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ABSTRACT 
 

In this paper, optimal design of latticed columns is performed under static loads utilizing 

two new algorithms, Colliding Bodies Optimization (CBO) and Democratic Particles Swarm 

Optimization (DPSO) and also a comparison between two valid codes, AISC 360-10 and 

Eurocode 3, is investigated. This optimization is on the basis of cost function of materials 

used in latticed columns, according to each standard and their constructions. Three examples 

are optimized for each code and their convergence curves are compared. Finally a 

comparison between two codes is done and the most optimum standard is presented. 

 

Keywords: Colliding bodies optimization (CBO); democratic particle swarm optimization 

(dpso); built-up column; latticed column; optimal design. 

 

 

1. INTRODUCTION 
 

Nowadays due to increasing the structural dimensions, the weight of the structures are 

ncreased thus the engineers tend to use members with high strength plus better architectural 

and economical properties. The total cost of a steel structure consists of the price of the 

material (30-73)% and the rest of the cost, such as manufacture (16–22)%, assembling (5–

20)%, transportation (3–7)%, and design (2–3)%, having minimum contribution on the total 

cost. Therefore, choosing optimal shape and optimum parameters of consumed profiles, 

reduce the consumption of the material and its costs [1]. 

Built up members have special importance in frame structures works particularly when 

the goal is to maximize the bearing capacity along with minimum final structural weight. 

Tower crane, truck crane booms, booms, telecommunication tower, latticed and battened 

columns are some of applications of built up members. Also when we have long buckling 

length and low compression load, using this type of compression member is useful. Built up 
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columns compared with rolled sections with same cross section are much lighter. Usually 

rolled sections are used in constructions. Sometimes existing profiles cannot provide the 

required bearing capacity, then built up members can be considered as a suitable 

replacement. 

Other methods for making the structures lighter is utilize optimum sections. For this 

purpose different optimization methods are presented. Optimization methods are important 

in engineering design. Methods of optimization can be divided into two general categories: 

1. Mathematical methods such as Newton-Raphson, differentiation approaches, quasi-

Newton (QN) and dynamic programming (DP) [2]; 2. Optimization algorithms that can be 

divided in to two part meta-heuristic algorithms such as Genetic algorithms (GA) [3], 

Particle swarm optimization (PSO) [4], Ant colony optimization (ACO) [5], Big bang big 

crunch (BB-BC) [6], Charged system search (CSS) [7], Ray optimization (RO) [8], 

Democratic PSO [9], Dolphin echolocation (DE) [10], Mine blast (MB) [11], Colliding 

bodies optimization (CBO) [12,13]. This algotithm in enhanced by Kaveh and Ilchi Gazaan 

[14,15]. These algorithms usually mimic the phenomena from nature. 

In the following sections a latticed column is optimized by two meta-heuristic algorithms, 

namely the particles swarm optimization and colliding bodies optimization. In section 2, we 

introduce design variables. In section 3 two utilized optimization algorithms are briefly 

presented. In section 4 the process of latticed column design via two standard codes, AISC 

and Euro code is described. In section 5 an example is presented and finally in section 6 

conclusions are derived. 

 

 

2. DESIGN VARIABLES OF THE PROBLEM 
 

Fig. 1 shows the four design variables considered for modeling of the latticed column. These 

variables consist of two continues ones: the throat thickness of fillet welding (x(1)), distance 

between two main profiles (x(2)) and two discrete ones: number of I shaped profile as main 

profile (x(3)), number of angle profile as lacing (x(4)). These two discrete variables are 

selected from a list of sections properties according to each standard and in fact they are 

counter. It should be noted that the distance between two successive lacings, can also be a 

variable, however, it is related to the variable (x(2)) by the following formula: 

lacing’s length=x(2)/sin (alpha) 

a=2*( lacing’s length *cos(alpha)+Lacing’s flange length/(2*sin(alpha))+x(1)); 

 

 

3. OPTIMIZATION ALGORITHMS 
 

In this section three optimization algorithms is presented. The first one is Democratic PSO, 

that is introduced as an improved version of particle swarm optimization algorithm and the 

second one is a new meta-heuristic algorithm so-called colliding bodies optimization (CBO) 

and in the follow enhanced version of CBO (ECBO) is introduced. 
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Figure. 1 Details of a latticed column design 

 

 

3.1 Democratic particle swarm optimization 

Democratic PSO optimization algorithm is an improved version of Particle Swarm 

Optimization (PSO) optimization algorithm, developed by Kaveh and Zolghadr [9]. PSO 

was first introduced by Kennedy and Eberhart [4], is a population-base meta-heuristic 

algorithm inspired by the social behavior of animals such as fishes schooling, insects 

swarming, and birds flocking. Like any other population-based meta-heuristic algorithm, 

PSO starts with a set of agents which are randomly spread in the multi-dimensional search 

space of problem. As the optimization process continues these agents move around in the 

search space searching for better positions. By gradual improvement of the locations of the 

particles in a swarm the algorithm finally converges to a sub-optimal solution. However, 

PSO is notorious for premature convergence. In fact, it lacks proper exploration capability. 

In the standard PSO all the particles are just being eagerly attracted toward better solutions. 

And each particle, moving toward the best position experienced by itself and by the whole 

swarm and some better regions of the search space that experienced by other particles being 

disregarded. 

Indeed, the particles of the standard PSO are only motivated by their own preference and 

the best particle's dictation. Except for their own knowledge and that of the best particle , 

they do not take the achievements of the other members of the swarm into account i.e. the 

information is not appropriately shared between the particles of the swarm.  

In order to address this problem, the velocity vector of the democratic PSO is defined as: 

 

𝑣𝑖,𝑗
𝑘+1 = 𝑥[𝜔𝑣𝑖,𝑗

𝑘 + 𝑐1𝑟1 𝑥𝑙𝑏𝑒𝑠𝑡𝑖,𝑗
𝑘 − 𝑥𝑖,𝑗

𝑘  + 𝑐2𝑟2 𝑥𝑔𝑏𝑒𝑠𝑡𝑗
𝑘 − 𝑥𝑖,𝑗

𝑘  + 𝑐3𝑟3𝑑𝑖,𝑗
𝑘 ] 

 
The main different between the standard PSO and the Democratic PSO is in the velocity 
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vector, exactly in the last term of the previous equation. The term 𝑐3𝑟3𝑑𝑖,𝑗
𝑘  represents the 

democratic effect of the other particles of the swarm on the movement of the ith particle, 

where: 

𝑐3   a parameter to control the weight of the democratic vector 

𝑟3   a random number uniformly distributed in the range (1,0) 

𝑑𝑖,𝑗
𝑘   this term is produce as follow: 

𝐷𝑖 =  𝑄𝑖𝑘  𝑋𝑘 − 𝑋𝑖 

𝑛

𝑘=1

 

𝑄𝑖𝑘 =
𝐸𝑖𝑘

𝑜𝑏𝑗 𝑏𝑒𝑠𝑡

𝑜𝑏𝑗  𝑘 

 𝐸𝑖𝑘
𝑜𝑏𝑗 𝑏𝑒𝑠𝑡

𝑜𝑏𝑗  𝑘 
𝑛
𝑘=1

 

𝐸𝑖𝑘 =  1                
𝑜𝑏𝑗 𝑘 − 𝑜𝑏𝑗(𝑖)

𝑜𝑏𝑗𝑤𝑜𝑟𝑠𝑡 − 𝑜𝑏𝑗𝑏𝑒𝑠𝑡
> 𝑟𝑎𝑛𝑑 ˅ 𝑜𝑏𝑗(𝑘) < 𝑜𝑏𝑗(𝑖)

0                               𝑒𝑙𝑠𝑒                                                             

  

where:  

𝑄𝑖𝑘    the weight of the kth particle in the democratic movement vector of the ith 

particle 
𝑋    the particle's position vector 

𝑜𝑏𝑗𝑏𝑒𝑠𝑡   the value of the objective function for the best particle in the 

current iteration 
𝑜𝑏𝑗𝑤𝑜𝑟𝑠𝑡   the value of the objective function for the worst particle in the 

current iteration 

𝑜𝑏𝑗 𝑘   objective function value for kth particle 

Improving the exploration capabilities of the algorithm can be done in two ways: 

1) Help the agents to receive information about good regions of the search space 

other than those experienced by themselves and the best particle of the swarm.  

2) Let some bad particles take part in the movement of the swarm. 

 
3.2 Colliding bodies optimization 

Colliding Bodies Optimization (CBO) is an efficient and simple continuous optimization 

algorithm that is developed recently by Kaveh and Mahdavi [12,13]. The main feature of 

this algorithm is based on collision between objects. In this algorithm each agents are named 

CBs and the main mass, position and velocity are attached to them. After collision between 

CBs their velocity and position are updated according to collision lows. In the next part 

details of this algorithm is presented. 

3.2.1 The CBO algorithm 

In CBO each solution candidate Xi that itself is a vector containing a number of variables 

(Xi={Xi,j}) is considered as a colliding body (CB). The massed objects are composed of two 

main equal groups, stationary and moving objects, where the moving objects follow 

stationary ones. Two main goals are prevailing here: first improving the moving CB’s 

position and second to push stationary objects towards better positions. After collision 

position of colliding bodies are updated based on the collision laws. 

The CBO procedure can briefly explained as follow: 
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1. The algorithm starts with a random initial position of a main number of agents (CBs) 

by the follow formula: 

 

X0
i =Xmin + rand(Xmax-Xmin) i=1,2,…,n 

 

where: 

X0
i     the initial value vector of the ith CB 

Xmin and Xmax  minimum and maximum allowable values vectors of the variables 

Rand     a random number in the interval [0,1] 

n      number of agents that here named CBs and must be even 

2. The magnitude of the body mass for each CB is defined as: 

 

𝑚𝑘 =

1

𝑓𝑖𝑡 (𝑘)

 
1

𝑓𝑖𝑡 (𝑖)

𝑛
𝑖=1

     𝑘 = 1,2, . . , 𝑛 

 

Where: 

𝑓𝑖𝑡 𝑖  the objective function value of the ith CB. 

3. Then CBs objective function values is arranged in ascending form. The sorted CBs are 

divided into two equal groups: 

 The lower half of the CBs are stationary CBs that have lower objective function value. 

These CBs are good agents and the initial velocity of them is equal to: 

 

𝑣𝑖=0,    i=1, 2, …,
𝑛

2
 

 

 The upper half of the CBs are moving ones. These CBs move toward the lower then 

agents with upper value of each group will collide together. The velocity of these bodies 

before collision is equal to: 

 

𝑣𝑖=𝑥𝑖 − 𝑥𝑖−𝑛
2
 i=

𝑛

2
+ 1,… , 𝑛 

 

where: 

𝑣𝑖  and Xi   velocity and position vector of the ith CB in this group 

Xi-n/2                    the ith CB pair position of Xi in the previous group 

4. After the collision, the velocity of moving CBs are derived as follow: 

 

𝑣𝑖
′=

(𝑚 𝑖−𝜀𝑚 𝑖−
𝑛
2

)𝑣𝑖

𝑚 𝑖+𝑚 𝑖−
𝑛
2

     𝑖 =
𝑛

2
+ 1,… , 𝑛 

 

where: 

𝑣𝑖  and 𝑣𝑖
′    the velocity of ith moving CB before and after collision, respectively; 

𝑚𝑖  𝑎𝑛𝑑 𝑚𝑖−
𝑛

2
  masses of the ith CB and the ith CB pair, respectively; 

Also, the velocity of stationary CBs after the collision is: 
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𝑣𝑖
′=

(𝑚
𝑖+
𝑛
2

+𝜀𝑚
𝑖+
𝑛
2

)𝑣
𝑖+
𝑛
2

𝑚 𝑖+𝑚 𝑖+ 
𝑛
2

     𝑖 = 1, … ,
𝑛

2
 

 

Where: 

𝑣𝑖+𝑛

2
and 𝑣𝑖

′    the velocity of ith moving CB pair before and ith stationary CB after 

the collision respectively; 

𝑚𝑖and 𝑚𝑖+ 
𝑛

2
  mass of the ith CB and mass of the ith moving CB pair respectively; 

𝜀      the coefficient of restitution (COR) that is derived by the follow 

equation: 

 

𝜀 = 1 −
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
 

 

5. New position of the CBs are evaluated using their velocities after the collision in 

position of the stationary CBs. 

The new positions of each moving CBs is: 

 

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖−𝑛

2
+ 𝑟𝑎𝑛𝑑 ∘ 𝑣𝑖

′ ,   𝑖 =
𝑛

2
+ 1,… , 𝑛 

 

where: 

𝑥𝑖
𝑛𝑒𝑤 and 𝑣𝑖

′ :  the new position and the velocity after the collision of the ith moving CB, 

respectively. 

𝑥𝑖−𝑛
2
:     the old position of ith stationary CB pair 

The new positions of stationary CBs is: 

 

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖 + 𝑟𝑎𝑛𝑑 ∘ 𝑣𝑖

′ ,      𝑖 = 1, … ,
𝑛

2
 

 

where: 

𝑥𝑖
𝑛𝑒𝑤 , 𝑥𝑖  and 𝑣𝑖

′  the new position, the old position and the velocity after the 

collision of the ith stationary CB, respectively. 

𝑟𝑎𝑛𝑑        a random vector uniformly distributed in the range (-1,1) 

The sign ‘∘’ denotes an element by element multiplication. 

The process of CBO algorithm is repeated from step 2 until a termination criterion, such 

as maximum iteration number, is satisfied. The penalty function approach was used for 

constraint handling. The 𝑓𝑖𝑡 𝑖  function corresponds to the effective cost. If optimization 

constraints are satisfied, there is no penalty; otherwise the value of penalty is calculated as 

the ratio between the violation and allowable limit. 

 

3.2.2 The ECBO algorithm 

Enhanced Colliding Bodies Optimization (ECBO) is an improved version of the CBO that is 

developed recently by Kaveh and Ilchi Ghazaan [14,15]. The ECBO adds a memory to the 

CBO, to save a number of historically best CBs and utilizes a mechanism to escape from 
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local optima. The main alteration for exchanging the CBO to the ECBO, is after step 3 of the 

presented CBO algorithm. In this step, colliding memory (CM) is utilized to save a number 

of historically best CB vectors and their related mass and objective function values. Solution 

vectors which are saved in CM are added to the population and the same number of current 

worst CBs are deleted. Finally, CBs are sorted according to their masses in a decreasing 

order again. 

Also a parameter so-called Pro within (0, 1) is introduced and it is specified whether a 

component of each CB must be changed or not. This parameter is used at the end of the 

CBO algorithm. For each colliding body Pro is compared with rni (i=1,2,…,n) which is a 

random number uniformly distributed within (0, 1). If rni < pro, one dimension of the ith CB 

is selected randomly and its value is regenerated as follows: 

 
xij = x j,min + random.(x j,max - x j,min ) 

 
where xij is the jth variable of the ith CB. xj,min and xj,max are the lower and upper bounds 

of the jth variable, respectively. In order to protect the structures of CBs, only one dimension 

is changed. 

 

3.3 Numerical design example 

As explained before, using a latticed column, where we have long buckling length or low 

buckling load, is an economical column. Also we described about optimization approaches 

and importance of optimization in constructions. Here we combine these two subjects. In 

this section a latticed column which is designed by two AISC and Euro code standard, is 

optimized via four algorithms, CBO, ECBO, PSO and Democratic PSO. In this section 

objective function of design optimization of latticed column is evaluated. The objective 

function here is the built up column’s weight that should be minimized. The column is 

composed of two main profile with I shaped section, angle profile used as lattice with a 

certain length and length of welding connection. Then weight of the sum of these parts 

produce the objective function. Details of evaluating objective function is considered Table 

1. 

 
Table 1: Variables, used symbols and their limits in both standard AISC and Eurocode 

Variables 
AISC (Ib-in) Euro code (kN-mm) 

Symbol limits Symbol limits 

X(1): throat thickness 𝑎𝑤  0.125-1.625 𝑎𝑤  3-35 

X(2): distance between two main profile b 3.94-31.4961 𝑕0 100-800 

X(3): main profile number of section list i 1-274 i 1-24 

X(4): lacing profile number of section list j 1-127 j 1-107 

 

It should be noted that variable x(2) must be at least equal to the main profile flange. 

Then we have to apply some limitation on this variable in objective function. For upper limit 

of this variable we use of the concept that a double column is optimum when the minimum 

gyration ratio is equal to maximum gyration ratio. For this purpose we use a relationship as 

follow: 

AISC:        Euro code: 
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b=max(bf , |x(2)|)     ho=max(bf , |x(2)|) 

b=min(31.4961 , |x(2)|)   ho=min(800,|x(2)|) 

Common symbols in AISC and Euro code: 

𝒄𝒉𝒐𝒓𝒅_𝒘𝒆𝒊𝒈𝒉𝒕: Weight per unit length of used main profile (I shaped profile), 

𝒍𝒂𝒄𝒊𝒏𝒈_𝒘𝒆𝒊𝒈𝒉𝒕: Weight per unit length of used lacing (angle profile), 

𝒘𝒆𝒍𝒅𝒊𝒏𝒈_𝒍𝒆𝒏𝒈𝒕𝒉: Total length of the welding. 

𝑳 Length of the built up column; 

𝒂 Length of the main profile between two successive lacings according to Fig. 1 

tf Thickness of chord’s flange 

bf Length of main profile’s flange 

bfo Length of the lacing profile’s flange 

tfo Thickness of the lacing’s flange 

Euro code symbols: 

𝒅 Length of lacing 

Ned  Applied load 

Med1  Applied moment 

Nched  Maximum design force for two identical chords 

Nbzrd  The design buckling resistance of the chord about the weak axis of the cross-

section, 

calculated according to EN 1993-1-1 § 6.3.1 

Nbyrd  The design buckling resistance of the chord about the strong axis of the 

cross-section, 

   calculated according to EN 1993-1-1 § 6.3.1. 

Nded  The compression axial force in a diagonal 

Nbdrd  The design buckling resistance of diagonal 

Nted  Maximum design value of the tensile axial force of diagonal 

Ntrd  The design tension resistance 

Fwed  The design value of the force per unit length 

Fwrd  The design weld resistance per unit length 

AISC symbols: 

P  Applied load 

Pn  Nominal compressive strength 

ki  Effective length ratio according to AISC360-10 E6-2 is equal to 0.86 

ryi  Radius of gyration about y axis of a main profile 

slenderness Slenderness ratio of built up column about no material axis 

slenderness_lacing Maximum slenderness ratio of lacing 

if welding_length ≤ 100aw 

le = welding_length 

elseif welding_length ≥ 300aw 

le = 180aw 

else 

B = min(1.2-0.002×(welding_length/aw),1); 

le=B×welding_length; 

over_lap = bf/(2*sind(alpha))-bfo/2*cotd(alpha) 
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steel’s special gravity= 𝟕𝟖𝟓𝟎 × 𝟏𝟎−𝟗𝒌𝒈/𝒎𝒎𝟑  = 𝟐𝟖𝟑𝟔𝟎. 𝟒𝟏𝟕𝟐 × 𝟏𝟎−𝟓  𝑰𝒃/𝒊𝒏𝟑 

 
3.3.1.1 Objective Function 

Euro code: 

𝟐 𝒄𝒉𝒐𝒓𝒅𝒘𝒆𝒊𝒈𝒉𝒕 × 𝑳 × 𝟏𝟎−𝟑 + 𝟐 ×  
𝟐𝑳

𝒂
 × 𝒍𝒂𝒄𝒊𝒏𝒈𝒘𝒆𝒊𝒈𝒉𝒕 × 𝒅 × 𝟏𝟎−𝟑 + 𝟒 × 𝒘𝒆𝒍𝒅𝒊𝒏𝒈𝒍𝒆𝒏𝒈𝒕𝒉 

×
𝒂𝒘

𝟐

𝟐
× 𝟕𝟖𝟓𝟎 × 𝟏𝟎−𝟗 

 

AISC: 

 

𝟐 𝒄𝒉𝒐𝒓𝒅𝒘𝒆𝒊𝒈𝒉𝒕 ×
𝑳

𝟏𝟐
+ 𝟐 ×  

𝟐𝑳

𝒂
 × 𝒍𝒂𝒄𝒊𝒏𝒈𝒘𝒆𝒊𝒈𝒉𝒕 ×

𝒅

𝟏𝟐
+ 𝟒 × 𝒘𝒆𝒍𝒅𝒊𝒏𝒈𝒘𝒆𝒊𝒈𝒉𝒕 ×

𝒂𝒘
𝟐

𝟐
 

× 𝟐𝟖𝟑𝟔𝟎. 𝟒𝟏𝟕𝟐 × 𝟏𝟎−𝟓 

 

3.3.1.2 Constraints 

Euro code: 

<<<<<<<< checking for buckling resistance of a main profile>>>>>> 

g1= Nched-Nbzrd<0      according to EN 1993-1-1 § 6.4 

<<<<<< checking for out of plane buckling resistance of the main profiles (chords) >>>> 

g2=Nched-Nbyrd<0 

<<<<<<<< checking for buckling resistance of a diagonal>>>>>> 

g3=Nded-Nbdrd<0 

<<<<<<<< checking for resistance of the diagonals in tension >>>>>> 

g4=Nted-Ntrd<0 

<<<<<< checking for resistance of the diagonal to main profile welded connection >>>> 

g5=Fwed-Fwrd<0      according to EN 1993-1-8: 4.5.3.3 

g6=max(30,6aw)-welding_length<0    according to EN 1993-1-8: 4.5.1(2) 

g7=0,3-aw<0 

g8=aw-tfo<0        

constraint=g1+g2+g3+g4+g5+g6+g7+g8; 

AISC: 

<<<<<<<< checking for buckling resistance of a main profile>>>>>> 

g1=P-0.9Pn         according to E6-1 

g2= kia/ryi - 
𝟑

𝟒
 slenderness<0      according to E6-2 

g3=tfo-tf<0        

g4=kia/ryi – 140<0        according to E6-2 

g5= slenderness_lacing – 140<0      according to E6-2 

<<<<<<<< checking for buckling resistance of a diagonal>>>>>> 

g6=P_lacing-0.9Pn_lacing 

g7=b-15<0  ‘b’for single lacing in built up column should be less than 15 in. 

g8=bfo-b/2<0      

g9=max(0,3 -  
𝟐𝑳

𝒂
 ) ; 

g10=flange_ratio-0.56√
E

fy
    according to AISC manual Table B4.1 
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g11=web_ratio -1.49√
E

fy
     according to AISC manual table B4.1 

 

<<<<<< checking for resistance of the diagonal to main profile welded connection >>>> 

g12= P_lacing - Rn<0 

<<<<<< checking for minimum throat thickness size >>>> 

min_thickness = min (tfo,tf) 

if min_thickness ≤  
1

4
 

g13= 
1

8
 - aw<0 

else if 
1

4
 < min_thickness ≤ 0.5 

g13= 
3

16
 - aw< 0 

else if 0.5<min_thickness≤
3

4
 

g13=  
1

4
- aw< 0 

else 

g13= 
5

16
-aw< 0 

<<<<<< checking for maximum throat thickness size >>>> 

if tfo <  
1

4
 

g14= 0,aw-tfo < 0 

else 

g14=aw-(tfo-(
𝟏

𝟏𝟔
)) <0 

g15=4aw-le<0         AISC-10: M4-2b 

g16=over_lap-max(1,5×min_thickness) < 0   AISC-10: M4-2b 

constraint=g1+g2+g3+g4+g5+g6+g7+g8+g9+g10+g11+g12+g13+g14+g15+g16 

 

3.3.1.3 Numerical results 

The Democratic PSO, PSO, CBO and ECBO algorithms are all coded in Matlab software. 

The analysis and design stages and cost function are created in a function file that is called 

from the optimization code of each algorithm. The data for the considered latticed column 

designed with two standards AISC [16] and Euro code [17] are provided in Table 2. 

 
Table 2: Design data base 

Data base 
AISC (lb-in) Euro code (kN-mm) 

variable magnitude variable magnitude 

Applied load 𝑃 202328.05 𝑁𝑒𝑑  900 

Applied moment - - Med 0 

Built up column length L 393.7 𝐿 10,000 

Modulus of elasticity  E 29×106 E 2.1×105 

Yield stress Fy 50000 Fy 335 

Angle between lacing and main 

profile as shown in Fig. 1 
alpha 60° alpha 60° 
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Finally, Compression of the results for four optimization algorithms, is shown in Fig. 2 

and Fig. 3. The results of the optimization algorithms and equivalent item of discrete 

variables that is used in objective function, are presented in Table 3. 

 
Table 3: Optimum results for both standard AISC and Euro code 

Design 

standard 

Optimization 

algorithm 
X(1) X(2) X(3) X(4) Best cost (kg) 

AISC 

CBO 
-0.25799 11.96947 17.58564 -72.9459 

1066.897 
0.125 11.96947 W5X19 L5X5X3/8 

ECBO 
0.25 11.63367 6.088499 37.28917 

716.0744 
0.25 11.63367 W4X13 L4X3X5/16 

PSO 

0.261384 8.090498 14.59163 28.32161 

730.5072 
0.261384 8.090498 W6X16 

L2-1/2X2-

1/2X3/8 

Democratic 

PSO 

0.125 10.13687 7.207099 35.97097 
661.4469 

0.125 10.13687 W8X13 L4X4X1/4 

Euro 

code 

CBO 
1.366448 162.7109 2.056833 -9.67318 

490.7803 
3 162.7109 HE120A L40X40X5 

ECBO 
4.36763 -175.231 2.599402 9.877333 

490.7209 
4.36763 175.231 HE120A L40X40X5 

PSO 
3 186.0298 1.083832 1.309784 

364.5887 
3 186.0298 HE100A L20X20X3 

Democratic 

PSO 

3 186.2095 1 1 
364.6182 

3 186.2095 HE100A L20X20X3 

 

 
Figure 2. Convergence curves obtained for latticed column designed based on AISC 
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Figure 3. Convergence curves obtained for latticed column designed based on Euro code 

 

3.4 Concluding Remarks 

Based on this research the following conclusions can be derived: 

According to Table 3, for the objective function based on AISC code, DPSO, ECBO, 

PSO and CBO lead to the best results, respectively.  

According to Table 3, for the objective function based on Euro code, PSO, DPSO, ECBO 

and CBO lead to the best results, respectively. 

As a comparison between two standards, AISC and Euro code, in built up column design, 

the Euro code standard is more light and economical than AISC; naturally the weights of the 

used profiles in each standard also effects the weight. 

 

Acknowledgement: The authors are grateful to V.R. Mahdavi for his help in this research. 
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