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ABSTRACT 
 

The barrel vaults are composed of member elements arranged on a cylindrical surface. This 

kind of structure is utilized to cover the long spans. In this paper, the hybrid charge system 

search and particle swarm optimization algorithm is improved and utilized to optimal design 

of single-layer barrel vault frames. Some modifications on parameter values are performed 

to enhance the performance of the hybrid algorithm. Comparison of the results with other 

meta-heuristic algorithms illustrates the efficiency of the hybrid CSS and PSO algorithm. 

Also some discussion on the loading conditions and group selecting are presented. 

 

Keywords: Charged system search, particle swarm optimization, hybrid algorithms, 

optimal design, single layer barrel vault frame 

 

 

1. INTRODUCTION 
 

Space frames are usually arranged in an array of single, double, or multiple layers of 

intersecting members. A single-layer space frame that has the form of a curved surface is 

termed as braced vault, braced dome, or latticed shell. The barrel vaults, having the diagonal 

or hexagonal types of bracing, must have rigid joints to be stable and the influence of 

bending moments in their stress distribution is much more pronounced than the other types. 

In the field of structural optimization, many meta-heuristic algorithms have been 

proposed in the last three decades. Although, there are many studies on optimization of 

structures using the current meta-heuristic algorithms; however, there are not many studies 

on optimization of space structures, and further studies on optimization of these spatial 

structures seems necessary. Kaveh et al. [1-3] are the first researchers who formulated the 

problem of optimum design of barrel vault structures. In Ref. [1], they optimized two single 

barrel vaults utilizing different Charged System Search (CSS)-based methods containing the 

standard CSS [4], improved CSS [5], a magnetic CSS (MCSS) [6], and its improved version 
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(IMCSS). Also, Kaveh and Eftekhar [2] have performed optimal design of barrel vault 

frames using an improved Big Bang-Big Crunch algorithm, in which a single layer barrel 

vault is optimized under both symmetrical and unsymmetrical loading cases. In the other 

study by Kaveh et al. [3], some single and multiple layer barrel vaults are optimized via the 

CSS algorithms.  

In the present study, optimal design of single layer barrel vault frames structures is 

performed and the aim is to optimize this kind of structures with a hybrid CSS and particle 

swarm optimization (PSO) method. This method utilizes some benefits of the PSO into the 

CSS. An improved variant of the hybrid method is presented and a comparing to the other 

CSS-based method as well as some aspects regarding to the problem statement are 

discussed. 

 

 

2. OPTIMUM DESIGN OF BARREL VAULT STRUCTURES 
 

The purpose of size optimization of barrel vault structures is to minimize the weight of 

the structure, W, through finding the optimal cross-sectional areas iA of members, in which 

all constraints exerted on the problem must be satisfied, simultaneously. Thus, the optimal 

design of barrel vault frame structures can be formulated as: 

 

Find 1 2 3[x , , ,..., ]nX x x x  (1) 

to minimize ( ) ( ) ( )penaltyMer X f X W X   (2) 

 

The cost function is 

 

1

( ) . .
nm

i i i

i
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(3) 

 

where ix  , i  and iL  are the area, material density and length of the steel section selected 

for member group i, respectively. X is the vector containing the design variables; For the 

discrete optimum design problem, the variables ix are selected from an allowable set of 

discrete values; n is the number of member groups. Here, the objective of finding the 

minimum weight structure is subjected to several design constraints, including strength and 

serviceability requirements. 

The penalty function is 
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where np is the number of multiple loading conditions. In this paper 1  is taken as unity and 

2  is set to 1.5 in the first iterations of the search process, but gradually it is increased to 3, 

[7]. 
k is the summation of penalties for all imposed constraints for kth charged particle 

which is mathematically expressed as: 

 

      
1 1

max ,0 max ,0 max ,0
nn nm

d I s

i i i

i i
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where
d

i ,
I

i ,
s

i are the summation of displacement, shear and interaction formula penalties, 

calculated by Eqs. (6) through (8), respectively. 

Displacement constraint: 

 

1 0     i=1,2,...,nnd i
i

i





  

 

(6) 

 

Shear constraint, for both major and minor axis, [8]: 
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Constraints corresponding to interaction of flexure and axial force [8]: 
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(8) 

 

where nn is the number of nodes; i , i are the displacement of the joints and the allowable 

displacement, respectively; nm is the number of members; uV is the required shear strength; 

nV  is the nominal shear strength which is defined by the LRFD Specification, [8]; v is the 

shear resistance factor ( v =0.9); uP  is the required strength (tension or compression); nP
 
is 

the nominal axial strength; c is the resistance factor ( c =0.9 for tension, c =0.85 for 

compression); uM is the required flexural strength; i.e., the moment due to the total factored 

load (Subscript x or y denotes the axis about which bending occurs.); nM
 
is the nominal 
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flexural strength determined in accordance with the appropriate equations in Chapter F of 

the LRFD Specification, [8] and b is the flexural resistance reduction factor ( b =0.9 ). 

 

 

3. NOMINAL STRENGTHS 
 

Based on AISC-LRFD [8] specification, the nominal tensile strength of a member is 

equal to: 

 

n y gP F A
 

(9) 

 

where gA  is the gross section of the member. 

The nominal compressive strength of a member is the smallest value obtained from the 

limit states of flexural buckling, torsional buckling, and flexural–torsional buckling. For 

members with compact and/or non-compact elements, the nominal compressive strength of 

the member for the limit state of flexural buckling is as follows: 

 

n cr gP F A
 

(10) 

 

where crF  is the critical stress based on flexural buckling of the member, calculated as: 
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In the above equations, Ɩ is the laterally unbraced length of the member; K is the effective 

length factor; r is the governing radius of gyration about the axis of buckling and E is the 

modulus of elasticity. 

 

 

4. DESIGN LOADS 
 

According to ANSI-A58.1 and ASCE/SEI 7-10 codes [9,10], there are some specific 

considerations for loading conditions of arched roofs such as barrel vault structures. In this 

study, the load conditions are taken from Ref. [1]. 

 
4.1 Dead Load 

The design dead load is established on the basis of the actual loads that may be expected to 

act on the structure of constant magnitude. The weight of various accessories, cladding, 
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supported lighting, heat and ventilation equipment, and the weight of space frame comprise 

the total dead load. In this study, a uniform dead load of 100 kg/m2 is considered for 

estimated weight of sheeting, space frame, and nodes of barrel vault structures. 

 
4.2 Snow Load 

The snow load for arched roofs is calculated according to mentioned codes. Snow loads 

acting on a sloping surface shall be assumed to act on the horizontal projection of that 

surface. The sloped roof (balanced) snow load, Ps, shall be obtained by multiplying the flat 

roof snow load, Pf, by the roof slope factor, Cs, as follows: 

 

.s s fP C P
 

(13) 

 

where Cs is 
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(14) 

 

The distribution in arched roofs is shown in Fig. 1. In this paper, the flat roof snow load 

(Pf) is set to 150 kg/m2. 

 

 
Figure 1. 

sC distribution in arched roofs, [1] 

 

4.3 Wind Load 

For the wind load in arched roofs, different loads are applied in the windward quarter, center 

half and leeward quarter of the roof (Fig. 2) which are calculated based on ANSI and ASCE 

codes [9,10] as: 

 

h pP qG C
 

(15) 

 

where q is the wind velocity pressure, Gh is the gust-effect factor and Cp is the external 
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pressure coefficient. 

 

 
Figure 2. Wind pressure on an arched roof, [1] 

 

 

5. A REVIEW ON CHARGED SYSTEM SEARCH AND PARTICLE SWARM 

OPTIMIZATION 

 
Since the hybrid algorithm is based on the CSS and PSO, here a brief review on these 

algorithms is described in the following subsections and then the hybrid algorithm will be 

developed in the next section. 

 

5.1 Charged system search 

The CSS algorithm contains a number of CPs where each one is treated as a charged sphere 

and can insert an electric force to the others, [4]. The pseudo-code for the CSS algorithm is 

summarized as follows: 

Step 1: initialization. The magnitude of the charge for each CP is defined as: 

 

W
,  i=1,2,...,Ni worst

i

best worst

W
q

W W





 

(16) 

 

where Wbest and Wworst are the best and the worst objective function values among all of the 

particles; Wi represents the fitness of the agent i; and N is the total number of CPs. The 

separation distance rij between any two CP is defined as follows: 
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(17) 

 

Where Xi and Xj are the positions of the ith and jth CPs, respectively; Xbest is the position of 

the best current CP; and  is a small positive number. The initial positions of CPs are 

determined randomly and the initial velocities of CPs are assumed to be zero. 

Step 2: CM creation. A number of the best CPs and the values of their corresponding 

objective functions are saved in the charged memory (CM). 

Step 3: The forces determination. The probability of moving each CP towards the others 

is determined using the following function: 
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1     or >

0    otherwise
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j i

j iij
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(18) 

 

Then, the resultant force vector for each CP is calculated as: 
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(19) 

 

where Fj is resultant force acting on the jth CP; Xi and Xj are the positions of the ith and jth 

CPs, respectively. 

Step 4: Solution construction. Each CP moves to the new position as: 

 

, 1 2 , ,. . . . j new j a j j v j old j oldX rand k F rand k V X  
 

(20) 

, ,

,

j new j old

j new

X X
V

t




  

(21) 

 

where ka and kv are the acceleration and the velocity coefficients, respectively; and randj1, 

randj2 are two random numbers. 

Step 5: CM updating. The better new vectors are included to the CM and the worst ones 

are excluded from the CM. 

Step 6: Terminating criterion control. Steps 3-5 are repeated until a terminating criterion 

is satisfied. 

 

5.2. Particle swarm optimization 

The PSO is based on a metaphor of social interaction such as bird flocking and fish 

schooling, and is developed by Eberhart and Kennedy, [11]. The PSO simulates a commonly 

observed social behavior, where particles of a group (swarm) tend to follow the lead of the 

best of the group. In other words, the particles fly through the search space and their 

positions are updated based on the best positions of individual particles denoted by k

iP and 

the best position among all particles in the search space represented by k

gP . 

The procedure of the PSO is reviewed as follows: 

Step 1: Initialization. An array of particles and their associated velocities are initialized 

with random positions. 

Step 2: Local and global best creation. The initial particles are considered as the first 

local best and the best of them corresponding to the minimum fitness function will be the 

first global best. 

Step 3: Solution construction. The velocity and location of each particle are changed to 

the new position using the following equations: 
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1 1k k k

i i iX X V  
 

(22) 

   1

1 1 2 2 k k k k k k

i i i i g iV V c r P X c r P X     
 

(23) 

 

where 
k

iX and 
k

iV are the position and velocity for the ith particle at iteration k; ω is an 

inertia weight to control the influence of the previous velocity; r1, and r2 are two random 

numbers; c1 and c2 are two constants; k

iP is the best position of the ith particle up to the 

current iteration; k

gP is the so-far best position among all particles in the swarm and the sign 

“ ” denotes element-by-element multiplication. 

Step 4: Local best updating. The objective function of the particles is evaluated and k

iP is 

updated according to the best current value of the fitness function. 

Step 5: Global best updating. The current global minimum objective function value 

among the current positions is determined and thus k

gP is updated if the new position is 

better than the previous one. 

Step 6: Terminating criterion control. Steps 3-5 are repeated until a terminating criterion 

is satisfied. 

It should be noted that for improving the performance of the PSO algorithm, equation 

(23) can be modified as 

 

     1

1 1 2 2
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k k k k k k k k
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(24) 

 

where cj is a constant and rj is a random vector. ne denotes the number of extra terms 

considered in the algorithm, and 
k

jR is a position of an agent defined based on the type of 

the algorithm being used.  

 

 

6. A HYBRID CHARGED SYSTEM SEARCH - PARTICLE SWARM 

OPTIMIZATION  
 

The hybrid CSS-PSO algorithm was presented by Kaveh and Talatahari [12] in which the 

location of the global and local best CPs are utilized to improve the searching process. In 

other words in the CSS-PSO, the advantage of the PSO consisting of utilizing the local best 

and the global best is added to the CSS algorithm.  

 

6.1. Hybrid CSS-PSO Method 

The CM for the hybrid algorithm is treated as the local best in the PSO, and the CM 

updating process is defined as follows, [12]: 
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If the coefficient ik is defined as: 
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(26) 

 

Then the equation (13) can be simplified as 

 

   
1 2

,oldj i i j i i j

i S i S
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(27) 

 

Here, arij determines the kind of force and is defined as 

 

1     rand<0.8

 -1     otherwise
ijar

 
  
   

(28) 

 

where rand represents a random number. 

In Ref. [12], four variant hybrid methods were proposed as the CSS-PSO algorithms. 

Here, the best one is selected and utilized. In the selected method, not only the global and 

local best agents from the CM but some other stored points are utilized. In addition, some of 

the locations of the current agents are also utilized to determine the resultant force. The 

corresponding equation can be expressed as: 

 

       
1 2

1 g,old 2 j,old ,  j j j i i old j i i j

i S i S

F k CM X k CM X k CM X k X X
 

        
 

(29) 

 

Where S1 and S2 are defined as follows: 

 

 1 1 2S = , ,  ... , | ( ) ( ),    j=1,2,...,N,   j i,g  nt t t q t q j 
 

(30) 

2 1S S S 
 

(31) 

 

in which S1 determines the set of agents from CM utilized in equation (29). N denotes the 

number of agents in the CM. S is utilized as a set of all agents’ number and thus S2 will be 

the set of current agents used for directing the agent j. These equations clarify that for each 

agent one of its locations, namely its local best or its current location, are certainly utilized. 

For this formulation, in the primary iterations n is set to zero then it is increased linearly to N 

in the last iterations. 
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6.2. Parameter improvement for the CSS-PSO method 

The CSS-PSO method utilizes harmony search-based approach for position correction of 

CPs. This method needs some parameters such as CMCR (Charge Memory Considering 

Rate) and PAR (Pitch Adjustment Rate) parameters that help the algorithm to find globally 

and locally improved solutions, respectively [13]. PAR and bw in this step are very 

important parameters in fine-tuning of optimized solution vectors, and can be potentially 

useful in adjusting convergence rate of algorithm to optimal solution [14]. In the standard 

hybrid algorithm, the fixed values were used for these parameters. Here, to improve the 

performance of this step of the algorithm and eliminate the drawbacks lies with fixed values 

of PAR and bw, they change dynamically with iteration number as follow [14]: 

 

i
i

PARPAR
PARPARi 




max

minmax
min

 (32) 

ic

i ebwbw .

max  , 
max

minmax )ln(

i

bwbw
c




 
(33) 

 

where bwi is the bandwidth for each iteration, bwmin and bwmax are the minimum and 

maximum bandwidth, respectively. In this paper PARmin and PARmax are set to 0.3 and 0.99, 

respectively, [13]. 

 

 

7. NUMERICAL EXAMPLES 
 

In this study, two single layer barrel vaults are selected from [1] in which Kaveh et al. used 

some CSS-based methods to optimize barrel vaults. They used the standard CSS, MCSS, 

ICSS and IMCSS algorithms and compare the results with each other. Since the proposed 

algorithm is based on the CSS, we select their examples to compare the results with. In all 

examples, the material density is 0.2836 lb/in3 (7850 kg/m3) and the modulus of elasticity is 

30450 ksi (2.1E6 kg/m2). The yield stress Fy of steel is taken as 34135.96 psi (2400 kg/m2) 

for both problems. Also, member sections are pipe shape and taken from the AISC-LRFD 

code [8]. 

 

7.1. A 173-member single barrel vault frame 

The geometry of this example containing 3D and plan view are shown in Fig. 3. The member 

groups and support conditions are presented in the figure. Member sections are categorized in 

15 groups as shown in Fig. 3b, [1]. The span, length and height of single barrel vaults are 30, 

30 and 8 meter, respectively. This example has 173 members and 108 joints. 

In this study, similar to Ref. [1], the loading cases contain 3-types of static loads; dead 

load, snow load and wind load. The uniform dead load equal to 100 kg/m3 applied to the 

roof. The snow and wind loads are shown in Fig. 4. 
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(a) 

 
(b) 

Figure 3. The 173-member single layer barrel vault frame, (a) 3D view, (b) Member groups in 

top view 

 

Table 1 compares the result of the new hybrid algorithm with some other CSS-based 

methods. The CSS-PSO algorithm finds the best solutions with 15000 number of analyses. 

In comparing with the CSS, MCSS, ICSS and IMCSS algorithms, the hybrid algorithm has 

the best solution and the best weights of present method is 45297.82 lb, while it is 50295.90 

lb, 50247.66 lb, 49411.27 lb and 48985.05 lb for the CSS, MCSS, ICSS and IMCSS 

algorithms, respectively. It is clear that the CSS-PSO algorithm gives an economical design 

compared to the other algorithms. Also, the maximum strength ratio for the new method is 

90.06%. Fig. 5 shows the strength ratios for all elements of the 173-member single layer 

barrel vault frame for optimal results of the new algorithm. As shown in Fig. 5, the strength 

ratios of elements are lower than 1, and the stress distribution is good and all of the 

constraints are satisfied. 
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(a) 

 
(b) 

Figure 4. The 173-bar single layer barrel vault frame subjected to: (a) Snow loading, (b) Wind 

loading 

 

 
Figure 5. Strength ratios for the elements of the 173-bar single layer barrel vault frame 
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Table 1: Optimal design comparison for the 173-bar single layer barrel vault frame 

Element Group 

Optimal sections and cross-section Area 

CSS [1] MCSS [1] ICSS [1] IMCSS [1] Present study 

Section 

Name 

Area
2( )in

 
Section 

Name 

Area
2( )in  

Section 

Name 

Area
2( )in  

Section 

Name 

Area
2( )in  

Section 

Name 

Area
2( )in  

1 P1 0.494 XP1 0.639 P0.5 0.25 P0.5 0.25 P0.5 0.25 

2 P1 0.494 XP0.75 0.433 P0.5 0.25 P0.5 0.25 P0.5 0.25 

3 XP1.5 1.07 P1 0.494 P0.5 0.25 P0.5 0.25 P0.5 0.25 

4 P0.75 0.333 P0.75 0.333 P0.5 0.25 P0.5 0.25 P0.5 0.25 

5 XP0.5 0.32 XP1 0.639 P0.5 0.25 XP0.5 0.32 P0.5 0.25 

6 XP1.25 0.881 XP1.5 1.07 P0.5 0.25 XP0.5 0.32 P0.5 0.25 

7 P1.5 0.799 XP1 0.639 P0.5 0.25 P0.5 0.25 P0.5 0.25 

8 P10 11.9 P10 11.9 P10 11.9 P12 14.6 P10 11.9 

9 P10 11.9 P10 11.9 P10 11.9 XP6 8.6 P10 11.9 

10 P10 11.9 P10 11.9 P10 11.9 P10 11.9 P8 8.40 

11 P10 11.9 P10 11.9 P10 11.9 P10 11.9 P8 8.40 

12 P10 11.9 P10 11.9 P10 11.9 P10 11.9 P10 11.9 

13 P6 5.58 P6 5.58 P6 5.58 P6 5.58 P6 5.58 

14 P6 5.58 P6 5.58 P6 5.58 P6 5.58 P6 5.58 

15 P10 11.9 P10 11.9 P10 11.9 P10 11.9 P10 11.9 

Weight. (lb) 50295.90 50247.66 49411.27 48985.05 45297.82 

No. of analysis 20000 20000 20000 19800 14000 

 

7.2. A 292-member single barrel vault frame 

The geometry of a 292-member single barrel vault frame is presented in Fig. 6. The member 

groups and support conditions are presented as well. Member sections are categorized into 

30 groups as shown in Fig. 6b. The span, length and height of single barrel vaults are 36, 20 

and 10 meter, respectively. This example has 292 members and 117 joints. 

Similar to the previous example, the geometry and load conditions of this example are 

taken from Ref. [1]. The uniform dead load equal to 100 kg/m3 applied to roof. The snow 

and wind loads are shown in Fig. 7. 

 

 
(a) 
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(b) 

Figure 6. The 292-member single layer barrel vault frame: (a) 3D view, (b) Member groups in 

top view 

 

Table 2 indicates a comparison between the results of the CSS, MCSS, ICSS, IMCSS and 

the CSS-PSO algorithms for this example. Table 2 shows that the best weights of present 

method is 60584.24 lb. while it is 68324.57 lb, 65892.33, 63694.69 lb and 62968.19 lb for 

the CSS, MCSS, ICSS and IMCSS algorithms. In comparing with the CSS, MCSS, ICSS 

and IMCSS algorithms, the CSS-PSO algorithm has a good solution. The maximum strength 

ratio for the design obtained by the new method is 92.50%. This algorithm needs 16000 

analyses to find the optimum design as shown in Fig. 8.  

 

 
(a) 

 



HYBRID CHARGED SYSTEM SEARCH - PARTICLE SWARM OPTIMIZATION... 

 

 

529 

 
(b) 

Figure 7. The 292-member single layer barrel vault frame subjected to: (a) Snow loading, (b) 

Wind loading 

 

 
Figure 8. Convergence history for the 292-bar single layer barrel vault frame 

 
Table 2: Optimal design comparison for the 292-bar single layer barrel vault frame 

Element 

Group 

Optimal sections and cross-section Area 

CSS MCSS ICSS IMCSS Present study 

Section 

Name 

Area
2( )in

 
Section 

Name 

Area
2( )in  

Section 

Name 

Area
2( )in  

Section 

Name 

Area
2( )in  

Section 

Name 

Area
2( )in  

1 P12 14.6 P12 14.6 P10 11.9 P12 14.6 P12 14.6 

2 P10 11.9 XP6 8.4 P10 11.9 XP6 8.4 P10 11.9 

3 XP8 12.8 XP8 12.8 P12 14.6 P10 11.9 P10 11.9 

4 P6 5.58 P12 14.6 XP8 12.8 XP6 8.4 P8 8.4 

5 XP8 12.8 P10 11.9 P10 11.9 P10 11.9 P10 11.9 

6 P10 11.9 P10 11.9 P10 11.9 P10 11.9 P10 11.9 

7 P10 11.9 P12 14.6 P10 11.9 P10 11.9 P10 11.9 

8 P12 14.6 XP10 16.1 P10 11.9 P12 14.6 P10 11.9 

9 P10 11.9 P10 11.9 P10 11.9 P10 11.9 P12 14.6 

10 XP12 19.2 XP12 19.2 XP12 19.2 P12 14.6 XP10 16.1 
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11 XP2.5 2.25 P0.5 0.25 P1.25 0.669 XP2 1.48 P2 1.07 

12 P1.25 0.669 XP0.75 0.433 XP2 1.48 P1.5 0.799 P1.5 0.799 

13 XP5 6.11 P2.5 1.7 P1 0.494 P1.25 0.669 P1.25 0.669 

14 XP3.5 3.68 XP1 0.639 XP2 1.48 P1.5 0.799 P1.5 0.799 

15 P2.5 1.7 P1.25 0.669 XP1.5 1.07 P1 0.494 P1 0.494 

16 P4 3.17 XP1.5 1.07 XP1.5 1.07 P1.5 0.799 P1.5 0.799 

17 XP2 1.48 P3.5 2.68 P1.5 0.799 XP2.5 2.25 P3 2.23 

18 XP2 1.48 XP1.5 1.07 XP2 1.48 P1.25 0.669 P1.5 0.779 

19 XXP3 5.47 XP1 0.639 XP1 0.639 XP1 0.639 P2 1.07 

20 P5 4.3 P3 2.23 XP1.25 0.881 XP2 1.48 P2 1.07 

21 XXP2 2.66 XP2 1.48 XP3 3.02 P1.5 0.799 P1.5 0.799 

22 XP2.5 2.25 XP1.5 1.07 XP2 1.48 XP1.5 1.07 P1.5 0.779 

23 XP1 0.639 P3 2.23 XP0.75 0.433 P1.5 0.799 P1.5 0.779 

24 XP2 1.48 P2.5 1.7 XP0.75 0.433 XP1.5 1.07 P2 1.07 

25 P1.5 0.799 P1.25 0.669 XP1.25 0.881 P1.25 0.669 P1.25 0.669 

26 XP1.5 1.07 P1.25 0.669 XP1.25 0.881 XP1.25 0.881 P1.5 0.779 

27 P1.5 0.799 P2.5 1.7 P1.5 0.799 P1.5 0.779 P1.5 0.779 

28 XP2 1.48 P3 2.23 XP1.25 0.881 P1.5 0.799 P2.5 1.7 

29 XP1.5 1.07 P1.5 0.799 XP2 1.48 XP2 1.48 P2.5 1.7 

30 P3.5 2.68 P1.5 0.799 P4 3.17 XP8 12.8 XP2.5 2.25 

Weight. (lb) 68324.57 65892.33 63694.69 62968.19 60584.24 

No. of 

analysis 
20000 20000 20000 17500 16000 

 

 

8. DISCUSSION  
 

As it can be seen from the obtained results and the related figures for two above mentioned 

structures, we just considered one direction for the wind load. For example in the first 

structure, the section for group 10 is P8 (with area equals 8.4 in2) and it is P10 (11.9in2) for 

elements in group 13 while they are the same locations compared to the peak point of the 

barrel vault. This means that some elements (that are similar considering the geometry), take 

completely different optimum sections. Therefore, 15 and 30 different design groups are 

defined in Ref. [1]. However, according to design codes, both positive and negative 

direction of the wind load should be taken in account as combination of loads. If one defines 

such loading combinations, the above structures will be symmetric and the number of group 

becomes smaller (8 for the first example and 18 for the other one as shown in Fig. 9. 

Optimization point of view, a small number of design variables creates a small search space 

and needs a small computational costs. We know that this may cause heavier structures, 

however structural point of view, the obtained design can be utilized directly because all 

loading conditions defined by design codes were considered. For the examples prepared in 

the previous section by using the new design groups and defining all load combinations, the 

CSS-PSO algorithm is applied and the results are presented in Table 3. As it can be seen, for 

the first and second examples the obtained weights are 14% and 2.5% more than the designs 

with the previous loading conditions however the required number of analyses are reduced 

to 9000 and 12000, respectively. 
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(a) 

 

 
(b) 

Figure 9. The Member groups in top view for a) the first example, b) the second example. 
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Table 3: Optimal design obtained for the single layer barrel vault frame considering new loading 

conditions 

Element Group 

Optimal sections and cross-section areas 

First Example Second Example 

Section Name Area 2( )in  Section Name Area 2( )in  

1 P0.5 0.25 P12 14.6 

2 P0.5 0.25 P10 11.9 

3 P0.5 0.25 P10 11.9 

4 P0.5 0.25 P10 11.9 

5 P10 11.9 P10 11.9 

6 P10 11.9 P10 11.9 

7 P8 8.40 P2 1.07 

8 P10 11.9 P2 1.07 

9   P1.5 0.799 

10   P3 2.23 

11   P1 0.494 

12   P1.5 0.799 

13   XP2.5 2.25 

14   P2.5 1.7 

15   P2.5 1.7 

16   P2 1.07 

17   P1.25 0.669 

18   P1.5 0.779 

Weight. (lb) 52784.74 62113.79 

No. of analysis 9000 12000 

 

 

9. CONCLUSIONS 
 

Recently, a hybrid charge system search and particle swarm optimization algorithm was 

developed based on the charge system search (CSS) and positive properties of particle 

swarm optimization (PSO) are added to it. Here, some parameters of this algorithm are seted 

in a way that the performance of the algorithm is improved. Then, two single-layer barrel 

vaults are selected as numerical examples. The geometry and load conditions are taken from 

Ref. [1]. This examples are optimized with the CSS-PSO algorithm and then compared with 

other CSS-based algorithms. The results show that the CSS-PSO method can find the good 

and economical designs of single-layer barrel vaults. Also, the loading conditions are 

modified according to the recommendations of design codes. This change makes the 

structures symmetric and therefore, the number of design groups are reduced. Optimization 

point of view, this change may increase optimum weight more or less, however the 

computational costs will be reduced. 
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