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ABSTRACT 
 

In this paper two recently developed meta-heuristic optimization methods, known as 

Colliding Bodies Optimization (CBO) and Enhanced Colliding Bodies Optimization 

(ECBO), are used for optimum nodal ordering to minimize bandwidth of sparse matrices. 

The CBO is a simple optimization algorithm which is inspired by a collision between two 

objects in one-dimension. Each agent is modeled as a body with a specified velocity and 

mass. A collision happens between pairs of bodies and the new positions of the colliding 

bodies are updated based on the collision laws. The enhanced colliding bodies optimization 

(ECBO) utilizes memory to save some best so-far-solution to improve the performance of 

the CBO without increasing the computational cost. This algorithm utilizes a mechanism to 

escape from local optima. The bandwidth of some graph matrices, which have equivalent 

pattern to structural matrices, is minimized using these approaches. Comparison of the 

obtained results with those of some existing methods shows the robustness of these two new 

meta-heuristic algorithms for bandwidth optimization. 

 

Keywords: Bandwidth reduction; ordering; colliding bodies optimization; enhanced 

colliding bodies optimization; optimization. 

 

 

1. INTRODUCTION 
 

The solution of simultaneous equations is required by the analysis of many problems in 

structural engineering. Such non-singular systems of linear algebraic equations are in the 

form Ax = b arises from finite element method. These types of equations usually involve a 

positive definite, symmetric, and sparse matrix coefficient A. For large structures a great 

deal of the computational cost and memory are dedicated to the solution of these equations. 

Hence some suitable specified patterns for the solutions of the corresponding equations have 

been provided, like banded form, profile form and partitioned form. These patterns are often 

attained by nodal ordering of the corresponding models. 
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In finite element model (FEM) analysis, for the case of one degree of freedom per node, 

performing nodal ordering is equivalent to reordering the equations. In a more general 

problem with m degree of freedom per node, there are m coupled equations produced for 

each node. In this case re-sequencing is usually performed on the nodal numbering of the 

graph models, to reduce the bandwidth, profile or wavefront, because the size of these 

problems are m fold smaller than those for m degree of freedom numbering. In this article, 

the mathematical model of a FEM is considered as an element clique graph, and nodal 

ordering is carried out to reduce the bandwidth of the corresponding matrices, Kaveh [1,2,3]. 

There is an important rule for nodal ordering in the solution of sparse systems. It can be 

achieved by permuting the rows and columns of a matrix by proper renumbering of the 

nodes of the associated graph. One important subject in nodal ordering is bandwidth 

optimization. In fact, for sparse matrices the size can be measured by the bandwidth of such 

matrices. These problems have created significant interest during recent years because it has 

practical relevance for a considerable range of global optimization applications. Since the 

nature of the problem of nodal ordering is NP-Complete, many approximate algorithms and 

heuristics are proposed, examples of which can be found in Papademetrious [4], Cuthill and 

McKee [5], Kaveh [1], Gibbs et al. [6]. 

Meta-heuristics algorithms are recent generation of the optimization methods to solve 

complex problems. These techniques explore the feasible region based on both 

randomization and some specified rules through a group of search agents. The rules are 

usually inspired from Laws of natural phenomena, Kaveh [7]. 

As a newly developed type of meta-heuristic method, colliding bodies optimization 

(CBO) is introduced and applied to structural problems by Kaveh and Mahdavi [8,9]. The 

CBO is multi-agent technique inspired by a collision between two objects in one-dimension. 

Each agent is modeled as a body with a specified velocity and mass. A collision happens 

between pairs of bodies and the new positions of the colliding bodies are updated based on 

the collision laws. The enhanced colliding bodies optimization is introduced by the Kaveh 

and Ilchi Ghazaan [10] and it utilizes memory to save some best so-far-solution to improve 

the CBO performance without increasing the computer execution time. This algorithm 

utilizes a mechanism to escape from local optima. 

The rest of this paper is organized as follows: in Section 2 the bandwidth problem is 

presented, the CBO and ECBO algorithms are briefly demonstrated in Section 3. In order to 

show the performance of these techniques on bandwidth reduction, Section 4 contains six 

examples. The last section concludes the paper. 

 

 

2. PROBLEM DEFINITION 
 

Let G(N,M) be a graph with members set M( M m ) and nodes set N( N n ). A labeling 

As of G assigns the set of integers {1,2,3,...,n} to the nodes of graph G. As(i) is the label or 

the integer assigned to node i and each node has different label. The bandwidth of node i for 

this assignment, bw(i), is the maximum difference of As(i) and As( j), where As( j) is the 

label of nodes adjacent to node i or the number assigned to its adjacent nodes. That is 
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 ( ) max ( ) ( ) : ( )Asbw i As i As j j N i    (1) 

 

Where N(i) is the set of adjacent nodes of node i. The bandwidth of the graph G with respect 

to the assignment, As(i), is then 

 

 ( ) max ( ) :AsBW G bw i i G   (2) 

 

The minimum value of BWAs over all possible assignments is the bandwidth of the graph: 

 

 ( ) min ( ) : ( )AsBW G BW G As i   (3) 

 

Therefore, in the bandwidth minimization problem, one searches an assignment As(i) that 

minimizes BW(G). Such an assignment holds all the non-zero elements of the matrix onto a 

band, which is as close as possible to the main diagonal, Kaveh and Sharafi [11,12]. 

In this paper, the aim is to find an optimal assignment for nodal ordering of a graph to 

reduce the bandwidth of the associated matrix employing CBO and ECBO algorithms. The 

algorithms for bandwidth reduction are based on reordering or assigning new labels to the 

nodes of the graph to obtain an optimal bandwidth. 

Each permutation of rows and columns of an n*n sparse matrix associated to graph G, 

leads to a new reordering called the assigned set. If the initial ordering of the graph is 

{1,2,3,…,n}, each permutation of this list will be a new assigning set. The purpose is to find 

the optimal assigning list in order to achieve the best bandwidth. 

 

 

3. CBO AND ECBO ALGORITHMS 
 

This section contains the Colliding Bodies Optimization algorithm and its enhanced version. 

First, a brief description of standard CBO is provided, and then the ECBO is preesented, 

Kaveh and Ilchi Ghazaan [10]. 

 

3.1 Colliding bodies optimization 

The collision is a natural phenomenon and the Colliding Bodies Optimization algorithm was 

developed based on this occurrence by Kaveh and Mahdavi [8,9]. In this method, one object 

collides with other object and they move towards a minimum energy level. The CBO utilizes 

simple formulation, does not require any internal parameter, and does not use memory for 

saving the best solutions so far. 

This technique is a population-based meta-heuristic algorithm. Each solution candidate 

iX  is considered as a colliding body (CB) and it has a specified mass defined as: 

 



A. Kaveh and Sh. Bijari 

 

 

538 

1

1

( )
1 , 2 , ... ,

1

1

( )

k

n

i

fit k
m k n

fit i

 



 
(4) 

 

where fit(i) represents the objective function value of the ith CB and n is the number of 

colliding bodies. 

In order to select pairs of objects for collision, CBs are sorted according to their mass in a 

decreasing order and they are divided into two equal groups: (i) stationary group and (ii) 

moving group. Moving objects collide to stationary objects to improve their positions and 

push stationary objects towards better positions (see Fig. 1). 

 

x x x x

The stationary The moving
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x

x

x

x

The Pairs of Objects
 

(b) 
Figure 1. (a) The sorted CBs in an ascending order. (b) The pairs of objects for the collision 

 

The velocity of the stationary bodies before collision is zero so 

 

0, 1 , 2 , ... ,
2

i

n
v i   (5) 

 

The velocity of each moving body before collision is 

 

2
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n n
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
      (6) 

 

The velocity of each stationary CB after the collision ( iv ) is specified by 
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The velocity of each moving CB after the collision ( iv ) is defined by 
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Here   is the coefficient of restitution (COR) that decreases linearly from unit to zero. 

Thus, it is stated as 

 

max

1
iter

iter
    (9) 

 

where iter is the current iteration number and itermax is the total number of iteration for 

optimization process. 

New positions of CBs are updated according to their velocities after the collision and the 

positions of stationary CBs. Therefore, the new position of each stationary CB is 

 

, 1 , ... ,
2

new
i i i

n
x x rand v i    (10) 

 

where 
new
ix , ix  and iv  are the new position, previous position and the velocity after the 

collision of the ith CB, respectively. rand is a random vector uniformly distributed in the 

range of [-1, 1] and the sign ‘‘  ’’ denotes an element-by-element multiplication. The new 

position of each moving CB is calculated by 

 

2

, 1 , 2, ... ,
2 2

new
i n i

i

n n
x x rand v i n


      (11) 

 

The process of optimization is terminated if the maximum number of analyses have been 

evaluated. For further details, the reader may refer to Kaveh and Mahdavi [8,9]. 

 

3.2 Enhanced colliding bodies optimization 

A modified version of the CBO is Enhanced Colliding Bodies Optimization, which 
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improves the CBO to get more reliable solutions. The introduction of memory can increase 

the convergence speed of ECBO with respect to standard CBO. Furthermore, changing some 

components of colliding bodies will help ECBO to escape from local optima. The steps of 

ECBO are as follows: 

Step 1: Initialization 

The initial positions of all CBs are determined randomly in an m-dimensional search 

space. 

 
0

min max min( ), 1,2,...,ix x random x x i n     (12) 

 

where 
0

ix  is the initial solution vector of the ith CB. Here, minx and maxx  are the bounds of 

design variables; random is a random vector which each component is in the interval [0, 1]; 

n is the number of CBs. 

Step 2: Defining mass 

The value of mass for each CB is evaluated according to Eq. (4). 

Step 3: Saving 

Considering a memory which saves some historically best CB vectors and their related 

mass and objective function values can make the algorithm performance better without 

increasing the computational cost, Kaveh and Ilchi [13,14]. Here a Colliding Memory (CM) 

is utilized to save a number of the best-so-far solutions. Therefore in this step, the solution 

vectors saved in CM are added to the population, and the same numbers of current worst 

CBs are deleted. Finally, CBs are sorted according to their masses in a decreasing order. 

Step 4: Creating groups 

CBs are divided into two equal groups: (i) stationary group and (ii) moving group. The 

pairs of CBs are defined according to Fig. 1. 

Step 5: Criteria before the collision 

The velocity of stationary bodies before collision is zero (Eq. (5)). Moving objects move 

toward stationary objects and their velocities before collision are calculated by Eq. (6). 

Step 6: Criteria after the collision 

The velocities of stationary and moving bodies are evaluated using Eqs. (7) and (8), 

respectively. 

Step 7: Updating CBs 

The new position of each CB is calculated by Eqs. (10) and (11). 

Step 8: Escape from local optima 

Meta-heuristic algorithms should have the ability to escape from the trap when agents get 

close to a local optimum. In ECBO, a parameter like Pro within (0, 1) is introduced and it is 

specified whether a component of each CB must be changed or not. For each colliding body 

Pro is compared with rni (i =1, 2, ..., n) which is a random number uniformly distributed 

within (0, 1). If rni < Pro, one dimension of the ith CB is selected randomly and its value is 

regenerated as follows: 

 

,min ,max ,min.( )ij j j jx x random x x    (13) 
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where xij is the jth variable of the ith CB. xj,min and xj,max respectively, are the lower and upper 

bounds of the jth variable. In order to protect the structures of CBs, only one dimension is 

changed. This mechanism provides opportunities for the CBs to move all over the search 

space thus providing better diversity. 

Step 9: Terminating condition check 

The optimization process is terminated after a fixed number of iterations. If this criterion 

is not satisfied go to Step 2 for a new round of iteration. 

 

 

4. NUMERICAL EXAMPLES 
 

In this section, six examples are considered. The first two examples are from Kaveh [2] and 

are used for examining the correctness of codes for both meta-heuristic algorithms and the 

four-step algorithm. The third example is the grid model of a fan with 1D beam elements. 

The fourth example is a FEM for shear wall, and an H-shaped finite element grid is 

presented in the fifth example. At the last example, a grid model of a shear wall with two 

irregular openings is considered. Two algorithms, namely the Colliding Bodies Optimization 

and Enhanced Colliding Bodies Optimization, are applied for bandwidth reduction of their 

matrices. The results are then compared to those of the four-step algorithm of Kaveh [15] 

and those of Kaveh and Sharafi [11,12] in Table 1. 

Example 1: The graph model of a truss structure with 24 nodes is shown in Fig. 2. The 

performance of the CBO and ECBO algorithms are tested on this model and the results are 

provided in Table 1. 

 

 
Figure 2. Graph model of a truss structure 

 

Example 2: This is the model of a grid with uniform valency distribution, as shown in 

Fig. 3, having 28 nodes. The performance of the CBO and ECBO algorithms are tested on 

this model and the results are provided in Table 1. 

 

 
Figure 3. Graph model of a grid 
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Example 3: The graph model of a fan with 1575 nodes is considered, as shown in Fig. 4. 

Similar to the previous examples, the results of the algorithms are represented in Table 1, 

where the results can easily be compared. 

 

 
Figure 4. The graph model of a fan 

 

Example 4: The FEM of a shear wall with 550 nodes is considered, as shown in Fig. 5. 

The performance of the CBO and its enhanced version is tested on this model, and the 

results are given in Tables 1. Quality of the results is provisioned in this table. 

 

 
Figure 5. FEM of a shear wall 
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Example 5: An H-shape finite element grid with 4949 nodes is considered, as shown in Fig. 

6. The element clique graph of this model includes 4949 nodes and 9688 beam elements 

(edges). The performance of the CBO and ECBO algorithms are examined on this model 

and the results are provided in Table 1. 

 

 
Figure 6. An H-shaped finite element grid 

 

Example 6: A finite element grid model of a shear wall with two irregular openings is 

considered, as shown in Fig. 7. It has 235 nodes. The performance of the CBO and ECBO 

algorithms are tested on this model and the results are shown in Table 1. 

 

 
Figure 7. Finite element grid model of a shear wall 
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Table 1: Comparison of the results of different algorithms 

 
Four-step 

Algorithm of 

Kaveh [1,15] 

CBO 

Algorithm 

ECBO 

Algorithm 

Results of Refs. [11,12] 

4-step ACO CSS 

Example 1 4 4 4 4 --- --- 

Example 2 4 4 4 --- --- --- 

Example 3 18 18 18 23 23 21 

Example 4 28 28 28 29 29 --- 

Example 5 57 57 57 66 60 58 

Example 6 13 13 13 --- --- --- 

 

 

5. CONCLUDING REMARKS 
 

The main aim of this paper has been to show the performance and robustness of CBO and 

ECBO for bandwidth reduction of matrices as a discrete optimization problem. From Table 

1, it can be observed that the obtained results from these two algorithms are quite 

satisfactory as compared to the well-known graph theoretical method, four-step algorithm. 

CBO and its enhanced version improve the bandwidth values previously attained by CSS 

and ACO algorithms, and these values are the best results so far.  
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