined by the following relationship: 

 

exact

ttt xxe 
 

(18) 

 

in which xt  is the numerical solution at time t. Here this problem is solved using the 

average acceleration, Wilson-θ, and proposed methods and the corresponding errors are 

shown in Table 2. To start the new second-order accurate integration scheme, the average 

acceleration method is used in order to calculate the initial values at the first two time steps. 

Table 2 shows that the proposed scheme yields more accurate results compared to the other 

aforementioned methods. With the values selected for δ and α, the presented method and the 

average acceleration method do not yield the same results, even though both schemes have 

the same period error and they both have no numerical damping. 

 
Table 2: Numerical solution of equation (16) using the average acceleration, Wilson-θ and 

presented methods for the first 10 time steps (Δt=0.2π) 

Time 

average acceleration 

method 
Wilson-θ method 

(θ=1.4) 

present method 
(δ=1/3 , α=1/6) 

xt
 et

 xt
 et

 xt
 et

 

t  0.8203 0.0113 0.8187 0.0097 0.8203 0.0113 

t2  0.3459 0.0369 0.3529 0.0439 0.3405 0.0315 

t3  -0.2528 0.0562 -0.2273 0.0817 -0.2616 0.0474 

t4  -0.7607 0.0483 -0.7220 0.0870 -0.7698 0.0392 

t5  -0.9952 0.0048 -0.9651 0.0349 -1.0013 0.0013 

t6  -0.8722 0.0632 -0.8785 0.0694 -0.8731 0.0641 

t7  -0.4357 0.1267 -0.4968 0.1877 -0.4311 0.1221 

t8  0.1573 0.1517 0.0464 0.2627 0.1658 0.1433 

t9  0.6938 0.1152 0.5649 0.2441 0.7031 0.1059 

t10  0.9810 0.019 0.8843 0.1157 0.9878 0.0122 

 

For the second benchmark problem, consider the following two degrees of freedom 

system, which was solved using several direct integration methods in [9]; 
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With the initial conditions 









10

10
U  and 












0

00
U  where 4

1 10k , 12 k , and 121  mm . 

The natural frequencies of this system are ω1 =0.99995 and ω2=100.005. Here assuming 

Δt=T1/20 and T1 being the period of the first mode, Δt=0.3 is selected. Using T1 is due to the 

fact that in this example the first mode is physically more important than the second mode 

and here the second mode causes some undesirable oscillations.  



A SECOND ORDER TIME INTEGRATION SCHEME FOR ELASTIC DYNAMIC ... 

 

 

841 

The proposed scheme is compared with two other dissipative methods: the Wilson-θ 

method (with θ=1.4) and the damped Newmark method (with β=0.3025 and γ=0.6). The 

accuracy of the aforementioned methods is examined by the following two criteria: (i) Can 

the step by step integrators filter the higher mode oscillation from the response? (ii) Can the 

algorithms integrate the physically important oscillation accurately? For different time step 

number, results of the u1 and u2 displacements obtained from the Wilson-θ, Newmark and 

presented methods are all shown in Figures 6 to 11. Figure 6 shows that displacement u1 

obtained by the Wilson-θ method exhibits the overshoot phenomenon as indicated in [22], 

whereas displacement u1 in the presented method overshoots only mildly (Figures 8 and 9). 

Although displacement u1 obtained by the damped Newmark method (as shown in Figure 7) 

in the initial steps are close to the results obtained by the new unconditionally stable scheme, 

the proposed method managed to damp out the results much quicker than the damped 

Newmark method. Values of the displacement u2 obtained by the Newmark, Wilson-θ, and 

presented schemes, with their corresponding errors, are illustrated in Table 3. As the results 

in the table indicate, the displacement u2 calculated using the new dissipative scheme is 

more accurate than those obtained by the Newmark method or the Wilson-θ method.  

 

 
Figure 6. Displacement by the Wilson-θ method for the two degrees of freedom problem 

 

 
Figure 7. Displacement by the Newmark method for the two degrees of freedom problem 
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Figure 8. Displacement by the presented method for the two degrees of freedom problem 

(δ=0.366 and α=0.1836) 

 

 
Figure 9. Displacement by the presented method for the two degrees of freedom problem (δ=0.4 

and α=0.2027) 

 

 
Figure 10. Displacement by the presented method for the two degrees of freedom problem 

(δ=0.366 and α=0.1836) 
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Figure 11. Displacement by the presented method for the two degrees of freedom problem 

(δ=0.4 and α=0.2027) 

 
Table 3: Numerical solution of u2 in equation (19) using the Newmark, Wilson-θ and presented 

methods for the first 20 time steps with Δt=0.3 

Time 

damped Newmark 

method 

(β=0.3025 , γ=0.6) 
Wilson-θ method 

(θ=1.4) 

proposed method 
(δ=0.366 , α=0.1836) 

2u
t

 et
 2u

t
 et

 2u
t

 et
 

t  9.5621 0.0086 9.5722 0.0187 9.5601 0.0067 

t2  8.2901 0.0364 8.2746 0.0209 8.2766 0.0229 

t3  6.3032 0.0866 6.2986 0.0821 6.2670 0.0504 

t4  3.7813 0.1572 3.7499 0.1258 3.7078 0.0837 

t5  0.9504 0.2423 0.9021 0.1941 0.8231 0.1151 

t6  -1.9391 0.3320 -2.0374 0.2337 -2.1329 0.1382 

t7  -4.6334 0.4142 -4.7843 0.2632 -4.9020 0.1455 

t8  -6.8981 0.4752 -7.1234 0.2498 -7.2399 0.1334 

t9  -8.5387 0.5017 -8.8360 0.2044 -8.9428 0.0975 

t10  -9.4168 0.4830 -9.7870 0.1128 -9.8601 0.0397 

t11  -9.4624 0.4127 -9.8858 0.0108 -9.9125 0.0375 

t12  -8.6785 0.2900 -9.1318 0.1634 -9.0945 0.1261 

t13  -7.1412 0.1196 -7.5862 0.3253 -7.4790 0.2181 

t14  -4.9918 0.0872 -5.3874 0.4828 -5.2068 0.3023 

t15  -2.4239 0.3138 -2.7237 0.6136 -2.4784 0.3683 
t16  0.3339 0.5388 0.1716 0.7011 0.4675 0.4052 

t17  3.0382 0.7392 3.0493 0.7281 3.3718 0.4056 

t18  5.4527 0.8921 5.6590 0.6858 5.9800 0.3648 

t19  7.3683 0.9773 7.7762 0.5695 8.0629 0.2827 

t20  8.6217 0.9794 9.2175 0.3836 9.4382 0.1629 
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7. CONCLUDING REMARKS 

 

In this paper, a new implicit step by step integration scheme was presented for linear 

structural dynamics. The proposed method assumed quadratic variation of the acceleration at 

each time step whereas in the classical methods a linear function is normally implemented. 

The strategy of the proposed method is accomplished by employing the two parameters δ 

and α. Hence, a family of unconditionally stable schemes with high accuracy is introduced. 

For any value of δ and α, second order accuracy is guaranteed. The presented scheme can 

introduce numerical dissipation in the higher modes which is used intentionally in order to 

filter out the spurious high frequency components. The new dissipative method allows 

numerical damping while maintaining second order accuracy. It is important that numerical 

damping can be introduced in the proposed method without modifying the time discrete 

equation of motion; meaning that the fundamental equilibrium equations are exactly 

satisfied at the beginning and at the end of the time step. The proposed scheme also permits 

a parametric control of numerical dissipation in the higher modes. The adverse effects on the 

lower modes in the new second-order accurate scheme are less than other dissipative 

methods such as the Wilson-θ and the Newmark methods. Moreover, the presented method 

has smaller relative period error than other classical unconditionally stable schemes. In this 

paper, examples were provided in order to show the accuracy of the new implicit method as 

well as demonstrating the capability of effectively damping out the higher modes. Finally, 

although in this article the presented scheme is only used for the demonstration in the linear 

problems, it is expected that the technique can be extended in order to be implemented for 

the nonlinear problems. 
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APPENDIX A–ORDER OF ACCURACY 
 

To determine the order of accuracy, first, the exact solution is inserted into the equations 

(11) and (12). Then the discrete equation of motion is used to eliminate acceleration terms; 
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and τ is called the vector of local truncation error. Note that, the symbols )( ntx  and 
)( ntx



 

denote the exact values of displacement and velocity at time tn respectively. Taylor series 

expansions of x and r about time t are employed to obtain the explicit expression for τ, as 

follows:  
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Therefore here )( 2to  , meaning that the algorithm is second order accurate for all 

values of δ and α.  

 

 

APPENDIX B – COEFFICIENTS 
 

The “integration approximation” and “load” operators for the proposed method are:  
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APPENDIX C – CONDITION OF STABILITY 

 

To obtain stability criterion, by rewriting equation (12) we have: 
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Similarly:  

 

222 ])
12

1
()2

2

1
()

12

1
[( txxxtxxx ttttttttttt 








   (C2) 

 

Subtracting equation (C2) from equation (C1) and replacing 


 xtt  with the right hand 

side of equation (11) yields:  
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The undamped and homogeneous time discrete equation of motion is used to eliminate 

acceleration terms in equation (C3) which yields:  
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where 0)( 22  th  .  Equation (C4) is the difference-equation form of the proposed 

method. Assuming that this equation has a solution of the form 
t

x  , then tttt x   22  , 
tttt x    , tt x   and tttt x    . Making these substitutions and dividing by tt  , the 

characteristic polynomial is obtained as follows:  
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The characteristic polynomial roots (  ) are identical to the eigenvalues of the integration 

approximation operator  A . Thus, it is required to have 1i  for stability. Consider cubic 

equation in general form:  

 

023  CBA   (C6) 

 

The Routh-Hurwitz criterion gives sufficient conditions for the roots of a characteristic 

polynomial, to be less than or equal to one in modulus. The Routh-Hurwitz criterion takes 

the form [9]: 

 (a). 01  CBA   

 (b). 033  CBA   

 (c). 033  CBA   

 (d). 01  CBA   

 (e). 0)(1  ACCB   

Applying these expressions to the characteristic polynomial (C5) yields:  

 (a). 0h  (automatically satisfied) 

 (b). 0h  (automatically satisfied) 

 (c). 
3

1
   

 (d). 
2


    

 (e). 
6

1
    

Consequently, unconditional stability is reached when 6/123/1   /and     . 


