
ASIAN JOURNAL OF CIVIL ENGINEERING (BHRC) VOL. 16, NO. 3 (2015) 

PAGES 451-470 

 
 

 

NURBS-BASED ANALYSIS OF CURVED ELEMENTS FOR THIN-

WALLED STRUCTURES 
 

 

H.R. Atri and S. Shojaee 

Department of Civil Engineering, Shahid Bahonar University of Kerman, Kerman, Iran 

 

Received: 2 September 2014; Accepted: 20 December 2014 

 

 

ABSTRACT 
 

In the present investigation, static analysis of thin-walled shell-like structures based on 

isogeometric approach is presented. Since the higher order NURBS is well suited for 

describing the exact geometry and providing 1C -continuity, so they are used as basis 

functions for bridging the gap between design and analysis. The IGA method has been 

shown that the properties of the NURBS basis functions lead in many cases to superior 

accuracy per degree of freedom with respect to finite element method. So several thin shell 

structures are investigated by two approaches of rotation free thin shell element based on 

Kirchhoff theory and three dimensional solid element by using higher order NURBS basis 

functions through k-refinement strategy. It is observed that, 3D solid elements have no 

difficulties in dealing with curved edges and have good performance in modelling and 

analysis. For low order of NURBS basis functions, one can observe weak convergence rate, 

whereas for higher values of order of NURBS, the results are identical to those of shell 

element, which confirms that, only by applying the lengthwise of mesh refinement, the 3D 

solid element can have acceptable performance. 

 

Keywords: IGA; NURBS; rotation free; solid element; shell. 

 

 

1. INTRODUCTION 
 

In a study of the mechanical behavior, two classifications of solid bodies are evident: first, 

bulky bodies which undergo imperceptible changes of shape, such as thick walls of a 

pressure vessel; second, thin bodies which are often quite flexible, such as the skin of an 

aircraft. However, localized behavior of a small element is similar in most bodies, and 

consequently, certain fundamentals apply to both categories. 

The term solid is used to mean a three dimensional solid that is unrestricted as to shape, 

loading, material properties and boundary conditions. A consequence of this generality is 
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that all six possible stresses (three normal and three shear) must be taken into account. Also, 

the displacement field involves all three possible components, u, v, and w. Problems of 

beam bending, plane stress, plates and shells can all be regarded as special cases of a 3D 

solid. 

Shells, because of their distinct physical attributes (thinness and form) exhibit distinctly 

different behaviors. Shell structures are ubiquitous in nature and technology, so studying the 

behavior of these structures are of great importance and essential in predicting their 

structural responses. Different analytical approaches have been introduced for analysis of 

shells. Although the analytical methods are able to provide deep physical insights and their 

solutions are accurate, their application is often restricted to problems having simple 

geometries and boundary conditions. In practical cases, solutions based on numerical 

approaches are necessary and of course one of the most powerful methods for solving the 

complicated boundary and geometry problems is the finite element method (FEM), see [1]. 

Application of the finite element method for the analysis of solid and shell structures 

requires that the user have an understanding of the approximations involved in the 

development of elements and of course, before analyzing a structure using a shell element, 

one should always consider the direct application of three dimensional solids to model the 

structure. In many practical finite element methods, some portions of the structure are best 

modelled with shell elements and others with solids, for example, consider the case of a 

three dimensional arch dam. The arch dam may be thin enough to use shell elements to 

model arch section with six degrees of freedom per node; however modelling the foundation 

requires the use of solid element. Note that use of solid elements should be restricted to 

problem and analysis stages, such as verification, where the generality and flexibility of the 

full 3D model is warranted. On the other hand, in the finite element method, elements with 

curved surfaces can be used in the modelling. In finite element formulation of these types of 

elements, the mapping technique is the same with what used for other linear 3D solid 

elements [2]. As shown in Figure 1 in the physical coordinate system, elements with curved 

edges are first formed in the problem domain and then, these elements are mapped into the 

natural coordinate system, as can be seen, the element mapped in the natural coordinate 

system will have straight edges. In the finite element method, higher order elements of 

curved surfaces are often used for modelling curved boundaries, elements with excessively 

curved edged may cause problems in the numerical integration. Therefore more elements 

should be used where the curvature of the boundary is large. In addition, it is recommended 

that in the internal portion of the domain, an element with straight edges should be used 

whenever possible [2]. Although three dimensional finite elements offer more variety, it has 

many inherent disadvantages including, for instance, the cumbersome task of mesh 

generation; a high order, i.e. 1C -consistency, is not an easy task to construct conventionally 

conformable elements; locking phenomena which are mostly attributed to the use of low 

order basis functions and many different methods have been developed to prevent or reduce 

locking effects [3-12]; a time-consuming procedure for the connectivity of elements; 

remeshing in moving boundary problems and so on. Recently as an alternative to the FEM, a 

family of the so-called meshless or meshfree methods, e.g. see [13-17] have introduced to 

overcome the drawbacks of FEM. Some information on development of the meshless 

methods in solid mechanics can be found in Chen et al. [18]. 

 



NURBS-BASED ANALYSIS OF CURVED ELEMENTS FOR THIN-WALLED ... 

 

 

453 

 
Figure 1. 3D elements with curved edges; physical coordinate system (left), natural coordinate 

system (right) [2] 

 

The isogeometric analysis (IGA) proposed by Hughes et al. [19] and formalized more 

recently in the book of Cottrell et ali. [20] has been increasingly and successfully used in 

many engineering problems and has led to the publication of many works over the last nine 

years (see, for instance, [21-35]). This method offers the possibility of integrating finite 

element analysis (FEA) into conventional NURBS-based Computer Aided Design (CAD) 

tools. The IGA method handles many great features shared by both the FEM and the 

meshless methods. The basic idea behind IGA is to utilize the basic functions that are able to 

model accurately the exact geometries from the CAD point of view for numerical 

simulations of physical phenomena. It can be achieved by using the B-splines or NURBS for 

the geometrical description and invoke the isoparametric concepts to define the unknown 

field variables. A distinct advantage over the FEM is that mesh refinement is simply 

accomplished by re-indexing the parametric space without interaction with the CAD system. 

An intriguing trait of these functions is that they are typically smooth beyond the classical 
1C -continuity of the standard FEM. The IGA-based approaches have been constantly 

developed and have shown many great advantages of research areas such as fluid-structure 

interaction [36-38], fracture mechanics [39], shells [40], structural vibration [41] and so on. 

This paper presents a NURBS-based isogeometric approach for analysis of three 

dimensional structures with two viewpoints of shell and solid elements. NURBS-based 

analysis provides advantages especially for shells, since the structural behavior of a shell is 
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mainly determined by its geometry and therefore a good geometric description is essential. 

Furthermore, due to the exact geometry description with NURBS, curvatures can be 

evaluated directly on the surface without rotational degrees of freedom or nodal directions. 

So the displacement field is all three possible components in both elements, and by owing to 

higher order NURBS basis functions the curved edges in solid elements can be easily 

modeled and analyzed which shows the capability of NURBS basis functions in modelling 

the complex geometries and exact representation of common engineering shapes such as 

circles, cylinders. Spheres, and ellipsoids. Different benchmark examples are illustrated to 

show accuracy and convergence rate of shell element versus solid element which leads 

better understanding of their behaviors.  

This paper is arranged as follow. Next section describes a brief review of NURBS basis 

functions. Section 3 presents the isogeometric formulation of solid and rotation-free thin 

shell elements. Section 4 gives numerical examples before the paper closes with concluding 

remarks. 

 

 

2. B-SPLINES AND NURBS 
 

NURBS are standard tools in Computer-Aided Design and computer graphics. In this 

section, a short description of isogeometric concepts is briefly presented. We shall not 

review the details of the concepts here, but refer the reader who is unfamiliar with the IGA 

to the references which are cited in this section. 

 

2.1 B-splines 

A B-spline is a non-interpolating, piecewise polynomial curve. It is defined by a set of 

control points, 
iP  ( 1i= ,…,n ) and a knot vector  1 2 1n p

  
 

Ξ , , ...,  where p  is the 

polynomial degree of the curve and n  is the number of basis functions corresponding to 

control points. The knot vector is a non-decreasing sequence of parametric coordinates i
  

represent points in the parametric space of the curve. B-spline basis functions are defined 

recursively using Cox-de Boor formula [32] 
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Figure 2 shows an example of 0C  - continuity basis functions with an open knot vector. 

{0, 0, 0, 0.2, 0.2, 0.4, 0.4, 0.6, 0.8, 1, 1, 1}  . 
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Figure 2. Non-uniform rational B-splines 

 

2.1.1 B-splines curves 

B-spline curve of degree p  is computed by linear combination of control points and the 

respective basis functions: 

 

 ( )

n

i,p i

i=1

N ξC P
 

(3) 
 

2.1.2 B-splines surfaces 

A B-spline surface is computed by the tensor product of B-spline basis functions in two 

parametric dimensions   and   , it is defined by a net of n×m  control points, two knot 

vector   and H , two polynomial degrees p  and q  (not necessary to be equal), and 

correspondingly basis functions ( )
i p

N 
,  and ( )j,qM   described as 

 

    ,( , )
n m

i, p j,q i j

i=1 j=1

N ξ M ηS P  
 

(4) 
 

2.1.3 B-splines solids 

B-splines solids are obtained analogously to B-splines surfaces, by considering a three 

dimensional net of control points i j kP , with 0 i n   , 0 j m   and 0 k l   , where 

( )
i p

N 
,

, ( )j,qM   and ( )k ,rL   are B-splines basis functions of degree p , q  and r , 
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respectively and the knot vectors  , H  and   are specified as expressed previously: 

 

      , ,( , , )
n m l

i, p j,q k,r i j k

i=1 j=1 k=1

N ξ M η LS P   
 

(5) 
 

2.2 NURBS 

For a NURBS curve, each control point has an individual weight iw , such a point 

 i i i i ix ,y ,z ,wP
 
can be represented with homogeneous coordinates  i i i i i i i iw x ,w y ,w z ,wP

 
in 

a projective 
4

 space. Similarly to B-spline curves, surfaces and solids, NURBS-based 

ones are defined as [32] 
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Note that the weights play an important role in defining the basis, and if the weights are 

all equal, then    p

i i,pR N ξ   and the curve is again polynomial. Thus B-splines are a 

special case of NURBS. In this work, only open knot vectors with at least of degree 2 in 

both spatial directions will be considered in the construction of NURBS entities. The mesh 

refinement, to be applied only lengthwise, will be of the k-refinement type, which means 

that 1pC  -continuity of the NURBS functions at knot spans is preserved. The positions of 

the control points and the values of the associated weights can be determined such as to 

build the geometry of the structure exactly. For a good review of mesh generation and 

refinement, see Cottrell et al. [20, Chapter 2]. 

Two examples of the geometry representation of a free-form shapes based on NURBS 

functions for a solid and surface are illustrated in Figure 3. 

 

 

3. ISOGEOMETRIC FORMULATION BASED ON NURBS BASIS FUNCTIONS 
 

Here, the application of NURBS-based isogeometric analysis is considered to formulate 2D 
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stress analysis problem and can be generalized to other problems. In isogeometric approach, 

the discretization is based on NURBS. Hence, the geometry and solution field are 

approximated as 

 

 
1

P
n m

k k

k

x , R 



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(9a) 
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n m
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
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(9b) 
 

where patch,   and   1 1 1 1patch n p m q, | , , ,          
          . The matrix-

form of i, jR  and i, jP  can be changed into vector-form by mapping from i j,  subscripts to k  

by 

 

 1k i j n           with          1 2k , , n m   (10) 
 

The values of solution field at the control points, also called control variables, are 

displacements and can be arranged in a vector-form as follow 

 

 k k k kd u ,v ,w  (11) 
 

As can be seen, the displacement field is three possible components. In the following, the 

fundamental concepts of shell and solid elements are considered. 

 

3.1 Kirchhoff-Love shell formulation 

The finite element formulation based on the Kirchhoff theory requires elements with at least 
1C -inter-element continuity, which has gained many difficulties to achieve for free form 

geometries when using the standard Lagrangian polynomials as basis functions. Higher-

order NURBS basis functions, however, with an increased inter-element continuity can be 

easily obtained, thus the NURBS is well suited for the Kirchhoff elements by means of the 

IGA. In this paper, we have adopted the thin shell formulation from [40, 42]. 

In the Kirchhoff-Love shell theory, shell cross section remains normal to its mid-surface 

in the deformed configuration, which implies that the strain is assumed to be linear through 

the thickness and the transverse shear strains are zero. So the shell kinematics can be 

reduced to description of its mid-surface. For more details of thin shell formulation, see [43]. 

The configuration space of the generic shell 
s

C  is defined as [44]: 
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  3 2: S  
s

C R,N  (12) 
 

Where   is the current surface of a shell, S  is the space of admissible configuration,   

is the configuration or deformation and  is a set of real numbers,   2

1 2
: S  N ,  is a 

unit vector associated with the middle surface of the shell and   3

1 2
:  R ,  specifies 

the position vector to each point on the shell’s midsurface. The shell mid-surface is 

parameterized by curve linear coordinates 1 2 3
  , , . The deformed shell geometry can be 

described by  

 

     1 2 1 2 1 2x X u      , , ,  (13) 
 

 

 
Figure 3. Physical mesh of an arch, solid NURBS (left), surface NURBS (right) 

 

where X  is the position vector of a material point of the shell mid-surface in the 

reference configuration, and x  is the position vector of the same point in the deformed 

geometry. The shell geometry in the reference configuration is given by  

 

   1 2 3 1 2 3 3
      X , , R , N

           3
2 2

h h
    (14) 
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where  1 2
 R ,  specifies the position vector to each point on the shell’s mid-surface, 

3
N  is the normal to the mid-surface which can be obtained as 1 2

3

1 2






N N
N

N N
, h  represents 

the shell thickness and 3  denotes the through the thickness coordinate. 
1

N  and 
2

N  are the 

basis vectors in the reference configuration which are given by 

 


,

N R  (15) 
 

The Greek symbols take value of 1 and 2, and ( , ) indicates the partial derivative and 

similar for the shell geometry in the deformed configuration 

 

   1 2 3 1 2 3 3
      x , , r , n

           3
2 2

h h
    (16) 

 

The uppercase quantities belong to the reference configuration, while lowercase ones 

denote to deformed configuration. The covariant basis vectors of the shell are 

 

3 3  







  


,

X
G N N

                   3 3G N  (17) 

3 3  







  


,

x
g n n

                    3 3g n  
(18) 

 

The covariant components of the metric tensor of the shell are given by 

 

G
ij i j

G G   (19) 
g g

ij i j
g    (20) 

 

i  and j  symbols range from 1 to 3. By the means of the well-known formula, the strain is  

 

i j

i j
EE G G   (14) 

 

with 

 

3i j i j i j
E      (15) 
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where i
G  and jG  are the contravariant basis vectors,   and   which are membrane and 

bending strains, respectively can express as 

 

 
1

2
ij i j i j

n n N N      (16) 
3 3ij i ,j i ,j

n n N N      (17) 
 

with the aid of Eq. Error! Reference source not found., the strains for small 

deformations can be rewritten as 

 

 
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 (19) 

 

where 
1 2g gj   . 

In order to obtain the stiffness matrix, the internal virtual work is applied [40] 

 

int m b

m m b b

m b

( D D )
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T T
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δ δ δ d
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(20) 

 

where 
mD  and 

bD  are the membrane and bending constitutive matrix [43]. The internal 

stiffness matrix is obtained by 

 

m m b b

m b[ ( ) D ( ) D ]T T

e e e e d


   B B B BK

 
(21) 

 

where m
Be  

and b
Be  

are membrane and bending strain-displacement matrices, which can 

be derived according to Eq. (18) and Eq. (19). 

 

3.2 Solid element formulation 

A three dimensional solid element can be considered to be the most general of all solid finite 

elements, because all field variables are dependent of x y,  and z . A 3D solid element can 

also have any arbitrary shape, material properties and boundary conditions in space. One of 

the major difficulties associated with the use of three dimensional elements is that, a large 
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number of elements have to be used for obtaining reasonably accurate results. This will 

result in a very large number of simultaneous equations to be solved in static analysis. 

Despite this difficulty, we may not have any other choice, except to use three dimensional 

elements in certain situations. So, in the following, a brief review of 3D solid element 

formulation is presented. More details regarding standard 3D elasticity can be found in the 

books of Belytschko et ali. [45] and Hughes [46]. 

By assuming the variations of the displacements in between the nodes to be linear, the 

displacements can be expressed by the interpolation functions used to describe the geometry 

as 

 

    e
U R dx,y,z x,y,z   (22) 

 

where the nodal displacement vector, 
e

d , is given as 
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(23) 

 

and the matrix of shape functions has the form 

 

1 2 3 4

1 2 3 4

1 2 3 4

ControlPoint 1 ControlPoint 2 ControlPoint 3 ControlPoint 4

R 0 0 R 0 0 R 0 0 R 0 0

0 R 0 0 R 0 0 R 0 0 R 0

0 0 R 0 0 R 0 0 R 0 0 R

                                                 

R
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 


 
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 (24) 
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which R  is the NURBS basis functions. Stress-strain relations are written in the form 

 

 

 

1 0 0 0
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    
          

(25) 

 

where 
   1 1 2

E
c

 


  
 and 

 2 1

E
G=


 ( E  and   are the Young’s modulus and 

Poisson’s ratio, respectively). Or the compact form is      E   . 

The strain-displacement relations are: 

 

x y z
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u v w
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u v v w u w

y x z y z x

  
  

  
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  

     

  

     

 

(26) 

 

and if we group all the strain components in a vector, we can write        B U . Once the 

strain matrix has been obtained, the stiffness matrix K  for 3D solid elements can be 

obtained as 

 

     
T

V

dVK B E B  
 

(27) 
 

In the present study, sufficiently accurate Gaussian quadrature is utilized on knot spans 

and the numerical results are obtained using   1 1p q 
 Gauss points in shell element and 

   1 1 1p q r    in solid element, which p q,
 and r  are the orders of NURBS basis 

functions. So far, the isogeometric analysis has been shown to be more accurate than 

traditional finite element per degree of freedom. As NURBS are rational polynomials, 

Gaussian quadrature seems to be very effective for integrating them. 

 

 

4. NUMERICAL RESULTS 
 

In this section, the validity and the accuracy of the isogeometric approach in thin-walled 

shell-like structures are investigated. The examples are modelled by three dimensional solid 

elements and Kirchhoff shell elements with no rotational degree of freedom. The results 

obtained by isogeometric analysis are also compared with analytical solutions. 
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4.1 Scordelis-Lo roof 

Scordelis-Lo roof shown in Figure 4 is a panel of a cylindrical shell that is supported at its 

ends by rigid diaphragms, inhibiting the x  and z translations. The roof is subjected to a 

uniform gravity load. The vertical displacement at the midpoint of the side edge is given as 

the reference solution. Geometric, material data and boundary conditions of the problem are 

shown in Figure 4. Due to symmetry, only a quadrant of the roof is discretized and the 

results are shown in Figure 5 and Figure 6 for different polynomial orders and reference 

solution. As it can be seen, by increasing the order of NURBS in 3D solid element, the 

convergence rate appears satisfactory, it should be noted that, k-refinement strategy is used 

and there are only 2 elements through the thickness. And in shell element, for all polynomial 

orders, the convergence rate is fast. 

The analytical solution of the mid-side vertical displacement, (Point B) is normally taken 

as 0.3024 [47, 48], even though, a value of 0.3086 was originally presented by Scordelis and 

Lo [49]. Figure 7 shows the deflection at the midpoint of the free edge for quadrant of 

 

 
Figure 4. Scordelis-Lo roof, geometry and material data [50] 

 

 
Figure 5. Scordelis-Lo roof; vertical displacement at the midpoint of free edge, (solid element) 
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Figure 6. Scordelis-Lo roof; vertical displacement at the midpoint of free edge, (shell element) 

 

 
Figure 7. Quadrant of Scordelis-Lo roof, deformed configuration, (solid element) 

 

Scordelis-Lo roof, and the physical mesh for the roof by solid element is depicted in Figure 8. 

Finally, the deformed configuration for the entire roof using shell element is shown in Figure 

9. 

 

 
Figure 8. Quadrant of Scordelis-Lo roof, physical mesh, (solid element) 
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Figure 9. Scordelis-Lo roof, deformed configuration, (shell element) 

 

4.2 Pinched cylinder with diaphragms 

The pinched cylinder with diaphragms is one of the most severe tests for both inextensional 

bending modes and complex membrane states. The cylinder is subjected to two opposite 

point loads in the middle. The geometrical and material properties of the cylinder are 

depicted in Figure 10. Taking advantage of symmetry, only one eighth of the geometry is 

modelled. 

The theoretical solution of deflection at the loading point is 51.8248 10 [47]. Figure 11-

12 show numerical results for the radial displacement at the loading point for both elements. 

It is observed that, the performance of the shell element is in excellent agreement with the 

analytical solution for different order of NURBS basis functions. It is interesting to point out 

that the solid element faces difficulties converging at low order of NURBS basis functions, 

but with increasing the order of NURBS, the convergence rate is similar to the shell element, 

which shows that, by lengthwise refinement as like as shell element, and only with 2 

elements through the thickness, the 3D solid element can have satisfactory performance. In 

the following, the deformed configuration and the physical mesh for one octant of pinched 

cylinder by solid element is shown in Fig. Figure 13-14, respectively. 

 

 
Figure 10. Pinched cylinder, geometry and material data [50] 
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Figure 11. Pinched cylinder; radial displacement at the loading point, (solid element) 

 

 
Figure 12. Pinched cylinder; radial displacement at the loading point, (shell element) 

 

 
Figure 13. One octant of pinched cylinder, deformed configuration, (solid element) 
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Figure 14. One octant of pinched cylinder, physical mesh, (solid element) 

 

 

5. CONCLUSION 
 

In this paper, NURBS-based isogeometric analysis is applied to study static analysis of thin-

walled shell-like structures. The analysis has been carried out using higher order NURBS 

basis functions. With NURBS, achieving the 
1C -continuity of Kirchhoff-Love shell theory 

can be provided easily. The number of degrees of freedom are lower because only the 

middle surface of a rotation-free thin shell is modelled, and by owing to higher order 

NURBS basis functions, the curved edges in solid elements can be easily modelled and 

analyzed. From the detailed numerical study, it can be seen that the 3D solid element in 

isogeometric analysis, in contrast to finite element method, has no difficulties in dealing 

with curved surfaces, and its performance is found to be better when using higher order 

NURBS basis functions. It is interesting to note that 3D solid element appears to converge 

monotonically to the reference solution and its convergence rate indeed appears satisfactory. 
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