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ABSTRACT 
 

The scaled boundary based methods are commonly known as semi-analytical approaches, 

which have very good accuracy and efficiency for solving various kinds of problems. In this 

paper, a new trend for improvement of the decoupled scaled boundary-finite element method 

(DSBFEM) in order to solve the 2D elastostatic and elastodynamic problems is provided. In 

this technique, only the boundaries of the problem domain are discretized by specific sub-

parametric elements. Mapping functions are employed as a class of higher-order Lagrange 

polynomials which are set at Gauss-Lobatto-Legendre control points,so, the special shape 

functions, Gauss-Lobatto-Legendre numerical integration, and the integral form of the 

weighted residual method lead to the diagonal coefficient matrices in the governing 

equations. The main differences between the study conducted and the prior researches 

regarding decoupled scaled boundary-finite element method is that here in, geometry 

production procedure of the interpolation function, integration of the different is selected, 

and using this approach, we could reduce the complexity of the DSBFEM. Validity and 

accuracy of the present method are demonstrated through two benchmark elastostatic 

problems and three benchmark elastodynamic problems that are successfully modeled using 

a few numbers of DOFs. The numerical results agree very well with the analytical solutions 

and the results from other numerical methods. 

 

Keywords: Decoupled SBFEM; 2D elastic problems; sub-parametric element; Lagrange 

polynomials; Gauss-Lobatto-Legendre integration. 

 

 

1. INTRODUCTION 
 

Various classes of numerical methods such as Finite Element Methods (FEM), Boundary 
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Element Methods (BEM), and Scaled Boundary based Methods (SBFEM), and mesh-less 

methods are usually used in order to solve the elastostatic and elastodynamic problems in 

two-dimensional domains (see, Fig. 1). 

 

 
Figure 1. A two-dimensional domain (𝛺) with Dirichlet (𝛤𝑢) and Neumann (𝛤𝑡) boundry 

conditions for elastostatic and elastodynamic problems 

 

The use of FEM is advantageous as its procedures are well established in [1, 2]. The 

researchers in [3-6] have presented a new numerical solution approach based on the FEM, 

which can be used for solving some 2D elastostatic and elastodynamic problems.  

Another desirable method for solving elastic problems is the boundary element (BE) 

based methods in which require reduced surface discretizations and so fewer unknowns are 

needed to be stored. Moreover, BEM requires a fundamental solution for the governing 

differential equation in the domain in order to obtain the boundary integral equation; in these 

conditions, the coefficient matrices of BEM are much smaller than those of FEM, routinely 

non-positive definite, non-symmetric, and fully populated (for example, see [7-12]). In [13, 

14], a coupling of the FEM and the BEM are used for solving elastodynamic problems. 

Time domain FEM/BEM coupling formulation for the 2D elastodynamic problem has been 

presented in [15]. Soares and Mansur [16, 17] have described a procedure to improve the 

stability and efficiency of time-domain BEM for wave problems. An efficient FEM/BEM 

coupling method for elastodynamic problems in time domain has been described in [18]. 

Abreu et al. [19] have presented a numerical method based on the BEM and the CQM to 

solve wave propagation problems. Carrer et al. [20] have developed a D-BEM approach for 

the solution of 2D wave propagation problems. An efficient time-truncation approach 

applied to the boundary element solution of 2D out-of plane elastodynamic problems has 

been presented in [21].  

During the last decades, researchers have also paid attention to mesh-less methods. These 

methods routinely do not require specific meshes, while the boundary nodes are usually 

needed. Several mesh-less methods have been reported in the literature among which, mesh-

less local Petrov-Galerkin method [22, 23], boundary element-free method [24], local point 
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interpolation method [25], local boundary integral equation method [26], collocation method 

[27], hybrid method [28], and other mesh-free methods [29, 30] have been employed in the 

modeling of elastodynamic problems. 

Combining the advantages of FEM and BEM, SBFEM was successfully developed [31]. 

Using surface finite elements, SBFEM discretizes only the boundary of the domain by 

transforming the governing partial differential equations to ordinary differential equations, 

which may be solved analytically. SBFEM, which requires no fundamental solution, have 

also been employed for the analysis of elastostatic problems and elastodynamic problems 

(for example, see [32] and [33], respectively). Some wave propagation problems in non-

homogeneous elastic domains have been solved using the SBFEM [34].  

Researchers in [35] have been developed SBFEM based approach for numerical analysis 

of 2-D elastic systems with rotationally periodic (and/or cyclic) symmetry under arbitrary 

load conditions. Issues relating to the practical implementation of the coupled boundary 

element–scaled boundary finite element method are addressed in [36].  In [37], researchers 

have been developed a mesh-less method for determining the shape functions in the 

circumferential direction based on the local Petrov-Galerkin approach, as increased 

smoothness and continuity of the shape functions is obtained, and the solution is shown to 

converge significantly faster than conventional scaled boundary finite elements. SBFEM is 

employed in [38] in order to derive an equation for the displacement unit-impulse response 

matrix on the near field/far field interface; in this research, an efficient method for modeling 

the propagation of elastic waves in layered media is developed. A new proposed approach 

using SBFEM is based on a piecewise linear approximation of the first derivative of the 

displacement unit-impulse response matrix and has been applied to soil–structure interaction 

problems involving scalar and vector waves is studied in [39]. 

A formulations of the smoothed polygonal FEM with simple averaging technique and the 

scaled boundary polygon formulation in [41] and [42] investigates the concepts of 

isogeometric analysis and the scaled boundary finite element method (SBFEM) are 

combined. Application of the Fourier shape functions in the SBFEM to form the 

approximation in the circumferential direction has been studied in [43]. 

A modification of the scaled boundary finite element method with diagonal coefficient 

matrices (DSBFEM) has been proposed in [44] for solving potential problems and it is 

applied to solve elastostatic problems [45]. Also the proposed method is used to solve 

elastodynamic problems in [46, 48]. Moreover it is also the method to solve the three-

dimensional elastostatic problems [47] and an infinite half-space problems is used [48]. 

DSBFEM is utilized for solution of two-dimensional elastodynamic problems in the 

frequency domain by employing Fast Fourier Transform in [40]. 

In this study, we improved the efficiency and reduced complexity of the semi-analytical 

based on the scale boundaries approach so called decoupled scaled boundary-finite element 

method (DSBFEM) which had been proposed in [44-48]; where, the Lagrange polynomials 

is used as mapping functions instead of Chebyshev polynomials and also Gauss-Lobatto-

Legendre quadrature is employed instead of Clenshaw-Curtis integration technique in order 

to calculate the coefficient matrices. By the way, with implementing this technique, the 

governing equations for each node are independent of the other nodes and this will reduce 

the computational costs; because evaluation of matrices and vectors and obtaining the 

solution procedure is more easier while one employs Lagrange polynomial and GLL 
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quadrature. Accuracy of the present method is demonstrated through five benchmark 

problems and its results are shown a good agreement between this approach and other 

methods. 

 

 

2. SUMMARY OF DECOUPLED SCALED BOUNDARY FINITE-ELEMENT 

METHOD 
 

The derivation of the decoupled scaled boundary finite-element method (DSBFEM) for 

various kinds of engineering problems is detailed in [44-48] and here in, only the concept 

and the equations necessary for explaining the new developments in this research are 

summarized. 

In the DSBFEM, a local-coordinates-origin (LCO) is chosen from which all boundaries 

of the domain are visible (as shown in Fig. 2). In this method, only the boundaries that do 

not pass through the LCO should be discretized into ne one-dimensional (for a two-

dimensional problem) using higher-order sub-parametric elements, so that. As shown in Fig. 

2, the global Cartesian coordinates in 2D problems are ( yx


, ), in which using the Lagrange 

polynomials would be transmitted into local coordinates (  , ); where,   is radial co-

ordinate from the LCO ( 0 ) to the boundaries ( 1 ) and   is the tangential co-

ordinate which varies between -1 and +1 on the boundaries. Each element on the boundary 

is analogous to a line; the geometry of an element (
Tyxx ][)}({  ) is interpolated using 

these of mapping functions )]([  , as, 

 

})]{([)}({ xx   , (1) 

 

 
(a) 
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(b) 

Figure 2. Modeling of 2D bounded domain, and the LCO: (a) in global coordinates system, and 

(b) in DSBFEM system for boundary 3 and its related sub-domain 3 . 

 

where,
Tyxx ][}{  denotes the global coordinates of boundary points, )]([   is a 12 n  

matrix and 1n  is number of nodes in the element. Any point in the domain with 

coordinates 
Txxx ]),(),([)},({ 


 relates to the corresponding point on the 

elements of boundary as 

 

)}(.{)},({  xx 


, (2) 

 

The mapping functions, which are used in DSBFEM in pervious works [44-48], are 

higher-order Chebyshev polynomials that interpolate the geometry of the problem using 

Chebyshev control points. 

The differential element of area in the global coordinates ( ydxd


) is evaluated by a 22

Jacobian matrix of the transformation respect to a differential element of area in local 

coordinates ( dd ) by 

 

 ddJydxd )(


 (3) 

 

where, )(J  indicates the Jacobian matrix may be written in the following form 

 











)()(

)()(
)(

,, 




 yx

yx
J . (4) 
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The spatial derivatives for two coordinate systems are related as 

 

[
𝜕 𝜕⁄ 𝑥̂ 0 𝜕 𝜕⁄ 𝑦̂

0 𝜕 𝜕⁄ 𝑦̂ 𝜕 𝜕⁄ 𝑥̂
]

𝑇

= [𝑏1(𝜂)]
𝜕

𝜕𝜉
+ [𝑏2(𝜂)]

1

𝜉

𝜕

𝜕𝜂
 , (5) 

 

where, 

 

[𝑏1(𝜂)] =
1

|𝐽(𝜂)|
[

𝑦(𝜂),𝜂 0

0 −𝑥(𝜂),𝜂

−𝑥(𝜂),𝜂 𝑦(𝜂),𝜂

], (6) 

[𝑏2(𝜂)] =
1

|𝐽(𝜂)|
[

−𝑦(𝜂) 0
0 𝑥(𝜂)

𝑥(𝜂) −𝑦(𝜂)
] . (7) 

 

The unit normal vector along each local coordinates on the boundary may be defined as 

the following equations 
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(9) 

 

In the DSBFEM, special polynomials N(η) are used as shape functions, in order to 

interpolating the displacement function and its derivatives, across the element; where, these 

polynomial have two specific characteristics; the shape functions have the property of 

Kronecker Delta, and their first derivatives are equal to zero at any given control point. 

For a 1n node element, these shape functions are expressed as a polynomial of degree 

12 n at ith control point [46] 

 

𝑁𝑖(𝜂) = ∑ 𝑎𝑚𝜂𝑚

2𝑛𝜂+1

𝑚=0

  . (10) 

 

The displacement field in a two-dimensional problem, 

 ),,(),,()},,({ tututu yx   at any point with given ),(   and given time t is 

obtained by interpolation of the displacement function using these shape functions as 

 

{𝑢(𝜉, 𝜂, 𝑡)} = ⌊𝑢𝑥(𝜉, 𝑡) 𝑢𝑦(𝜉, 𝑡)⌋𝑇    )()]([),,(  uNtu   (11) 
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In the global coordinates, the strain field in a two-dimensional problem is calculated by 

 

   ),,(
0

0
),,( tyxutyx

T

xy

yx



























  (12) 

 

Using Eqs. (5) and (11), the strain field (Eq. (12)) in local coordinates will be expressed 

as 

         ),(
1

),(),,( 2

,

1 tuBtuBt 


    (13) 

 

where, [𝐵1(𝜂)] = [𝑏1(𝜂)][𝑁(𝜂)] and [𝐵2(𝜂)] = [𝑏2(𝜂)][𝑁(𝜂)],𝜂. As the first derivatives of 

the shape functions at any nodes are zero, the second term of Eq. (13) at the control points 

will be vanished and at other point with any (  , ), this term is none-zero. The relation 

between strain and stress may be expressed using Hook's Law and Eq. (13) using the 

elasticity matrix [D] as given by 

 

           







 ),(

1
),(),,( 2

,

1 tuBtuBDt 


   (14) 

 

In the DSBFEM, as mentioned in previous studies [44], the weak form of governing 

equations of elastodynamic problems in the local coordinates is expressed as  

 

                  tt

b tuMtFtuDtuD ,,

1

,

0 ,,,
1

, 


    (15) 

 

where,  
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
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1

1

110 )()]([][)]([][  dJBDBD T  (16) 







1

1

2

,

11 )()]([][)]([][   dJBDBD T  (17) 







1

1
)()]([)]([][  dJNNM T  (18) 







1

1
)()},,({)]([)},({  dJtfNtF bTb  (19) 

 

Eq. (15) is the governing equation of elastodynamic problems, is a set of partial 

differential equations of radial coordinate and time t, which represents the governing 

equation of the DSBFEM for elastodynamic problems; it is clear that for a elastostatic 

problems the right hand side of Eq. (15) will be vanished and the governing equation is 

expressed as an ordinary differential equation respect to  ; calculation of the vectors and 

matrices of Eq. (15) is obtained using Clenshaw-Curtis quadrature; it is motivated that this 
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procedure makes these matrices diagonal and the governing equation is decoupled for ith 

degree of freedom in the DSBFEM leads to  

 

        ttiii

b

iiiiiii tuMtFtuDtuD ,,

1

,

0 ,.,,.
1

,. 


    (20) 

 

 

3. MODIFICATION OF DSBFEM 
 

The modeling and solution procedure that are used in the present work is similar to the 

studies which is published in [44-48], else the mapping functions, control points and the 

numerical integration technique. Here in, against of the previous DSBFEM, a sets of higher-

order Lagrange polynomials are used in order to interpolation of the model, and geometry, 

where these mapping functions are set up on Gauss-Lobatto-Legendre points as control 

points and employing the Gauss-Lobatto-Legendre quadrature for calculating the matrices, 

leads to decoupled partial differentials. 

 

3.1 Lagrange polynomials as mapping function 

For a )1( n -node element, a Lagrange polynomial of )( n  is used, these polynomials for 

ith point will be calculated as [49] 

 










1

,1

)(








n

ikk ki

k
i  (21) 

 

Considering Eq. (21), the Lagrange polynomials have the properties of the Kronecker 

Delta at any control point ( ijji  )( ). As it is clear for preparing an order n  parent 

element, 1n  nodes are required, where, two end-nodes are located at the extremity (

1 ) of the element and other 1n  remained internal nodes are located at the Gauss–

Lobatto–Legendre points, which are the roots of the first-order derivative of order n  

Legendre polynomial [49] 

 

0)( 
 nP

d

d
 (22) 

 

where, the  Legendre polynomial of order n is  expressed using Rodrigues' formula[50], 

 

 





 
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





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nn
d

d

n
P 1.

!2

1
)( 2  (23) 

For a three-node element, the position of nodes and mapping functions are illustrated in 

Fig. 3. 
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Figure 3. Lagrange interpolation mapping functions of a sample three-node element at the GLL 

points of reference element 

 

3.2 Gauss-Lobatto-Legendre quadrature 

In this study, to calculate the vectors and matrices in Eq. (15), the Gauss-Lobatto-Legendre 

numerical integration method is applied the numerical integration method, calculates the 

values of the coefficients matrix in the GLL, according to the node element that corresponds 

to the points and also features a shape functions used, resulting diagonal matrix of 

coefficients used in the equation. Weight coefficients used in the method of integration is 

calculated using the following equation [49] 

 

)1(,...,2,1,0;
))()(1(

2



 

 


ni
Pnn

w
in

i  (24) 

 

Consequently, the components of coefficient matrices may be expressed as 

 

)()]([][)]([ 110

ii

T

iiijij JBDBwD   (25) 

)()]([][)]([ 2

,

11

ii

T

iiijij JBDBwD    (26) 

)()]([)]([ ii

T

iiijij JNNwM   (27) 

 

where, ij denotes the Kronecker Delta which results in diagonal coefficient matrices. So, 

the system of partial differential Eq. (15) may be expressed as a single differential equation 

regarding to a specified point i as the following expression 

 

        ttiii
b

iiiiiii tuMtFtuDtuD ,,
1

,
0 ,.,,.

1
,. 


    (28) 

It is worthwhile remarking that Eq. (28) offers a set of ordinary differential equations for an 

elastostatic problem and elastodynamic problem with 2n DOFs. Each differential equation in 
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Eq. (28) depends only on the elastostatic and elastodynamic function of the ith DOF. This 

means that the coupled system of differential equations has been transformed into decoupled 

differential equations using a special set of weak formulation procedure, mapping functions, 

quadrature, and shape functions. In other words, to evaluate the displacement function and its 

derivatives at a given point, the governing equation that is corresponding to the point should be 

solved, only. As may be illustrated later, the decoupled differential equations system proposed 

in this paper can also provide higher rates of convergence by employing a few numbers of 

DOFs compared to other numerical methods. 

 

 

4. SOLUTION PROCEDURE 
 

In the DSBFEM, a problem will solved in two steps; the first is solving the governing equation 

(28) for any DOF which is subjected to external forces (i.e., these forces may be cause of body 

or surface loads or may be concentrated forces at the nodes) and the stress field at LCO 

regarding to all these nodes will be calculated. In the second step, the governing equation for all 

nodes (actually the nodes which the results is considerable at those) is evaluated and after 

determination of the displacement along radial coordinate )( , using the shape functions, 

displacement and also strain and stress at any internal or boundary points can be given. This 

approach is done according to following phases: 

a) Phase I: 

a-i) Read the mechanical and geometrical data, boundary conditions and initial condition and 

select a suitable location for LCO, 

a-ii) Calculate the coefficient matrices ([D0], [D1] and [M] using Eqs. (25)-(27)) regarding the 

geometrical and mechanical properties and force vector ({Fb}; Eq. (19)) regarding the 

loads in the problem for each element, 

a-iii) Assembling the matrices and vector for all element and obtain the total matrices and 

force vector, 

a-iv) Solve the governing equation (28) with implementing the boundary and initial conditions 

in order to evaluate the displacement along radial coordinate ( ) for any node, 

a-v) Calculate the total stress (   t,, ) at LCO by summation of the stresses from step (iv) 

which is obtained using Eq. (14), 

b) Phase II: 

b-i) Obtain the force along radial coordinate ({Fb}) regarding the stress at LCO and external 

forces at the boundary and loads using Eq. (19) for any boundary nodes, 

b-ii) Solve the Eq. (28) along each radial coordinate for each desirable control points and 

evaluate the displacement field  tui , , 

b-iii) Evaluating the displacement, strain and stress fields using Eqs. (11), (13) and (14), 

respectively, 

b-iv) Plot the results. 
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5. NUMERICAL EXAMPLES 
 

The efficiency and accuracy of the proposed new technique evaluated through representative 

some numerical examples. To this end, a couple of two-dimensional elastostatic problems 

and three 2D elastodynamic problems are solved in this section. The results obtained from 

present method are compared to those reported by other numerical methods and/or exact 

analytical solutions. All quantities are measured in SI units. 

 

5.1 Long cantilever beam subjected to static load 

Fig. 4 shows a simple classical plane stress benchmark problem of 2D cantilever which is 

subjected to a vertical traction at its free end; for this beam, the Young’s modulus
25 /101.2 mMNE   and Poisson's ratio 3.0 .  
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(b) 

Figure 4. The first elastostatic example; (a) geometry and boundary conditions in global 

Cartesian coordinates and (b) the LCO and proposed mesh using 61 three-node one dimensional 

elements and 246 degree of freedom 
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The thickness of the beam is unit. In this problem, the LCO is chosen as shown in Fig. 5b 

and discretization of the problem domain has been done using 61 three-node one-

dimensional elements with total 246 DOFs. To calculate the variation of displacement 

component along the X-axis at Y=1.0, after solving the problem in first phase (as described 

in section 4) it is just necessary to solve the governing equation corresponding to the 122th 

node. The solution result of this example using the proposed method is shown in Fig. 5; 

these results are compared with the method used [45] and the results from an analytical 

solution. It is evident that the result of the present study agrees very well with other solution 

techniques; furthermore, the contours of variation of yu and XX of this example within the 

domain using the present method are depicted in Fig. 6a and Fig. 6b, respectively. 
 

 
Figure 5. The numerical results and the analytical solution of the vertical displacement of the 

beam (𝑢𝑌 × 104) of the first example, along the X-axis at Y=1.0 which is evaluated from 

DSBFEM [45], analytical solution and present study 

 

 
(a) 

 
(b) 

Figure 6. Contour plots for the first example using the proposed technique; (a) uy and (b) 
XX  
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5.2 Deep Fixed-fixed end beam 

The scope of elastostatic example is to illustrate the accuracy of the proposed approach 

based on DSBFEM by solving a simple plane stress plate problem, which is clamped at its 

both ends with a 0.1m thickness. The material properties are 25 /102 mMNE  and 2.0 . 

As it is shown in Fig. 8, the beam is under a uniform distributed normal vertical traction of
2/1 mkNYY  . The LCO has been selected as shown in Fig. 7b. For this problem, only 4 

three-node elements with 18 numbers of DOFs are used. The numerical result of this 

problem using the present method is shown in Figs. 8 and 9 and these results are compared 

with the analytical solution and the method used in [45]; this comparison shows a good 

agreement between the results in the condition that in the present study, the problem is 

solved using just 9 control points. In addition, the contours of the vertical displacement and 

horizontal stresses to the space are calculated using the proposed method is shown in Fig. 

10. 

 

 
(a) 

y


x


LCO



1234567

8

9

 
(b) 

Figure 7. Second elastostatic example; (a) geometry, loads and boundary conditions in global 

Cartesian coordinates and (b) the place of LCO and meshing with 4 three-node elements with 

total 18 DOFs 
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Figure 8. The result solution of second example for the distribution of uY along the direction of X 

at Y=0.5; DSBFEM [45], analytical solution and present technique 

 

 
Figure 9. The result solution of second example for the distribution of

XX uy along the direction 

of Y at X=3.0; DSBFEM [45], analytical solution and present technique 

 

 
(a) 
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(b) 

Figure 10. Contour plots for the second example using the technique in the present study 

method: (a)uY and (b) 
XX  

 

5.3 Cantilever plate under transverse dynamic loading 

The first elastodynamic example, 2D wave propagation problem is investigated to verify the 

proposed method in comparison with other numerical solutions. A cantilever plate (Fig. 11), 

is under a uniform dynamic traction on its upper side. The triangular function of loading 

increases from zero at time t =0 to mNT /10   at t = 3sec. and then decreases to zero at 

sec6t  The material Young's modulus 2/1 mNE  , the mass per volume 3/1 mkg and the 

Poisson's ratio 3.0 . Modeling of this example is obtained by selecting the LCO at the left-

bottom corner of the problem domain and the domain boundaries are discretized using a 

series of three-node elements with only 7 nodes and 14 total numbers of DOFs, in total (see 

Fig. 11). The length of the element is chosen as at least 5 nodes placed in the minimum 

wavelength. In this example, the velocity of the shear wave (vs) is equal to 0.62 m/sec., and 

the velocity of the longitudinal wave (vL) is equal to 1.16 m/sec. The dominant frequency of 

the loading this example .sec/1.3 rad  and the minimum wave length (
min ) is regarding 

to shear wave and equal to 1.25; so, at least five node should be place in this wave length 

and using a series of three-node elements leads to the elements with the maximum node 

distance 0.31 m and we have chosen a three-node element with length 0.5 m for discretizing 

the geometry of this problem.  

 

 
(a) 
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y


x


LCO
1

37

2

6 5 4

 
(b) 

t (sec.)

T0=1

0          3          6 

)(tTy

 
(c) 

Figure 11. The third example; 2D plane stress plate; (a) geometry, loading location and boundary 

conditions in global Cartesian coordinates, (b) the LCO and the meshes in local coordinates 

system using 3 boundary elements and 7 control points, (c) triangular time-history of the 

dynamic loading 

 

 
(a) 
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(b) 

Figure 12. Results for the third example: (a) Vertical displacement at point B, (b) horizontal 

stress at point A; these results are from FEM, SBFEM [41], DSBFEM [46] and the proposed 

techniques in this study 

 

5.4 Bi-material rectangular plate subjected to high-frequency load 

In order to check the accuracy and efficiency of the present method in the analysis of impact 

problems, a rectangular plate consisting of two different materials (a steel- aluminum plate) 

loaded by a sinusoidal high-frequency loading (Fig. 13), is studied as the second 

elastodynamic example. Here, L=50mm and the maximum stress is 100 MPa at the time

.sec10975.1 6t  The steel material properties is with Young's modulus GPaEst 200 , 
3/7860 mkgst   and the aluminum properties is with Young's modulus GPaEAl 70 ,

3/2710 mkgAl  and also the Poisson's ratio of both material is zero to impose one-

dimensional condition. The LCO is selected at the bottom of materials interface line as 

shown in Fig. 13. The corresponding boundaries are discretized employing 4 three-node 

elements with only 9 nodes and 18 DOFs in where, the maximum distance between the 

nodes is 12.5 mm; this element size is chosen because the minimum wave length of two 

materials under the present load is equal to 100.18 mm. 

The time histories of variation of the horizontal displacement at point A calculated by the 

present method is shown in Fig. 14, in which other numerical and analytical solutions are 

also presented for comparison; this comparison shows a good agreement between the results; 

where, the proposed method is solved this problem using only 18th DOF and in a very simple 

manner. 
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)(txx
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X

Aluminum Steel
A

Uniformly distributed 

horizontal stress

 
(a) 

 
(b) 

t (sec.)
61095.30 

)10253.0sin(10 68 t

)(txx

 
(c) 

Figure 13. Fourth example: a Bi-material rectangular plate under dynamics excitation; (a) 

geometry and boundary conditions in global Cartesian coordinates, (b) the location of the LCO 

and the meshing in local coordinates system, (c) sinusoidal dynamic impulse 
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Figure 14. The variations of horizontal displacement at point A under the sinusoidal loading for 

the fourth example; Analytical solution, FEM, SBFEM [41], DSBFEM [46] and the present 

technique 

 

5.5 Plane portal frame under a lateral dynamic load  

In the last example, a two-dimensional plane-stress portal frame is considered to 

demonstrate the applicability of the proposed method in modeling structures that are 

more realistic. The geometry of this example is as illustrated in Fig. 15 and with 

Young’s modulus kPaE 100 , density 3/1 mkg , and Poisson’s ratio 2.0 . This plate 

is fixed at the two bottom sides and is loaded by a uniformly distributed ramp dynamic 

lateral load as depicted in Fig. 15. 

 

 
(a) 
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(b) 

t (sec.)

Tx(t)

T0=10

0       0.1  
(c) 

Figure 15. The 5thexample is the portal frame subjected to lateral time-dependent load; (a) 

geometry and boundary conditions in global Cartesian coordinates, (b) the place of the LCOs 

and the proposed mesh employing three-node elements with 26 control points for each sub-

domain and total 52 DOFs, in local coordinates system, (c) ramp function dynamic loading 

 
The domain of this example is categorized as a concave geometry, where, not all the 

boundaries of the domain are visible from a unique point as LCO; so in these cases, the 

concave domain will be subdivided in some convex domains with their own local coordinate 

origin. Consequently, for the nodes located at the interface of new sub-domains, the 

compatibility and equilibrium conditions for displacement components and stress 

components, respectively, should be satisfied. The domain of the problem is subdivided in 

two sub-domains ( 1 and 2  separated by a vertical dashed-line in Fig. 15, then two LCO 

are placed at the points where are shown in this figure. The boundaries of each sub-domain, 

which do not pass through the LCO, are discretized using a series of three-node element 

with total 13 nodes and 26 DOFs. The element size for this discretization is chosen 2 m, 

because the wavelength in this example regarding the material properties and dominant 

frequency of the load is more than 4.2 m. 

The time variation of horizontal displacement at node 11(and/or node 11') is shown in 

Fig. 16. As shown in the figure, the results from the present method show good agreement 

with the results of other numerical methods and the proposed method is solved this example 

regarding a few number of DOF. 
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Figure 16. Horizontal displacement at node 11 (or 11’) in the last example under the ramp time-

dependence loading; from FEM, SBFEM [41], SEM, LBIE, DSBFEM [46] and the present 

technique 

 

 

6. CONCLUSIONS 
 

In this research, a modification on the novel semi-analytical method based on the scaled 

boundary-finite element method that is called as DSBFEM has been studied. The procedure 

of the modeling and solution of the 2D elastostatic and elastodynamic problems are similar 

to the DSBFEM. The difference in the proposed approach is that the boundary of the domain 

was discretized by new higher-order sub-parametric elements with Lagrange polynomials as 

mapping functions and the control points were Gauss-Lobatto-Legendre points, and also, 

using Gauss-Lobatto-Legendre quadrature the coefficient matrices of equations system 

became diagonal. This leads to a system of decoupled governing equations for the entire 

system. Five examples were successfully analyzed using the new proposed technique. In 

these examples, various elastostatic and elastodynamic problems and boundary conditions 

and various loading types were selected to show the generality and applicability of the 

present approach. It should be mentioned that all the examples were successfully modeled 

with very small number of DOFs and less complexity, preserving very high accuracy 

compared to the available analytical and numerical solutions. 
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