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ABSTRACT 
 

The main objective of the current study is to utilize the capabilities of recently developed 

meta-heuristic algorithms for structural cost optimization of a one-way reinforced concrete 

ribbed slab simply supported at both ends. Two of these new and simple optimization 

algorithms, known as colliding bodies optimization (CBO) and democratic particle swarm 

optimization (DPSO), and a renowned optimization algorithm, PSO, are presented to solve 

cost optimization of a concrete ribbed slab. Although PSO is a very well-known and 

commonly used optimization algorithm, democratic PSO is an improved version of particle 

swarm optimization method. In DPSO the emphasis is placed upon improving the premature 

convergence phenomenon which is believed to be one of defects of the original PSO. CBO 

utilizes simple formulation to find optimum values and does not need any internal 

parameter. Performance of these algorithms is compared with harmony search. The results 

illustrate the power of the CBO and effectiveness of improvements of DPSO method in the 

present optimization problem. 

 

Keywords: Reinforced concrete slab; one-way joist floor; particle swarm optimization; 

democratic particle swarm optimization; colliding bodies optimization; cost optimization. 

 

 

1. INTRODUCTION 
 

Meta-heuristics algorithms are recent generation of the optimization approaches to solve 

complex problems. These methods explore the feasible region based on both randomization 

and some specified rules through a group of search agents [1]. Laws of natural phenomena are 

usually source of the rules. Genetic Algorithm (GA) is introduced by Holland [2] and 

Goldberg [3]. It is inspired by biological evolutions theory. Particle swarm optimization (PSO) 

is introduced by Eberhart and Kennedy [4]. It simulates social behavior, and it is inspired by 
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the migration of animals in a bird flock or fish school. The particle swarm algorithm is applied 

to truss optimization with dynamic constraints [5]. Ant Colony Optimization (ACO) is 

presented by Dorigo et al. [6]. It imitates foraging behavior of ant colonies. There are several 

other natural-inspired algorithms such as Simulated Annealing (SA) presented by Kirkpatrick 

et al. [7], Harmony Search (SA) introduced by Geem et al. [8], Big Bang–Big Crunch 

algorithm (BB–BC) presented by Erol and Eksin [9], and improved by Kaveh and Talatahari 

[10]. Due to good performance of these algorithms and their simple implementation, they have 

been widely used for solving various problems in different fields of science and engineering. 

One of the most recent meta-heuristic algorithms is the Charged System Search (CSS) 

proposed by Kaveh and Talatahari [11]. Electric laws of physics and the Newtonian laws of 

mechanics are used for guiding the Charged Particles (CPs) to explore the locations of the 

optimum. The scenario in CSS is completed by the addition of magnetic forces in Magnetic 

Charged System Search (MCSS) method, Kaveh et al. [12]. 

Particle Swarm Optimization (PSO) initially proposed by Kennedy and Eberhart [4] is one 

of the most widely used population-based meta-heuristic algorithms. This method performs 

easily in engineering problems, needs little number of parameters and has high power in 

finding suboptimal solutions in a reasonable amount of time. So many researchers are 

continually encouraged in using PSO for a varied range of optimization problems in different 

disciplines. In structural engineering, PSO has been successfully applied to diverse types of 

optimization problems ([18–24] among others). However, in spite of having the above-

referred advantages, the standard PSO is infamous of premature convergence [25,26]. One of 

active research topics in recent years is improving the exploration ability of the PSO [27]. 

Democratic Particle Swarm Optimization (DPSO) proposed by Kaveh and Zolghadr [28] 

improves the exploration capabilities of the PSO and thus addresses the problem of 

premature convergence. In accordance to the algorithm name, Democratic PSO, all eligible 

particles have the right to be involved in decision making in this algorithm. The details of 

the method will be represented in the following sections. 

The Colliding Bodies Optimization (CBO) developed by Kaveh and Mahdavi [29] is an 

efficient and simple algorithm based on one-dimensional collisions between two bodies, 

where each agent solution is modeled as the body. This algorithm utilizes simple 

formulation, and it requires no parameter tuning [30].  The details of the method will be 

represented in the following sections. 

A one-way joist floor system comprises of hollow slabs which depth is more than solid 

slabs. For buildings with the small superimposed loads and the relatively large spans this 

system is the most economical such as in schools, hospitals, and hotels. Since the concrete in 

the tension zone is ineffective; this region is kept open between the ribs or filled with 

lightweight material to reduce the slab weight. 

In this paper Colliding Bodies Optimization, standard Particle Swarm Optimization and 

democratic Particle Swarm Optimization are utilized for optimal design of a concrete ribbed 

slab. Comparison of the convergence curves of these methods with that of the HS algorithms 

demonstrate that the CBO and DPSO methods are powerful and efficient approaches for 

finding the optimum solution to structural optimization problems. In this example, the CBO 

and DPSO performed meaningfully better than the HS and PSO by attaining the best 

solutions so far. 

The remainder of this paper is organized as follows: In Section 2, problem statement, 
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objective function and design constraints is presented. In Section 3, three optimization 

algorithms, particle swarm optimization, democratic particle swarm optimization and 

colliding bodies optimization algorithms are briefly presented. One numerical example of a 

one-way reinforced concrete ribbed slab is studied in Section 4. Conclusion is provided in 

Section 5. 

 

 

2. PROBLEM STATEMENT 

 

In a reinforced concrete one-way ribbed slab optimization problem the aim is to minimize 

the cost of the structure while satisfying some constraints. To model the ribbed slab, six 

discrete design variables are considered as shown in Fig. 1. These contain the thickness of 

the top slab (D1), the rib spacing (D2), the rib width at the lower end (D3), the rib width at 

the top end (D4), the bar diameter (D5), and the rib depth (D6). 

 

4D

2D 3D
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1

D

5
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Figure 1. A ribbed slab and the design variables selected 

 

2.1 Optimum Design Process 

Typical design of the ribbed slabs consists of two phases: 
(1) Selecting random values for the variables and checking the dimensions according to 

the ACI 318.08 standard [31]. 

(2) Calculating the required reinforcement and checking the strength. 

 

2.2 Objective function 

The objective function of concrete ribbed slab optimization includes the costs associated 

with concrete and steel material as well as concreting and erecting the reinforcement which 

must be minimized. This can be achieved by determining the optimal values for decision 

variables D1 to D6. The objective function can be expressed as follows: 

 

𝐶𝑜𝑠𝑡 = 𝑉𝑐𝑜𝑛𝑐 ×  𝐶𝑐𝑚 + 𝐶𝑐 +𝑊𝑠𝑡𝑒𝑒𝑙 × (𝐶𝑠𝑚 + 𝐶𝑒) (1) 

 

Considering / ( )cm cCost Cost C C  , we have: 
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Minimize ( ( )) /sm e
conc steel

cm c

C C
Cost V W l

C C


 


 (2) 

 

where 
concV  and 

steelW  are the volumes of the concrete and the weight of the reinforcement 

steel in the unit length (
3m /m, kg/m), respectively; cmC and smC are the costs of concrete 

and steel ($/kg for steel and $/ 3m  for concrete), respectively; 
cC and eC  are the costs of 

concreting and erecting the reinforcement, respectively. l is the center-to-center distance of 

the ribs. Based on reviews and the cost estimation performed, a value of 0.04 for the 

coefficient C ( ( ))sm e

cm c

C C
C

C C





 is obtained. 

 

2.3 Design Constraints 

For designing this problem according to the ACI 318-08 [31] the following constraints must 

be considered. 

 

2.3.1 Flexural Constraint 

The flexural constraint can be described in the following form: 

 

/ ( ) 1u b nM M 
 

(3) 

 

where 
uM  and nM  are the ultimate design moment and the nominal bending moment, 

respectively. 

 

2.3.2 Shear Constraint 

The shear constraint can be described as: 

 

/ ( ) 1u v nV V 
 

(4) 

 

where 
uV  and 

cV  are the ultimate factored shear force and the nominal shear strength of 

the concrete, respectively. The concrete should carry the total shear because no stirrup is 

used in the slab. The shear strength 
cV  provided by the concrete for the ribs may be taken to 

be 10% greater than that of the beams. This is mainly due to the interaction between the slab 

and the closely spaced ribs. 

 

2.3.3 Serviceability Constraints 

The serviceability constraints are expressed in terms of the limits on the steel reinforcement 

ratio and the bar spacing. The steel reinforcement ratio should satisfy the following 

constraint: 

 

max 0.75 b   
 (5) 
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The minimum shrinkage steel ratio, min , in the slab is 0.002 for slabs in which bars of 

grade 40 or 50 are utilized and 0.0018 for slabs in which deformed bars of grade 60 are used. 

The bar spacing should satisfy the following constraints: 

• The minimum clear spacing between parallel bars in a layer, db, should not be less than 

25 mm. 

• The maximum spacing between the bars ≤ 5 times the rib thickness ≤ 450 mm (18 in.). 

 

2.3.4 Deflection Constraints 

The thickness of the top slab should not be less than 1/12 of the clear span between the ribs 

or 50 mm (2 in.). Based on the ACI code [31] a minimum slab thickness minh  of L/16, 

L/18.5, L/21, or L/8 is required, depending on the support conditions. Here, L is the 

effective span length of the slab. 

 

2.3.5 Other Constraints 

The ribs should not be less than 100 mm in width, and should have a depth of no more than 

3.5 times the minimum width of the rib. Clear spacing between the ribs should not exceed 

750 mm. A limit on the maximum spacing of the ribs is required because of the special 

provisions permitting higher shear strengths and lower concrete protection for the 

reinforcement of these relatively small repetitive members. 

 

 

3. OPTIMIZATION ALGORITHMS 
 

For making the improvements visible a basic form of the algorithm which is mentioned 

here as the standard PSO will be briefly summarized first. Since PSO has been gradually 

improved by different researchers and for better comparison the description of the standard 

PSO is reproduced from Ref. [32]. 

 

3.1 Particle Swarm Optimization Algorithm 

Particle Swarm Optimization, first developed by Kennedy and Eberhart [4], is a population-

based meta-heuristic algorithm inspired by the social behavior of animals such as fishes 

schooling, insects swarming, and birds flocking. Like many other population-based meta-

heuristic algorithm, PSO begins with a set of particles which are randomly spread in the multi-

dimensional search space of problem. These particles are supposed as potential solutions of 

the optimization problem at hand. By an objective function the fitness of each candidate 

solution is measured. As the optimization process develops these particles move around in the 

search space searching for better positions. By gradual improvement of the positions of the 

particles in a population the algorithm finally converges to a sub-optimal solution. 

In PSO to find better positions, particles utilize two different resources of information: 

their own best experience which is called a local best position and the swarm’s best position 

so far which is called the global best position. Based on these two types of information, a 

particle makes a decision about the next position it is going to experience in iteration (k + 1) 

by forming a velocity vector as follows: 
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   1
, , 1 1 , , 2 2 ,

k k k k k k
i j i j i j i j j i jv v c r xlbest x c r xgbest x       

   
(6) 

 

where, ,
k
i jv  is the velocity or the amount of change of the design variable j of particle i, 

,
k
i jx  is the current value of the jth design variable of the ith particle, ,

k
i jxlbest  is the best 

value of the design variable j ever found by ith particle, 
k
jxgbest  the best value of the 

design variable j experienced by the entire swarm so far, 1r  and 2r  are two random numbers 

uniformly distributed in the range (1,0), 1c  and 2c  are two parameters representing the 

particle’s confidence in itself and in the swarm, respectively. In this paper, these parameters 

which determine the particle’s inclination to move toward local and global best experiences 

are taken as 2 as reported to be suitable in Ref. [33], however these had been taken as 1.5 in 

Ref. [32]. Here, w  is the inertia weight for the previous iteration’s velocity and it can be set 

in order to control the exploration of the algorithm. In Ref. [32] this parameter is defined as: 

 

0.4[1 ,0.6)]w min(cov   (7) 

 

where cov is the coefficient of variation of the swarm’s objective function. The parameter 
  is used to avoid divergence behavior and can be obtained from the following expression 

as indicated by [34]: 

 

2
1 2 1 2 1 2

1.6

2 ( ) ( ) 4( )c c c c c c
 

     
 

(8) 

 

Once the velocity vector is defined, the new positions of the particles are determined as: 

 
1 1

, , ,
k k k
i j i j i jx x v  

 
(9) 

 

where the time interval is considered as unity, so that the addition of the velocity vector 

to the position vector becomes permissible. 

 

3.2 Democratic Particle Swarm Optimization Algorithm 

Democratic PSO algorithm introduced by Kaveh and Zolghadr [28] is an improved version 

of Particle Swarm Optimization algorithm and improves the exploration capabilities of the 

PSO. In this algorithm the main objective is to decrease the premature convergence which is 

believed to be one of the main weaknesses of PSO. 

Democratic PSO like PSO is a population-based meta-heuristic algorithm. In the 

democratic PSO for improving PSO the next position of a particle is determined based on the 

attitude of a bigger set of members called eligible members. In DPSO the particles can get 

their information from a more diverce set of resources. Moreover, letting particles with 
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seeming lower quality to take part in decision provides the algorithm a better exploration 

characteristics. Based on this information, a particle makes a decision about the next position it 

is going to experience in the (k+1)th iteration by forming a velocity vector as follows: 

 

   1
, , 1 1 , , 2 2 , 3 3 ,

k k k k k k k
i j i j i j i j j i j i jv v c r xlbest x c r xgbest x c r d        

   
(10) 

 

in which ,
k
i jd  is the jth variable of the vector D for the ith particle. The vector D 

represents the democratic effect of the other particles of the swarm on the movement of the 

ith particle. 3r  is a random number uniformly distributed in the range (1,0). Parameter 3c  is 

introduced to control the weight of the democratic vector. Here, the vector D is taken as: 

 

 
1

n

i ik k i
k

D Q X X


 
 

(11) 

 

where 
ikQ  is the weight of the kth particle in the democratic movement vector of the ith 

particle and can be defined as: 

 

1

( )

( )

best
ik

ik n
best

ij
j

obj
E

obj k
Q

obj
E

obj j




 

(12) 

 

in which obj is the objective function value; bestobj  is the value of the objective function 

for the best particle in the current iteration; X is the  position vector of the particle; E is the 

eligibility parameter and is analogous to parameter P in CSS [35]. In a minimization 

problem E can be defined as: 

 

( ) ( )
1 ( ) ( )

0

worst bestik

obj k obj i
rand obj k obj i

obj objE

else


  

 

  

(13) 

 

where worstobj  and bestobj  are the values of the objective function for the worst and the 

best particles in the current iteration, respectively. The symbol   stands for the union. 

Since a term is added to the velocity vector of the PSO, the parameter   should be 

decreased in order to avoid divergence. Here, this parameter is determined using a trial and 

error process. 
According to Eq. (12), all of the better particles and some of the particles with lower fitness 

values affect the new position of the particle under consideration. This modification increases 
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the performance of the algorithm in two ways: (1) helps the particles to get information about 

good zones of the search space other than those experienced by themselves and the best 

particle of the population and (2) causes some bad particles to take part in the movement of the 

swarm and thus improving the exploration capabilities of the algorithm. Both of the above 

effects help to decrease the premature convergence of the algorithm. 
 

3.3 Colliding Bodies Optimization Algorithm 

Engineers and natural philosophers always inspire from nature, and many meta-heuristic 

approaches are inspired by solutions that nature herself appears to have selected for hard 

problems [35]. The collision is also a natural event, which happens between objects, bodies, 

cars, etc. The idea of the CBO algorithm is based on the study of a collision between two 

bodies in one-dimension; in which one body collide with other body and they move toward 

minimum energy level, [18]. 

 

3.3.1 The CBO algorithm 

In CBO algorithm, the solution candidates, 
iX , including a number of variables (i.e. 

,{ })i i jX X  are considered as colliding bodies (CBs). The massed objects are consisted of 

two main identical groups which are known as stationary and moving objects, where the 

moving objects move to pursue stationary objects and a collision happens between pairs of 

objects. This is done for two purposes: (i) to get better the positions of moving objects; (ii) 

to push stationary objects towards better positions. After the collision, the new positions of 

the colliding bodies are updated and the new velocity is obtained by two laws that govern 

collisions between bodies (i) laws of momentum and (ii) laws of energy [29]. 

 

x x x x

The stationary The moving

 
(a) 

x

x

x

x

The Pairs of Objects
 

(b) 
Figure 2. (a) The sorted CBs in an ascending order. (b) The pairs of objects for the collision 

 

The CBO procedure can briefly be stated as follows: 

(1) The initial positions of CBs are obtained with random initialization of a population 

of individuals in the search space and their associated values of the objective 
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function: 

 
0

min max min( ), 1,2,...,ix x rand x x i n   
 

(14) 

 

where 
0
ix  determines the initial value vector of the ith CB. minx  and maxx  are the 

minimum and the maximum allowable values vectors of variables; rand is a random number 

in the interval [0, 1]; and n is the number of CBs. 

(2) The value of the body mass for each CB is defined as: 

 

1

1

( )

1

( )

k
n

i

fit k
m

fit i




 

(15) 

 

where fit(i) represents the objective function value of the agent i; n is the population size. 

Obviously a CB with good values exerts a larger mass than the bad ones. Also, for 

maximizing the objective function, the term 1

( )fit i
 is replaced by fit(i). 

(3) The ranking of the CBs objective function values is performed in an increasing order 

Fig. 2a. The sorted CBs are equally divided into two groups. Then, the pairs of CB 

are defined for collision: 

 The lower half of CBs (stationary CBs); These CBs are good agents that are 

stationary and the velocity of these bodies before collision is zero. Thus: 

 

0, 1,2,...,
2

i

n
v i 

 
(16) 

 

 The upper half of CBs (moving CBs): These CBs move toward the lower half. Then, 

according to Fig. 2b, the better and worse CBs, i.e. agents with upper fitness value of 

each group will collide together. The change of the body position represents the 

velocity of these bodies before collision as: 

 

2

, 1,...,
2

i i n
i

n
v x x i n


   

 

(17) 

 

where iv  and ix  are the velocity and position vectors of the ith CB in this group, 

respectively; 
2

n
i

x


 is the ith CB pair position of ix  in the previous group. 

(4) After the collision, the velocity of bodies in each group is evaluated using the 

collision laws and the velocities before collision. The velocity of each moving CB 

after the collision is evaluated  as following: 
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2

2

, 1,...,
2

i n i
i

i
i n

i

m m v
n

v i n
m m






 
 

 
    



 

(18) 

 

where iv  and iv   are the velocity of the ith moving CB before and after the collision, 

respectively; mi is the mass of the ith CB; 

2

n
i

m


 is mass of the ith CB pair. Also, the 

velocity of each stationary CB after the collision is: 

 

2 2 2

2

, 1,...,
2

n n n
i i i

i
i n

i

m m v
n

v i
m m


  



 
 

 
   



 

(19) 

 

2

n
i

v


 and iv   are the velocity of the ith moving CB pair before and the ith stationary CB 

after the collision, respectively; im  is mass of the ith CB; 

2

n
i

m


 is mass of the ith moving 

CB pair.   is the coefficient of restitution (COR) and for most of the real objects, its value 

is between 0 and 1. This coefficient is defined as the ratio of the separation velocity of two 

agents after collision to the approach velocity of two agents before collision. This index is 

used to control of the exploration and exploitation rate. For this goal, the COR is decreased 

linearly from unity to zero. Thus,   is defined as: 

 

max

1
iter

iter
  

 

(20) 

 

where iter is the actual iteration number and maxiter  is the maximum number of 

iterations, with COR being equal to unit and zero representing the global and local search, 

respectively [13]. 

(5) New positions of CBs are determined using the generated velocities after the 

collision in position of stationary CBs. 

The new positions of each moving CB is: 

 

2

, 1,...,
2

new
i n i

i

n
x x rand v i n


   

 

(21) 

where 
new
ix  and iv   are the new position and the velocity after the collision of the ith 
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moving CB, respectively; 

2

n
i

x


 is the old position of the ith stationary CB pair. Also, the 

new positions of stationary CBs are obtained by: 

 

, 1,...,
2

new
i i i

n
x x rand v i  

 
(22) 

 

where 
new
ix  , ix  and iv   are the new position, old position and the velocity after the 

collision of the ith stationary CB, respectively. rand is a random vector uniformly distributed 

in the range ( 1,1)  and the sign ‘‘ ’’ denotes an element-by-element multiplication. 

(6) The optimization is repeated starting from Step 2 until a termination criterion, 

specified as the maximum number of iteration, is fulfilled. It should be noted that, a 

body’s status (stationary or moving body) and its numbering are changed in two 

subsequent iterations. 

The CBO algorithm does not contain internal parameters except the coefficient of 

restitution (COR). By considering the linear variation law for COR, this algorithm becomes 

a parameter independent optimization approach. This is a definite power of the CBO. 

 

 

4. NUMERICAL EXAMPLE 
 

In this section to verify the efficiency of the algorithms, CBO, DPSO and PSO, and compare 

them with HS algorithm [36] an example of a one-way reinforced concrete ribbed slab 

simply supported at both ends is presented. The general data for the example is provided in 

Table 1. The design variables are presented in Table 2. A general plan of the concrete ribbed 

slab is illustrated in Fig. 3. The results of the optimum design are presented in Table 3, and 

the convergence curves are shown in Fig. 4. 

Fig. 4 compares the convergence curves for the one-way reinforced concrete ribbed slab 

attained by the Harmony Search, Colliding Bodies Optimization, Democratic Particle 

Swarm Optimization and Standard Particle Swarm Optimization algorithms. Investigation of 

the convergence curves in Fig. 4 provides some useful points about the differences of the 

four algorithms. For this problem by HS algorithm in Ref. [36], the number of iteration 

10000 and harmony memory size 30 are considered. In convergence curve of HS y-axis 

starts from 2.5 and x-axis end 10000, however, for a better observation y-axis and x-axis are 

bounded to 1.83 and 6000, respectively. Number of particle and iteration in this example for 

each three methods are 30 and 200, respectively. Convergence curve of Harmony Search in 

3000th analysis became straight and the exploration is terminated. But as it can be seen from 

Fig. 4 the CBO reaches the final result in 1440th analyses. PSO’s convergence curve shows 

that the convergence is obtained in the 1260 analyses and after that it became straight. On 

the other hand democratic PSO reached an initial convergence after 360th analyses and it 

still continued exploring the search space until it reached the final answer at 3480th analysis. 

This can be interpreted as the modifications being effective on the improvement of the 

premature convergence problem. It should be noted that the weight obtained by CBO, DPSO 

and PSO is much less than the weight obtained by HS, and the answers of CBO and DPSO 
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are less than that of PSO. 

 
Table 1: Common data for the considered example 

fy 420 MPa 

fc
' 28 MPa 

DL 0.78 kN/m2 

LL 4 kN/m2 

L 6 m 

Cover 20 mm 

ws 78.5 kN/m3 

wc 24 kN/m3 

 
Table 2: Design variables 

 Value (cm) 

Slab thickness 2.5, 5, 7.5, 10 
Rib spacing 40, 42.5, 45,…, 72.5, 75 

Rib width at lower end 10, 12.5,…, 22.5, 25 

Rib width at taper end 10, 12.5,…, 27.5, 30 

Bar diameter 1, 1.2, 1.4, 1.6, 1.8, 2 

Rib depth 15, 17.5,…, 72.5, 75 

 

4D

2D 3D

6
D

1
D

5
D

 
Figure 3. General plan of a concrete ribbed slab 

 

Table 3: Results of the optimization 

Algorithm 

Slab 

thickness 

(cm) 

Rib 

spacing 

(cm) 

Rib width 

at lower 

end (cm) 

Rib Width 

at taper 

end (cm) 

Bar 

diamete

r (cm) 

Rib 

depth 

(cm) 

Weigh

t 

($/m2) 

Number 

of 

analyses 

HS 5 60 10 10 1.4 35 1.3626 6000 

PSO 5 60 17.5 17.5 1.4 32.5 1.3184 6000 

CBO 7.5 67.5 10 10 1.4 30 1.2927 6000 

DPSO 7.5 67.5 10 10 1.4 30 1.2927 6000 
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Figure 4. Convergence curves of the HS, DPSO, CBO and PSO algorithms 

 

 

5. CONCLUDING REMARKS 
 

In this paper, two recently developed meta-heuristic algorithms, known as the Colliding 

Bodies Optimization and Democratic Particle Swarm Optimization, and one of the most 

widely used multi-agent meta-heuristic algorithm, known as Particle Swarm Optimization 

are utilized for optimal design of a concrete ribbed slab. PSO method performs easily in 

engineering problems, needs little number of parameters and has high power in finding 

suboptimal solutions in a reasonable amount of time. But one of the PSO’s main defects is 

the problem of premature convergence. 

In the standard PSO the next position of a particle is obtained only based on that 

particle’s own experience and that of the best particle ever. On the other hand in the 

democratic PSO the next position of a particle is decided on based on the attitude of a bigger 

set of particles called eligible particles. This lets the particles get their information from a 

more varied set of resources. Moreover, letting particles with seeming lower values of 

objective function take part in decision making enables the algorithm to represent better 

exploration characteristics. 

CBO utilizes simple formulation to find minimum values of functions and need no 

internal parameter to be adjusted. 

A minimizing problem of a one-way reinforced concrete ribbed slab simply supported at 

both ends is considered in this paper in order to examine the effectiveness of the above 

mentioned methods. 

The main objective of this paper is to study the convergence curves of these two methods 

for a concrete ribbed slab and compare the obtained values with results of harmony search 

method. In this example, the CBO and DPSO performed meaningfully better than the HS 

because of getting the best solutions so far and CBO attained the best solutions so far in less 

number of analyses in relation to HS. Although in this example PSO performs better than 

HS, the democratic PSO achieve better result than the standard PSO by obtaining lower 

weight and addressing the problem of premature convergence. 

The results obtained show that DPSO and CBO methods are powerful and efficient 

approaches for finding the optimum solution to structural optimization problems. These 

simple meta-heuristic algorithms can be used in many other engineering design problems to 

decrease the construction costs. 
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