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ABSTRACT 
 

In this paper, the thermo-dynamic analysis of contact–impact problem is presented in the 

large deformation of hyperelastic material based on the Taylor-Galerkin method. The 

technique is applied for the time domain discretization of thermo-dynamic governing 

equations in the advection-diffusion problems. The impenetrability condition and frictional 

contact constraints are fulfilled by imposing the augmented-Lagrange technique for non-

matching contact surfaces. The Taylor-Galerkin method is employed to describe the 

advection-diffusion effect in the numerical solution of parabolic equation of unsteady heat 

transfer condition. The effect of temperature is taken into account in the stress field by 

satisfying the free energy function. The normal and tangential forces at the contact surface 

are related to the temperature and heat conductivity. Numerical examples are presented to 

demonstrate the accuracy and efficiency of the proposed computational algorithm in large 

deformation thermo-dynamic analysis of contact–impact problems. 

 

Keywords: Contact–impact; thermo-dynamic model; augmented-Lagrange method; Taylor-

Galerkin technique; large deformation. 

 

 

1. INTRODUCTION 
 

In many industrial applications, numerical modeling of a system subjected to the thermo-

dynamic loading with frictional contact surfaces and heat flux generation, in the framework 

of computational structural mechanics is still considered as a challenging task, particularly 

in high speed processes. The prediction of temperature and stress fields in various 

manufacturing processes, such as the hot metal forming, hot powder compaction, heat 

exchanger and metal drilling is of considerable importance because ignoring the reciprocal 

effects of temperature and stress fields lead to impractical simulation of natural problems. 
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The thermo-mechanical behavior of contact problem must be properly modeled in the 

contact of two bodies. The contact may happen due to mechanical loading or thermal 

loading produced by the non-homogeneous thermal expansion, or contraction. In the 

thermo-mechanical contact friction problem, constraints are generally categorized into two 

groups. The first group is concerned with the kinematic constraints of deformation expressed 

as the impenetrability constraints and the frictional behavior of bodies at the contact zone as 

the stick/slip behavior. The second group consists of thermal constraints at the contact 

surfaces, in which the thermal contact resistance (TCR), the partition coefficient and the 

frictional heating due to energy dissipation are considered as thermal parameters. The 

practical treatment of this problem is originally proposed by Barber [1] and Cooper et al. [3] 

by considering the constitutive thermal behavior of contact problems. 

The finite element treatment of contact problem is commonly concerned with non-

matching meshes, which is due to non-conforming discretization, or large relative 

displacement of contact bodies. The implementation of contact constraints between two 

bodies can be performed using the standard penalty method [22], or the classical Lagrange 

multiplier technique [2]. The physical deficiency of the penalty method in satisfying the 

impenetrability conditions and some practical disadvantages of the Lagrange multiplier 

method lead to the combination of these two approaches. As a result, the perturbed Lagrange 

and the augmented Lagrange techniques were proposed and applied in the finite element 

method [26]. The significance of the finite element treatment of multibody, large 

deformation frictional contact problems regarding large scale computations was outlined by 

Laursen and Simo [16]. A rate-dependent constitutive model for the kinetic sliding of 

frictional interfaces was proposed by Laursen and Oancea [15] in the context of a convected 

reference frame for large deformation contact problems. A methodology for the solution of 

unilateral contact problem with non-associated threshold friction in large deformation 

frictional contact was performed by Pietrzak and Curnier [23] for treating the contact and 

friction inequality constraints. A numerical strategy for contact smoothing algorithm in large 

deformation was presented by Padmanabhan and Laursen [20] to solve the nonphysical 

oscillations in contact forces and difficulties associated with the discontinuities in the 

contact surface geometry. The analysis of large deformation contact problems with the 

Coulomb friction law between two hyperelastic bodies was performed by Feng et al. [7] by 

means of the augmented Lagrangian method. A mortar contact formulation was proposed by 

Yang et al. [28] in the solution of large deformation–large sliding frictional contact problems 

for treating the non-smoothness in the contact geometry. A finite element model based on 

oriented volumes was developed by Halikal and Hjelmstad [8] for non-smooth contact 

problems that guarantee the conservation of the total energy during impact using the 

Lagrange multiplier method. A frictional contact formulation for large deformation 

problems was presented by Oliver et al. [19], where the contact constraints were formulated 

using the contact domain method as a fictive intermediate region connecting the potential 

contact surfaces of deformable bodies. An enriched finite element method based on the X-

FEM technique was developed by Khoei and Mousavi [14] for large deformation–large 

sliding contact problems. The application of NURBS-based isogeometric analysis was 

recently performed by de Lorenzis et al. [4] to the Coulomb frictional contact problems in 

the context of large deformations using the mortar-based approach. 

In thermo-mechanical analysis of contact friction problem, a proper contact formulation 
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must be utilized to ensure the accuracy of the computed pressure and thermal dissipation 

parameters at contact surfaces, in which introducing a small error results in an accumulated 

error in the entire solution procedure. A solution for an unilateral contact problem with 

friction was proposed by Hlaváček and Nedoma [9, 10] in thermo-elasticity problems. It is 

usually permissible to treat the thermo-coupling problems with a partially uncoupled 

approach, particularly in the absence of plasticity. As a result, the augmented-Lagrange 

method can be applied on the basis of node-to-surface contact algorithm for non-matching 

meshes to impose the contact constraints of deformations, while the thermal contact 

resistance (TCR) can be enforced for the perfect/imperfect thermal constraints in the normal 

direction. This strategy makes the possibility of decomposition of coupled thermo-

mechanical analysis into the purely thermal and mechanical simulations with individual 

boundary conditions. The interaction of thermal and mechanical problems can then be 

employed via the reciprocal effects of temperature on the stress fields, or the influence of 

contact normal forces on the thermal parameters.  

There are a few research works reported in the literature regarding the thermo-

mechanical analysis of contact problems; including a thermo-mechanical contact analysis by 

Oancea and Laursen [18] that contains the frictional thermal softening, pressure dependent 

heat conduction, and heat sinks on the contact surface; a contact pressure and temperature 

dependent thermal contact model with an operator split technique by de Saracibar [5] and 

Pantuso et al. [21]; a thermo-mechanical frictional contact algorithm by Xing and 

Makinouchi [27] for the multiple elastic–plastic bodies in finite deformation using the R-

minimum strategy; an adaptive thermo-mechanical contact analysis by Rieger and Wriggers 

[24] that considers the contact heat flux and frictional dissipation; and a mortar approach for 

thermo-mechanical contact problems by Hueber and Wohlmuth [11] that takes into account 

the effects of frictional heating and thermal softening at the contact interface. A fact that has 

been usually ignored in the thermo-coupling analysis is the effect of velocity field in the 

thermal contact/impact problems, known as the convective heat transfer. This phenomenon 

is important in the analysis of the conventional thermo-mechanical problem, the thermal 

contact resistance, and the frictional dissipation treatment. Since the implementation of the 

standard Galerkin finite element method for the convection-diffusion problem results in 

numerical instability and a diffused solution, the Taylor-Galerkin method can be employed 

for the time dependent advection diffusion problem [6]. The numerical instability of thermo-

dynamic analysis in frictional sliding systems was investigated by Morton [17] and Yi [29]. 

The main concept of this strategy is to utilize an improved approximation for the time 

derivative by including the higher order term of the Taylor series. 

The main objective of this study is to present a thermo-dynamic modeling for large 

deformation contact–impact problem based on the Taylor-Galerkin method. The outline of 

this paper is as follows; In Section 2, the dynamic finite element formulation is presented 

based on the total Lagrangian approach with the hyperelastic material model. In Section 3, 

the heat transfer formulation is derived based on the Taylor-Galerkin approach and the 

relevant finite element formulation is demonstrated. In Section 4, the implementation of 

mechanical and thermal contact constraints is presented in contact-impact problems. In order 

to illustrate the capability of proposed computational algorithm, several numerical examples 

are presented in Section 5. Finally, Section 6 is devoted to conclusion remarks. 
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2. LARGE FINITE ELEMENT DEFORMATION FORMULATION 
 

The main purpose of the non-linear dynamic finite element analysis involving large strain, 

large deformation and material nonlinearities is to establish an equation of virtual work and 

consequently to satisfy the equilibrium conditions between the internal and external forces. 

Considering the motion of particle in a fixed Cartesian coordinate, the differential equation 

for the dynamic equilibrium without damping can be expressed as 

 

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗

− 𝜌�̈�𝑖 + 𝑏𝑖 = 0 (1) 

 

where 𝜎𝑖𝑗 is the Cauchy stress tensor, 𝑥 the vector of current coordinates, 𝜌 the mass per 

unit volume and 𝑏𝑖 is referred to as the body force vector. In order to solve equation (1) 

numerically, the standard finite element procedure can be applied using the principle of 

virtual work, or displacement, to express the equilibrium of body in the unknown 

configuration as 

 

∫ 𝝈𝑇𝛿𝜺
 

Ω

𝑑Ω = − ∫ 𝛿𝒖𝑇𝜌 �̈�
 

Ω

𝑑Ω + ∫ 𝛿𝒖𝑇𝒃
 

Ω

𝑑Ω + ∫ 𝛿𝒖𝑇𝒕
 

Γ

𝑑Γ (2) 

 

where 𝜺 is the strain tensor usually known as the Almansi, or Euler strain tensor, and in 

the small deformation takes the form of engineering strain. In the above equation, 𝒕 is the 

surface forces or the tractions applied on boundaries, in which for the simplicity it is 

assumed that its direction and magnitude are independent of any configuration and 

consequently the last integral includes the virtual work performed by the external forces. 

In large deformations, the second Piola-Kirchhoff stress that is conjugate with the Green 

strain can be used as the stress measure. The virtual work expression can therefore be 

expressed as 

 

∫ 𝑺𝑇𝛿𝑬
 

Ω0

𝑑Ω = − ∫ 𝛿𝒖𝑇𝜌0�̈�
 

Ω0

𝑑Ω + ∫ 𝛿𝒖𝑇𝒃0
 

Ω0

𝑑Ω + ∫ 𝛿𝒖𝑇𝒕
 

Γ0

𝑑Γ (3) 

 

where 𝑬 and 𝑺 denote the Green-Lagrange strain tensor and the second Piola-Kirchhoff 

stress tensor, respectively and ‘0’ expresses that the variables are measured in the initial 

configuration as the total Lagrangian formulation is used. Following the standard finite 

element Galerkin discretization procedure, the linearization of the variational equation (3) in 

the framework of the Lagrangian description with independent approximations of 𝒖 and �̈� as 

𝒖 = 𝑵�̅� and �̈� = 𝑵�̈�  can be expressed as 

 

𝜳(𝒖, �̈�) = ∫ 𝑩𝑇
 

Ω0

𝑭𝑇𝑺 𝑑Ω0 + ∫ 𝑵𝑇𝜌0𝑵𝑑Ω0 �̈�
 

Ω0

− ∫ 𝑵𝑇𝒃0
 

Ω0

𝑑Ω0 − ∫ 𝑵𝑇𝒕
 

Γ0

𝑑Γ0 = 𝟎 (4) 
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where 𝜳 is a function of the displacement and acceleration and must be zero at each time 

step of the analysis, 𝑵 is the vector of shape functions, 𝑩 is the derivatives of shape 

functions with respect to initial coordinates defined as 𝐵𝑗𝑖 = 𝜕𝑁𝑖 𝜕𝑋𝑗⁄ , and 𝑭 is the 

deformation gradient defined by 𝐹𝑖𝑗 = 𝜕𝑥𝑖 𝜕𝑋𝑗⁄ . In the first integration of equation (4), the 

stress field is dependent on the strain and consequently on the displacement due to large 

deformations and geometric nonlinearities [12].  

In order to solve equation (4) in time domain, the generalized Newmark (GN22) technique 

is applied for dynamic problems, and the unknown displacement and velocity fields are 

calculated using the variables of previous time step in the following form 

 

�̅�𝑛+1 = �̅�𝑛 + �̇�𝑛∆𝑡 + �̈�𝑛

∆𝑡2

2
+ 𝛽(�̈�𝑛+1 − �̈�𝑛)

∆𝑡2

2
 (5) 

�̇�𝑛+1 = �̇�𝑛 + �̈�𝑛∆𝑡 + 𝛼(�̈�𝑛+1 − �̈�𝑛)∆𝑡 (6) 

 

where the subscript 𝑛 refers to the known values of variables at the last converged step of 

the analysis and 𝑛 + 1 refers to the unknown variables at the current configuration. The 

parameters 𝛼 and 𝛽 are the Newmark coefficients, in which for the unconditional stability 

0 <  𝛽 ≤  𝛼 < 1. It can be easily shown from relation (5) that the acceleration can be 

obtained as 

 

�̈�𝑛+1 =
2(�̅�𝑛+1 + �̂�𝑛+1)

𝛽∆𝑡2
 (7) 

 

where �̂�𝑛+1 can be obtained using the known variables of time step 𝑛 as  

 

�̂�𝑛+1 = − �̅�𝑛 − �̇�𝑛∆𝑡 + �̈�𝑛

∆𝑡2

2
+ (𝛽 − 1)�̈�𝑛

∆𝑡2

2
 (8) 

 

Substituting relation (7) into the equilibrium equation (4) at time step 𝑛 + 1, it results in 

 

𝜳𝑛+1
(�̅�) = ∫ 𝑩𝑇

 

Ω0

𝑭𝑇𝑺 𝑑Ω0 + ∫ 𝑵𝑇𝜌0𝑵 𝑑Ω0 
 

Ω0

2(�̅�𝑛+1 + �̂�𝑛+1)

𝛽∆𝑡2
− 𝒇𝑒𝑥𝑡 = 𝟎 (9) 

 

where 𝒇𝑒𝑥𝑡 is referred as the external forces due to surface tractions and body forces. 

Applying the Newton-Raphson method to equation (9), the linearization of Lagrangian finite 

element formulation can be obtained as 
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(∫ 𝑩𝑇𝑺 𝑩
 

Ω0

𝑑Ω0 + ∫ 𝑩𝑇𝑭𝑇𝑫 𝑭 𝑩
 

Ω0

𝑑Ω0  +
2

𝛽∆𝑡2
∫ 𝑵𝑇𝜌0𝑵 𝑑Ω0 

 

Ω0

) 𝑑�̅�                         

+  ∫ 𝑩𝑇
 

Ω0

𝑭𝑇𝑺 𝑑Ω0 +
2(�̅�𝑛+1 + �̂�𝑛+1)

𝛽∆𝑡2
∫ 𝑵𝑇𝜌0𝑵 𝑑Ω0 

 

Ω0

− 𝒇𝑒𝑥𝑡 = 𝟎 

(10) 

 

where 𝑫 is the 3 × 3 material property matrix of the isotropic homogenous material 

where its components are obtained by differentiating from the constitutive relationship 

between the second Piola-Kirchhoff stress and Green-Lagrange strain. There are various 

material models introduced in the literature to describe the constitutive relation from which 

the Mooney-Rivilin and Neo-Hookean models are appropriate for rubberlike materials 

undergoing moderately large deformations due to the large strains. In equation (10), the 

tangential stiffness matrix, mass matrix and load vectors are defined as 
 

𝑲𝑐 = ∫ 𝑩𝑇𝑺 𝑩
 

Ω0

𝑑Ω0 
 

𝑲𝑠 = ∫ 𝑩𝑇𝑭𝑇𝑫 𝑭 𝑩
 

Ω0

𝑑Ω0 
 

𝑴 =  ∫ 𝑵𝑇𝜌0𝑵 𝑑Ω0 
 

Ω0

 (11) 

𝒇𝑖𝑛𝑡 = ∫ 𝑩𝑇
 

Ω0

𝑭𝑇𝑺 𝑑Ω0 
 

𝒇𝑒𝑥𝑡 = ∫ 𝑵𝑇𝒃0
 

Ω0

𝑑Ω0 + ∫ 𝑵𝑇𝒕
 

Γ0

𝑑Γ0 
 

 

where 𝑲𝑐 
is the stiffness matrix for large deformation, 𝑲𝑠 is the stress (or geometric) 

stiffness matrix, 𝑴 is the mass matrix, 𝒇𝑖𝑛𝑡 is the equivalent load vector due to stresses in 

the current configuration, and 𝒇𝑒𝑥𝑡 is the equivalent load vector due to surface loading and 

body forces. Finally, equation (10) can be simplified as 𝑲 𝑑�̅� = 𝒇, with 𝑲 = 𝑲𝑐 + 𝑲𝑠 +
2

𝛽∆𝑡2
𝑴 and 𝒇 = 𝒇𝑒𝑥𝑡 − 𝒇𝑖𝑛𝑡 −

2(𝑢𝑛+1+𝑢𝑛+1)

𝛽∆𝑡2
𝑴. 

 

2.1 The temperature–dependent FE formulation 

In order to incorporate the effect of temperature into the deformation and stress fields, the 

effect of thermal changes must be taken into the energy function of the isotropic hyper-

elastic material model based on the thermal gradient and heat transfer analysis that leads to a 

non-isothermal energy function. The thermo-mechanical analysis is performed using the 

nonlinear mechanical modeling and heat transfer analysis. The nonlinear thermo-mechanical 

analysis can be carried out based on the free strain energy density function for the hyper-

elastic models, such as the compressible Neo-Hookean or Mooney-Rivilin model, by 

decomposing the strain energy function into an effective strain energy function or elastic 

energy function and a function depending purely on a temperature. The strain energy density 

function for the compressible Neo-Hookean material can be expressed as 
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𝜓(𝑪𝑒,𝜃) =
1

2
𝜆(𝑙𝑛(𝐽𝑒))

2
− 𝜇 𝑙𝑛(𝐽𝑒) +

1

2
𝜇 (𝑇𝑟(𝑪𝑒) − 3) + ℎ(𝑇) (12) 

 

where 𝐽𝑒 = det 𝑭𝑒, with 𝑭𝑒 denoting the temperature-free deformation gradient obtained 

by decomposing the deformation gradient 𝑭 into the effective stress related part of the 

deformation gradient 𝑭𝑒 and the thermal deformation tensor 𝑭𝜃 as 

 

𝑭 = 𝑭𝜃𝑭𝑒 (13) 

 

and 𝑪𝑒 is the effective left Cauchy tensor defined as  

 

𝑪𝑒 = 𝑭𝑒𝑇𝑭𝑒 (14) 

 

in which the constitutive equation for the second Piola-Kirchhoff stress can be obtained 

by differentiating the energy function with respect to the effective left Cauchy tensor as  

 

𝑺 = 2
𝜕𝜓

𝜕𝑪𝑒
 (15) 

 

The main concept of above issue is that no stresses are produced by the free expansion 

due to the changes of temperature. In the case of isotropic temperature-dependent material 

behavior, the free expansion due to the changes of temperature is volumetric, and the 

thermal deformation tensor can be written as 

 

𝑭𝜃 = 𝛾(𝑇)𝑰 (16) 

 

where 𝛾(𝑇) = 𝑒𝛼𝑇, with 𝛼 denoting the temperature independent thermal expansion 

coefficient, 𝑇 = 𝜃 − 𝜃0 is the changes of temperature with respect to the initial temperature 

of the particular region of the particle, and 𝑰 is the identity tensor. 

Since the thermal deformation tensor 𝑭𝜃 is the stress-free part of the deformation 

gradient which contains both the free thermal expansion and deformation, the values of 

stresses depend merely on the effective stress related part of deformation gradient 𝑭𝑒, which 

can be simply obtained by multiplication of the inverse of 𝑭𝜃 by 𝑭. In this manner, the 

effective symmetric left Cauchy tensor and the effective deformation gradient determinant 

defined in equation (14) can be obtained as  

 



A.R. Khoei, H. Saffar and M. Eghbalian 

 

 

688 

𝑭𝑒 = (𝑭𝜃)
−1

𝑭 =
1

𝛾(𝑇)
𝑭 

𝐽𝑒 = det(𝑭𝑒) =
1

𝛾(𝑇)
3

det(𝑭) =
1

𝛾(𝑇)
3

 𝐽 

𝑪𝑒 = (𝑭𝑒)𝑇𝑭𝑒 =
1

𝛾(𝑇)
2

𝑪 

(17) 

 

The second Piola-Kirchhoff stress defined in the large deformation stiffness matrix 𝑲𝑐 

and the internal force 𝒇𝑖𝑛𝑡 in relations (11) can be obtained using equation (15). In relation 

(11), the constitutive elasticity tensor 𝑫 can be calculated by twice differentiating the 

effective energy function with respect to 𝑪𝑒 and, the Green-Lagrange strain measurement 

that takes part in the geometric stiffness matrix 𝑲𝑠 can be obtained from the total 

deformation gradient as  

 

𝑬 =
1

2
(𝑭𝑇𝑭 − 𝑰) (18) 

 

This procedure leads to a nonlinear strategy that deals with the effect of temperature 

changes on the deformation and stress fields through the Newton-Raphson procedure. 

 

 

3. THE CONVECTION–DIFFUSION HEAT TRANSFER ANALYSIS 
 

In order to perform the heat transfer analysis of convection–diffusion problem, the Taylor-

Galerkin technique is employed here. Considering the motion of a mobile solid in a fixed 

Cartesian coordinate, the governing heat transfer equation can be written as 

 

𝜌𝑐 (
𝜕𝑇

𝜕𝑡
+ 𝑽. 𝛁𝑇) = 𝛁. (𝒌 𝛁𝑇) + 𝑄 (19) 

 

where 𝑇 is the temperature field, 𝜌 is the density of the medium, 𝑐 is the specific heat 

parameter, 𝛁 denotes the gradient operator, 𝑽 = [�̇�, �̇�] is the vector of constant velocity, 𝒌 is 

the thermal conductivity tensor which may vary in space, and 𝑄 is the heat source. In above 

equation, 𝒌 𝛁𝑇 is a substitution for the heat flux 𝑞 according to the Fourier law. Equation 

(19) is a highly nonlinear equation where the term containing 𝑽 makes an unsteady 

condition. 

The numerical solution of the convection–diffusion equation (19) by the standard 

Galerkin finite element method results in a diffused solution that can be related to the Peclet 

number, i.e. the proportion of the convection to diffusion effects. There are several 

approaches proposed by researchers for the time discretization of the purely diffusion 

equation, such as the backward/forward difference and the Crank-Nicolson schemes, 

however – they cannot be directly applied to the convection–diffusion problems. In fact, the 

result will not converge particularly when the convection term is dominant. The Taylor-
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Galerkin technique is an efficient approach proposed in the literature to overcome this 

problem by adding an artificial diffusion to the existing diffusion, which is dependent on the 

thermal conductivity [25]. In order to apply the Taylor-Galerkin technique to the 

convection–diffusion equation, the time discretization of temperature field is written as 

 

𝑇𝑛+1 − 𝑇𝑛

∆𝑡
=

𝜕𝑇

𝜕𝑡
+

1

2
∆𝑡

𝜕2𝑇

𝜕𝑡2
+ 𝑂(∆𝑡2) (20) 

 

where 𝜕𝑇 𝜕𝑡⁄  and 𝜕2𝑇 𝜕𝑡2⁄  denote the first and second time derivatives of temperature 

field, respectively. To obtain the second time derivative of temperature, taking the time 

derivative from equation (19), results in 

 

𝜌𝑐 (
𝜕2𝑇

𝜕𝑡2
+ 𝑽. 𝛁

𝜕𝑇

𝜕𝑡
) = 𝒌 𝛁2

𝜕𝑇

𝜕𝑡
 (21) 

 

in which it is assumed that the heat conductivity tensor is constant and the heat source is 

negligible. By expanding equation (21) for the two-dimensional problem, we obtain  

 

𝜌𝑐
𝜕2𝑇

𝜕𝑡2
= −𝜌𝑐�̇�

𝜕

𝜕𝑥
(

𝜕𝑇

𝜕𝑡
) − 𝜌𝑐�̇�

𝜕

𝜕𝑦
(

𝜕𝑇

𝜕𝑡
) + 𝑘 (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)

𝜕𝑇

𝜕𝑡
 (22) 

 

By combining equations (19) and (22) and removing the higher-order terms related to the 

third spatial derivatives, the second time derivative of temperature can then be obtained as 

 

𝜕2𝑇

𝜕𝑡2
= �̇�2

𝜕2𝑇

𝜕𝑥2
+ 2�̇��̇�

𝜕2𝑇

𝜕𝑥𝜕𝑦
+ �̇�2

𝜕2𝑇

𝜕𝑦2
+ (

𝑘

𝜌𝑐
)

𝜕𝑇

𝜕𝑡
 (23) 

 

Substituting the first and second time derivatives of temperature into the time 

discretization of temperature (20), yields the semi-discrete equation as  

 

𝑇𝑛+1 − 𝑇𝑛

∆𝑡
= [− (𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
) + (

𝑘

𝜌𝑐
) (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) +𝑢2

𝜕2

𝜕𝑥2
+ 2𝑢𝑣

𝜕2

𝜕𝑥𝜕𝑦

+ 𝑣2
𝜕2

𝜕𝑦2
] 𝑇𝑛 + (

𝑘

𝜌𝑐
) (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) (

𝑇𝑛+1 − 𝑇𝑛

∆𝑡
) 

(24) 

 

Following the standard finite element procedure, the linearization of the weak form of 

equation (24) with independent approximations of 𝑇𝑛
(𝑥,𝑦) as 𝑻𝑛 = 𝑵�̅�𝑛 can be obtained as 

 

(
1

∆𝑡
𝑪 +

1

2
𝑯) 𝑇𝑛+1 = (

1

∆𝑡
𝑪 −

1

2
𝑯 − 𝑪𝑎 + 𝑪𝑏) 𝑇𝑛 + 𝒈 (25) 
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Where 

 

𝑯 = ∫ 𝑩𝑇𝑘 𝑩 𝑑Ω 
 

Ω

+ ∫ 𝑵𝑇ℎ𝑒𝑥𝑡 𝑵 𝑑Γ 
 

Γ

 
 

𝑪 =  ∫ 𝑵𝑇𝜌𝑐 𝑵 𝑑Ω 
 

Ω

 
 

𝑪𝑎 = ∫ 𝑵𝑇𝜌𝑐 𝑽 𝑩
 

Ω

𝑑Ω (26) 

𝑪𝑏 =
∆𝑡

2
∫ 𝑵𝑇𝑽𝑇𝜌𝑐 𝑽 𝑵

 

Ω

𝑑Ω  

𝒈 = ∫ 𝑵𝑇
 

Γ

ℎ𝑒𝑥𝑡  𝑇∞ 𝑑Γ 
 

 

in which the second integration of conductivity matrix 𝑯 and the integration of thermal 

loading vector 𝒈 can be obtained using the Neumann boundary condition at the surfaces 

subjected to the natural convection with the constant convection coefficient ℎ𝑒𝑥𝑡(W/
( C 

o . m2)). It implies that the heat flux conducted to a body due to the heat conductive 

surfaces is obtained by 𝑞 = ℎ𝑒𝑥𝑡(𝑇∞ − 𝑇s), with 𝑇∞ and 𝑇𝑠 denoting the temperature of 

environment and body surface, respectively. 

 
 

4. MODELING OF MECHANICAL AND THERMAL CONTACT 

CONSTRAINTS 
 

In the thermo-mechanical contact problem, both mechanical and thermal aspects must be 

taken into account at the contact surface between two bodies. Consider a system of two 

deformable bodies known as the master and slave bodies, there are two sets of constraints to 

be enforced on contacting surfaces. The first set is related to mechanical constraints, which 

is generally categorized into the impenetrability and frictional constraints, and state that 

there is no inter-penetration between two bodies at the contact surface [13]. The 

impenetrability and frictional constraints can be modeled according to the normal and 

tangential relative displacements between two bodies in the contact zone, which is directly 

stated in terms of stick/slip conventional friction laws. The second set is concerned with the 

thermal constraints, which is related to the heat conduction condition and the heat generation 

due to the dissipation and frictional slipping. In what follows, the mechanical contact 

constraints are modeled using the augmented-Lagrangian technique, and the thermal contact 

constraints are presented in the next section.  

In order to enforce the impenetrability contact condition, the normal distance function g𝑁 

and the normal contact force λ𝑁 are introduced at the contact surface with the following 

condition g𝑁 ≥ 0 and λ𝑁 ≤ 0, where g𝑁 is the gap between two bodies at the contact surface 

which is negative in the case of penetration. According to the node-to-segment contact 

algorithm, the gap function g𝑁 is referred to the normal or closest distance between a point 
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on the slave body 𝒙𝑠 to its projection point �̅�𝑠 on the master segment (1)–(2) defined by 

nodal coordinates 𝒙𝑚
1  and 𝒙𝑚

2  , respectively, which can be simply obtained by taking the 

inner product of the normal unit vector 𝒏 with the relative distance defined as  

 

g𝑁 = ‖𝒙𝑠 − �̅�𝑠‖ = (𝒙𝑠 − 𝒙𝑚
1 )𝑇𝒏 (27) 

 

where 
 

�̅�𝑠 = 𝒙𝑚
1 + (𝒙𝑚

2 − 𝒙𝑚
1 )𝜉 

𝒏 = 𝒆3 × 𝒕 
(28) 

 

where 𝜉 = (𝒙𝑠 − 𝒙𝑚
1 )𝑇𝒕 is the dimensionless surface coordinate along the master surface 

and 𝒕 is the normalized tangent vector along the master segment which is defined by 

 

𝒕 = (𝒙𝑚
2 − 𝒙𝑚

1 ) ‖𝒙𝑚
2 − 𝒙𝑚

1 ‖⁄ = (𝒙𝑚
2 − 𝒙𝑚

1 ) 𝑙⁄  (29) 

 

Similarly, the tangential gap between the slave node at the contact surface and the master 

segment can be defined by g𝑇 = (𝜉 − 𝜉0)𝑙0. Different strategies can be used to define the 

tangential gap g𝑇, however, all these approaches lead to a non-symmetric tangential stiffness 

matrix.  

Applying the augmented-Lagrangian technique for the implementation of contact 

constraints, the potential energy of contact between two bodies can be written as 

 

Π𝑐 =
1

2
𝛼𝑛(𝑔𝑁)2 + 𝜆𝑁𝑔𝑁 + 𝛾 [

1

2
𝛼𝑇(𝑔𝑇)2 + 𝜆𝑇𝑔𝑇] + (1 − 𝛾)𝑓𝑇𝑔𝑇 (30) 

 

where 𝛼𝑛 and 𝛼𝑇 are referred to the stiffness of springs imposed at the normal and 

tangential directions of contact surface and, 𝜆𝑁 and 𝜆𝑇 are the Lagrange-multipliers that 

represent the contact forces in the normal and tangential directions, respectively. The third 

and fourth terms in the above expression govern the sliding behavior between two bodies. 

Parameter 𝛾 is used to switch between the stick behavior where the relative velocity is 

zero (𝛾 = 1) and the slip behavior where the relative velocity is non-zero (𝛾 = 0). In the 

sticking behavior, the strain energy related to the tangential spring imposed at the contact 

surface represent the tangential forces known as the tangential Lagrange multipliers; while 

in the slipping behavior, the tangential relative movements are not restricted and the 

tangential forces are determined by 𝑓𝑇 = 𝜇𝑁 according to the constitutive law of friction, 

where the friction coefficient is mostly force independent and the normal force 𝑁 can be 

replaced by 𝜆𝑁. 
The potential energy (30) can be minimized by taking derivative with respect to 

displacement as  
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𝛿Π𝑐 = [𝛼𝑛g𝑁  + 𝜆𝑁]𝛿g𝑁 + [𝛾𝛼𝑇g𝑇 + 𝛾𝜆𝑇 + (1 − 𝛾)𝑓𝑇]𝛿g𝑇 (31) 

 

where the variation of gap functions 𝛿g𝑁 and 𝛿g𝑇 can be directly related to the variation 

of displacement fields as  

 

𝛿g𝑁 = 𝒏𝑇𝑵𝜉𝛿𝒖 = 𝑵𝑛𝛿𝒖 

𝛿g𝑇 =
𝑙0

𝑙𝑛

[𝒕𝑵𝜉 − 𝑰𝑛 g𝑁 𝑙𝑛⁄ ]𝛿𝒖 =
𝑙0

𝑙𝑛

[𝑵𝑡 − 𝑰𝑛 g𝑁 𝑙𝑛⁄ ]𝛿𝒖 
(32) 

 

where 𝑰𝑛 = 𝜕𝑵𝑛 𝜕𝜉⁄  and the contact shape function 𝑵𝜉 is defined as 

 

𝑵𝜉 = [
1 0 −(1 − 𝜉) 0 −𝜉 0

0 1 0 −(1 − 𝜉) 0 −𝜉
] (33) 

 

Further details are presented here for the stick case; the implementation of the slip case 

can be performed in a similar manner. Substituting relations (32) into (31), the variation of 

the potential energy can be written in terms of the variation of displacement field as 

 

𝛿Π𝑐 = {(𝛼𝑛g𝑁  + 𝜆𝑁)𝒏𝑇𝑵𝜉 + (𝛼𝑡g𝑇  + 𝜆𝑇)
𝑙0

𝑙𝑛

[𝒕𝑵𝜉 − 𝒏𝑇𝑵𝜉 g𝑁 𝑙𝑛⁄ ]} 𝛿𝒖 

≡
𝜕Π𝑐

𝜕𝒖
𝛿𝒖 = 𝜓𝑐

𝑇𝛿𝒖 

(34) 

 

where 𝜓𝑐 is referred to the contact-related internal forces. It is worth mentioning that the 

Lagrange-multipliers 𝜆𝑁 and 𝜆𝑇 in the variation of potential energy are functions of 

displacement and can be obtained in an iterative manner using the Newton-Raphson 

procedure.  

Finally, the minimization of the potential energy (34) leads to the contact stiffness matrix 

𝑲𝑐, which is a symmetric matrix and can be defined based on the normal and tangential 

contact stiffness matrices 𝑲𝑁 and 𝑲𝑇 as 

 

𝑲𝑁 = 𝑵𝑛
𝑇𝛼𝑛 𝑵𝑛 + 𝛼𝑛g𝑁 [𝑰𝑛

𝑇𝑵𝑡 + 𝑵𝑡
𝑇𝑰𝑛] 𝑙𝑛⁄ − 𝛼𝑛g𝑁

2 𝑰𝑛
𝑇𝑰𝑛 𝑙𝑛

2⁄  

𝑲𝑇 = �̂�𝑡
𝑇

𝛼𝑡 �̂�𝑡 + �̂�𝑇 + �̂�𝑇
𝑇
 

(35) 

 

where 
 

 �̂�𝑡 =
𝑙0

𝑙𝑛

[𝑵𝑡 − 𝑰𝜉 g𝑁 𝑙𝑛⁄ ] 

�̂�𝑇 = 𝛼𝑡g𝑇(𝑙0 𝑙𝑛⁄ )[𝑵𝑛
𝑇𝑰𝑛 + 𝑵𝑡

𝑇𝑰𝑡 − (2g𝑁 𝑙𝑛⁄ )𝑰𝑛
𝑇𝑰𝑡] 

(36) 

 

The contact stiffness matrices and internal force vectors derived above for sticking 

behavior will be assembled in the total stiffness matrix and force vector, and the system of 
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equation will then be solved at each time increment. The value of gap function will be 

checked not to be positive according to a pre-defined tolerance, and the Lagrange multipliers 

will be updated according to the calculated gap function as 𝜆𝑛𝑒𝑤 = 𝜆𝑜𝑙𝑑 + 𝛼𝑔 for each 

contact node-segment pairs. 

 

4.1 The thermal contact constraints 

Consider two deformable bodies in contact, the governing equations of heat transfer analysis 

for each body have been presented in preceding sections. In this section, the thermal 

behavior at the contact surface is discussed and the implementation of thermal contact 

constraints is described. There are two important issues that must be addressed in the 

thermal behavior of contact bodies; one is the heat flux at the contact surface and the other is 

the heat generation due to the friction and energy dissipation. Basically, there are three 

approaches to transmit the heat from one surface to another; firstly the heat conductance due 

to the radiation released from the vacuum space left between perfectly in-contact zones, 

secondly the heat conductance through the gas contained in micro-cavities, and lastly the 

heat conductance through the spots where two deformable bodies are purely in contact. 

However, in the case of the spot heat conductance, the two former approaches can be 

neglected.  

Following the node-to-segment contact algorithm and considering an arbitrary point at 

the slave body that comes in contact with the master body, the heat flux 𝑞𝑁
𝑠  conducted across 

the slave body at the contact surface can be expressed by 

 

𝑞𝑁
𝑠 = (𝜃𝑠 − �̂�𝑠) 𝑅(∆𝜃,𝜆𝑁)⁄  (37) 

 

where 𝜃𝑠 is the temperature assigned to the slave node and �̂�𝑠 is the temperature of the 

projected closest point of the slave node to the master segment that can be expressed using 

the values of two relevant nodes of the segment by �̂�𝑠 = 𝜃𝑚
1 + (𝜃𝑚

2 − 𝜃𝑚
1 )𝜉. In the above 

relation, 𝑅 is the thermal contact resistant coefficient, and is defined to guarantee the heat 

flux continuity between two surfaces. This experimental coefficient depends on the 

temperature of the surface and the contact pressure, but in moderate temperature fields it can 

be assumed to be merely pressure dependent; so it cannot add any nonlinearity to the 

thermal analysis. In order to satisfy the continuity of heat conductance at the contact surface 

it is assumed that the rate of heat conductance across the slave surface is equal to that of the 

master surface and for each node of the master segment the heat conductance quota can be 

calculated using the zero moment equilibrium as 

 

∑ 𝑞𝑁 = 𝑞𝑁
𝑠 + 𝑞𝑁𝑚

1 + 𝑞𝑁𝑚
2 = 0 (38) 

 

where 𝑞𝑁𝑚
1 = −(1 − 𝜉)𝑞𝑁

𝑠  and 𝑞𝑁𝑚
2 = −𝜉𝑞𝑁

𝑠  . Substituting the expression �̂�𝑠 into 

relation (37) results in a set of three equations that can be solved simultaneously using the 

system of equations derived before for the rest of the bodies as  
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𝒒𝑁 = 𝑵𝜉
𝑇𝑵𝜉𝜽 𝑅(𝜆𝑁)⁄  (39) 

 

where 𝑵𝜉 = [1 −(1 − 𝜉) −𝜉] and 𝜽 = [𝜃𝑠 𝜃𝑚
1 𝜃𝑚

2 ]. It must be noted that these 

equations satisfy the heat conductance continuity rather than the temperature field 

continuity, however – the difference between temperatures of contact surfaces depends on 

the contact resistance coefficient. This issue will be investigated in details in the numerical 

examples. 

The heat generation due to the friction produced between two surfaces can be modeled by 

introducing the heat flux generated during the process of relative slipping between two in-

contact surfaces. It is assumed that the heat flux is a function of the normal pressure and the 

average temperature between two surfaces, nonetheless a merely pressure dependence can 

be assumed in a moderate thermal field. The relevant expression for the heat flux across the 

slave surface can be stated by 

 

𝑞𝐷
𝑠 = 𝐷(𝜆𝑁,𝜃𝑎𝑣𝑒)𝛿𝑔𝑇 (40) 

 

An expression for the heat conduction across the master segment can be defined similar 

to the heat flux value assumed for the slave node by its projection along the master segment; 

so the heat flux value of the master segment nodes can be obtained using 𝑞𝑁𝑚
1 = (1 − 𝜉)𝑞𝐷

𝑠  

and 𝑞𝑁𝑚
2 = 𝜉𝑞𝐷

𝑠 . In order to incorporate the effect of energy dissipation and heat generation 

on the temperature field and subsequently the stress field during the frictional contact 

process, the resulting tangent stiffness matrix is assembled with the global stiffness matrix to 

satisfy the heat conduction continuity and the heat flux force produced in the system. 

 

 

5. NUMERICAL SIMULATION RESULTS 
 

The main strategy for the numerical solution of thermo-mechanical problems is that the fully 

coupled system must be solved simultaneously to obtain the displacement and temperature 

fields. However, it may lead to the numerical instability since the condition number for the 

system of equations of the heat transfer analysis is different from that of the momentum 

equations. This may cause more iterations for the nonlinear solution procedure, or the 

system may not converge to a unique solution. So it is a common approach to uncouple the 

governing systems of momentum and heat transfer equations to account for the reciprocal 

influences of systems on each other at the end of solution. Furthermore, it makes possible to 

perform a static analysis for the momentum equation, such as the displacement control 

problem, while the heat transfer analysis can be carried out using a transient one, where the 

relevant solution is the time dependent and can be obtained by an appropriate dynamic 

strategy. According to the numerical procedure described above for the solution of 

uncoupled thermo-mechanical problems, a computational algorithm is applied based on the 

Newton-Raphson approach. For the time step 𝑛, the algorithm is performed as follows; 
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1) Initialize the values of displacement, velocity, acceleration and temperature fields as 

boundary conditions. Assign the slave nodes and master segments, and calculate the initial gap 

between two surfaces. 

2) Evaluate the total tangential stiffness matrix and the residual force. The total stiffness 

matrix contains the stiffness matrix of the contact zone and that obtained for two continuum 

bodies. Also, the residual force consists of the thermal, internal, external and contact forces.  

3) Solve the momentum equation based on the augmented Lagrangian technique, and 

determine the Lagrange multipliers as the normal and tangential forces. Obtain the normal gap 

between two surfaces that must be enforced to be zero iteratively. Compute the incremental 

nodal displacements and relevant velocities or accelerations. Check the convergence for the gap 

function, and continue the procedure until the convergence is obtained. 

4) Check the convergence for the momentum equilibrium, and continue to stage (ii) if the 

solution is not converged. 

5) Update the thermal contact resistance coefficients using the normal forces. 

6) Perform the thermal analysis using the Taylor-Galerkin approach where the convection 

term cannot be neglected, or perform any conventional procedure for the purely diffusion based 

problems and update the temperature filed. 

It must be noted that in the above computational algorithm the stiffness matrix and 

residual force are assumed to be constant at each iteration of the solution in order to obtain 

the values of Lagrange multiplier and gap function. The thermal analysis is performed after 

the mechanical analysis by updating the interface parameters, and checking the convergence 

of the overall system of equations. In what follows, the capability and robustness of the 

proposed computational algorithm are presented for various thermo-mechanical problems, 

including the heat generation due to the frictional contact produced between two bodies. The 

first three examples are chosen to illustrate the performance of proposed model in the 

simulation of thermo-mechanical contact problems; while in the last two examples, the 

performance of Taylor-Galerkin technique is presented in the coupled thermo-dynamic 

analysis where the effect of convection term is dominant. 

 

5.1 Thermo-mechanical analysis of contact between two plates 

The first example is chosen to verify the accuracy of proposed computational algorithm in 

modeling of prefect and imperfect thermal contact of deformable bodies. The problem 

consists of two homogenous isotropic square plates with the same material properties, as 

shown in Fig. 1, in which the effect of temperature changes is investigated on the stresses of 

deformable bodies. The finite element simulation is performed using 400 four-noded 

quadrilateral elements for the upper plate and 441 four-noded elements for the lower plate 

that leads to the non-matching meshes at the contact interface. Both plates are fixed at one 

end, where the bottom edge is subjected to the temperature of 𝑇1 = 273 K 
o  and the top edge 

to the temperature of 𝑇2 = 373 K 
o . The lateral free surfaces of two bodies are assumed to be 

thermally isolated while the remaining parts are subjected to a constant convection 

coefficient of ℎ𝑒𝑥𝑡 = 1100 W/( K 
o . m2). The frictionless thermal contact is considered 

between two plates. The numerical modeling is performed by applying the normal penalty 

coefficient ten times higher than that of the elasticity modulus of plate. Two different 

pressure dependent thermal contact resistance, i.e. the semi-prefect and imperfect thermal 

contact conditions, are assumed as 
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Elasticity module 𝐸 = 2 × 1011 Pa 

Poisson ratio 𝜈 = 0.3 

Thermal expansion 𝛼 = 2 × 10−5  K−1 

Thermal conductivity 𝑘 = 2 × 10−5 W/m. K 

Thermal capacity 𝑐 = 2 × 10−5  1/K 

Density 𝜌 = 7.8 × 103 kg/m3 

𝑎 0.25 m 

𝑇1 273 K 
o  

𝑇2 373 K 
o  

 

(a) (b) 

Figure 1. Thermo-mechanical analysis of contact between two plates; a) The geometry, 

boundary condition and b) Material properties 

 

 

𝑅1(𝜎𝑛) = 2.5𝑒−0.01𝜎𝑛 × 10−3 (41) 

𝑅2(𝜎𝑛) = 2.5𝑒−0.01𝜎𝑛 × 10−4 (42) 

 

where 𝜎𝑛 (MPa) is the contact pressure between two surfaces. In the heat transfer 

analysis, the transient dynamic analysis is performed with the time step of ∆𝑡 = 10s, and the 

velocity is neglected since the top and bottom edges are fixed. As a result, a mechanical 

static analysis is performed for the momentum equation. The convergence tolerance is set to 

1.0𝐸 − 05. In Fig. 2, the distributions of stress 𝜎𝑦, stress 𝜎𝑥 and temperature contours are 

presented at the steady state condition for the semi-prefect contact condition. In Fig. 3, the 

distributions of temperature are plotted along y–direction at different time intervals in the 

case of semi-perfect thermal contact, i.e. 𝑅1(𝜎𝑛). Clearly, it can be seen that the steady state 

condition can be reached for the time interval greater than 6.0𝐸 + 03s. In Fig. 4, a 

comparison of temperature distribution along y–direction is performed between the perfect 

and imperfect conditions. Obviously, it can be observed that the proposed computational 

model can be efficiently used in modeling the coupled thermo-mechanical problem with 

prefect and imperfect thermal contact conditions.  
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𝜎𝑦(MPa) 

 

 

𝜎𝑥(MPa) 
 

 

 

Temp ( K) 
o  

 

 

            (a)                   (b)              (c) 

Figure 2. Thermo-mechanical analysis of contact between two plates; a) Stress 𝜎𝑦 contour, b) 

Stress 𝜎𝑥 contour (c) Temperature contour 

 

 
Figure 3. The temperature distribution along y–direction at different time intervals 

 

 
Figure 4. A comparison of the temperature distribution along y–direction between the semi-

perfect (𝑅1) and imperfect (𝑅2) thermal contact conditions 
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5.2 Thermo-mechanical contact between a circular disc and a plate with hole 

The second example deals with the thermo-mechanical analysis of contact between a 

circular disc and a plate with hole, as shown in Fig. 5. This example is chosen to illustrate 

the capability of proposed computational algorithm in large deformation problem with 

curved interfaces. All boundary surfaces are subjected to the natural convection, where the 

temperature for the outside the plate is set to 273 K 
o , inside the plate is 278 K 

o  and outside 

the disk is set to 293 K 
o . The frictionless contact condition is assumed between two bodies 

that leads to no heat generation in the contact zone due to the relative tangential 

displacement at the contact surface. The thermal properties of the materials are similar to 

those of previous example, but the thermal resistance is 1000 times higher than that of 

previous example. The geometry, boundary condition and initial FE mesh are shown in Fig. 

5. The system is modeled by increasing the prescribed vertical displacement at the circular 

disk up to 10 mm through the clamped nodes of the disk. The process is performed in 400 

increments with a heat transfer analysis to reach the steady state condition at each step for 

both perfect and imperfect thermal contact conditions. The distributions of the temperature 

and normal stress 𝜎𝑦 contours are presented in Fig. 6 for various deformed configurations at 

the initial, half and final stages of the thermal and mechanical loadings. In Fig. 7, the 

variations of temperature with the normal stress are plotted at the lowest point of circular 

disc for the perfect (𝑅1) and imperfect (𝑅2) thermal contact conditions. It can be observed 

that the temperature declines as the circular disk moves down. This is concerned with the 

process of deformation at the contact surface and the increase of contact pressure during this 

process. This example clearly illustrates the efficiency of proposed computational algorithm 

in the thermo-mechanical problems undergoing large deformations. 

 
 

 

 

𝐸1 = 2.08 × 109 N/m2 

𝐸2 = 1.7 × 105 N/m2 

𝜈 = 0.3 

𝛼𝑁 = 10𝐸1 

𝑅1 = 0.08 m 

𝑅2 = 0.05 m 

𝑎 = 0.24 m 
 

(a) (b) 
 

Figure 5. The thermo-mechanical modeling of contact between a circular disc and a plate with 

hole; a) The geometry and boundary condition b) material properties 
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Figure 6. The contours of temperature and normal stress in the deformed configurations; a) the 

initial configuration, b) the half stage of loading, c) the final stage of thermal and mechanical 

loadings 
 

 

 
Figure 7. The variations of temperature with the normal stress at the lower point of circular 

disc for the perfect (𝑅1) and imperfect (𝑅2) thermal contact conditions 
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5.3 Heat generation due to frictional contact in pressing of a cylindrical plate 

The next example is concerned with the heat generation mechanism due to the frictional 

dissipation. This example is chosen to illustrate the performance of proposed model in the 

thermo-mechanical analysis of heat generation due to frictional contact in pressing of a 

semi-cylindrical plate, as shown in Fig. 8. The problem consists of an elastic thick wall 

cylinder considered to be pressed under a semi-rigid rectangle plate. The prescribed 

displacement employed at the top rectangle plate leads to the relative tangential 

displacement at the contact interface, which causes the heat generation at this region. The 

horizontal movement of the upper plate is constrained by the lateral rollers and a prescribed 

displacement is applied at all nodal points of the upper surface in the vertical direction. The 

cylinder is statically constrained using a hinge and a roller. The upsetting process is 

performed in the plain stress condition by neglecting the inertia forces within the total time 

of 100s in the time interval of ∆𝑡 = 0.01s. Both the semi-cylindrical plate and the semi-

rigid rectangle plate are assumed to have the same thermal and mechanical properties, 

except the elasticity modules of rectangle plate which is 1000 times higher than that of the 

cylindrical plate. The frictional behavior of the system at the contact surface is modeled 

using a constant frictional coefficient of 0.3. The numerical simulation is performed using 

270 four-noded quadrilateral elements for the rectangle plate and 600 four-noded elements 

for the cylindrical plate. Each free surface is assumed to be thermally isolated and the heat 

generation is modeled on the basis of frictional dissipation as the heat source at the contact 

surface. In Fig. 9, the distributions of normal stress and temperature contours are presented 

at various stages of upsetting process. This example exhibits the capability of proposed 

computational algorithm in modeling the frictional dissipation at the contact surface between 

two bodies in large deformations. 

 
 

 

 

𝐸1 = 2 × 1011 N/m2 

𝐸2 = 2 × 107 N/m2 

𝜈 = 0.3 

𝛼𝑁 = 10𝐸1 

𝑅 = 10 cm 

𝑎 = 5 cm 

𝑏 = 4 cm 

𝑐 = 3 cm 
 

     (a) (b) 

 

Figure 8. The thermo-mechanical analysis of heat generation due to frictional contact in pressing 

of a semi-cylindrical plate; a) The geometry, boundary condition and FE mesh, b) The material 

properties 
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Temperature ( K) 
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(a) (b) 

 

Figure 9. The distributions of the a) normal stress and b) temperature contours at various stages 

of pressing 

 

5.4 Modeling of heat generation due to the slippery friction  

The next example is chosen to illustrate the performance of Taylor-Galerkin technique in the 

thermo-dynamic analysis where the effect of convection term is important in the heat 

generation process due to the slippery friction between two deformable bodies. This 

example was originally modeled by Rieger and Wriggers [24], in which an elastic block was 

modeled to be sliding over a rectangular plate with the horizontal movement of 4 mm within 

the total time of 4 μs. In the simulation proposed in this reference, the effect of inertia forces 

in the momentum equation and the velocity term in the heat transfer analysis were ignored 

although the velocity of 1000 mm/s was reported in the heat transfer analysis. In the 

present study, the effect of convection term is incorporated by employing the Taylor-

Galerkin technique into the thermo-dynamic analysis, and the results are compared with that 

obtained by the Crank-Nikolson scheme in the absence of convection term.  

The system is modeled using two time-dependent loads applied on the top and left edges 

of the upper block, which leads to the maximum horizontal velocity of 12700 mm/s within 

the total time of 1 μs. Both bodies are made of aluminum with the material properties given 

in Table 1. The geometry, boundary conditions and initial FE mesh are shown in Fig. 10. 

The numerical simulation is performed using 120 four-noded quadrilateral elements for the 
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upper block and 350 elements for the lower body. The time step for numerical modeling is 

set to ∆𝑡 = 1𝐸 − 6s. In Fig. 11, a comparison of temperature distributions due to the 

slippery friction is performed between the case where the effect of artificial diffusion caused 

by the velocity term is considered in the proposed Taylor-Galerkin approach and the case 

where this effect is neglected. In Figs. 11(a–c), the temperature distributions are shown at 

different velocities where the effect of velocity is neglected in the heat transfer analysis 

using the Crank-Nikolson scheme. In Figs. 11(d–f), the temperature contours are presented 

at different velocities where the effect of velocity is taken into the heat transfer analysis 

using the Taylor-Galerkin technique. This example clearly presents the performance of 

Taylor-Galerkin technique in the thermo-dynamic analysis where the effect of convection 

term is important in the heat generation process. 

 
Table 1: The aluminum material properties   

Elasticity module 𝐸 = 7 × 104 N/mm2 

Poisson ratio 𝜈 = 0.3 

Thermal expansion coefficient 𝛼 = 2.386 × 10−5  K−1 

Thermal conductivity 𝑘 = 150 N/s K 

Thermal capacity 𝑐 = 0.9 × 109  mm2/s2K 

Density 𝜌 = 2.7 × 10−9  Ns2/mm−4 

Thermal resistant coefficient ℎ𝑐𝑜 = 150 N/s K 

 

 
 

Figure 10. The thermo-dynamic modeling of heat generation due to the slippery friction between 

two deformable bodies; The geometry, boundary condition and FE modeling 

 
Step 250,  𝑣 = 840 mm/s 

(a)  (d)  
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Step 750,  𝑣 = 7300 mm/s 

(b)  (e)  

Step 1000 ,  𝑣 = 12700 mm/s 

(c)  (f)  
 

Figure 11. A comparison of temperature distribution due to the slippery friction between two 

deformable bodies; (a–c) the velocity is neglected in the heat transfer analysis (the Crank-

Nikolson scheme), (d–f) the velocity is taken into account in the heat transfer analysis  (the 

Taylor-Galerkin scheme) 

 

5.5 Thermo-dynamic modeling of contact-impact of a ring to a rigid plate  

The last example is chosen to illustrate the capability of proposed thermo-dynamic analysis 

in modeling the heat generation due to large deformation and frictional contact. The example 

presents the contact-impact of an elastic ring to a rigid plate, as shown in Fig. 12. The 

geometry, boundary conditions and the initial FE mesh is shown in this figure. Both the 

elastic ring and rigid plate are assumed to be made of the Neo-Hookian material with the 

material properties given as follows; the Young modules of 𝐸 = 2.0E + 5, the mass density 

per unit volume of 𝜌 = 8.0E − 6 and the thermal coefficient of 𝛼 = 𝑘 𝜌𝐶⁄ = 1.0E + 3. The 

ring is subjected to an initial velocity vector of (8000, −8000) in all nodal points at the 

beginning of simulation. Both bodies have an initial zero temperature, and all free surfaces 

are assumed to be thermally isolated. The numerical simulation is performed using 160 four-

noded quadrilateral elements for the ring and 90 elements for the rigid plate. The frictional 

behavior is modeled using the normal and tangential penalty parameters of 𝛼𝑁 = 𝛼𝑇 = 10, 

where the slipping friction coefficient is set to 𝜇 = 0.3. The time step for numerical 

simulation is set to ∆𝑡 = 1𝐸 − 6s.  

The numerical modeling is performed in two different cases; firstly the effect of 

convection because of the velocity term in the heat transfer analysis is accounted by 

employing the Taylor-Galerkin approach, and secondly the effect of velocity in the heat 

transfer analysis is neglected by applying the Crank-Nikolson scheme. In Fig. 13, the 

distributions of normal stress 𝜎𝑦  contour are presented in the deformed configurations at 

different time steps. In Fig. 14, a comparison of temperature distributions is performed 

between the above two cases at different time steps. In Figs. 14(a–e), the temperature 
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distributions are shown at different time steps where the effect of velocity is neglected in the 

heat transfer analysis using the Crank-Nikolson scheme. In Figs. 14(f–j), the temperature 

contours are presented at different time steps where the effect of velocity is taken into the 

heat transfer analysis using the Taylor-Galerkin technique. This figure clearly presents the 

significance of velocity term in the heat transfer analysis, where the effect of artificial 

diffusion cannot be neglected on the temperature distribution. This example adequately 

illustrates the capability of proposed thermo-dynamic analysis in modeling of heat 

generation due to contact-impact problem. 
 

 
Figure 12. The thermo-dynamic modeling of heat generation due to the contact-impact of a ring 

to a rigid plate; The geometry, boundary condition and the initial FE mesh 

 

     
𝑡 = 1𝑒3 ∆𝑡 𝑡 = 2.5𝑒3 ∆𝑡 𝑡 = 4𝑒3 ∆𝑡 

 

   
𝑡 = 5𝑒3 ∆𝑡                               𝑡 = 7.5𝑒3 ∆𝑡 

 
Figure 13. The deformed configuration and the distribution of normal stress 𝜎𝑦  contours at 

different time steps 
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(a)  (f)  
                            𝑡 = 1𝑒3 ∆𝑡                                                  𝑡 = 1𝑒3 ∆𝑡 

 

(b)  (g)  
                             𝑡 = 2.5𝑒3 ∆𝑡                                                𝑡 = 2.5𝑒3 ∆𝑡 
 

(c)  (h)  

 

                           𝑡 = 4𝑒3 ∆𝑡                                                 𝑡 = 4𝑒3 ∆𝑡 
 

(d)  (i)  
                               𝑡 = 5𝑒3 ∆𝑡                                                 𝑡 = 5𝑒3 ∆𝑡 

(e)  (f)  
                            𝑡 = 7.5𝑒3 ∆𝑡                                              𝑡 = 7.5𝑒3 ∆𝑡 

 

Figure 14. A comparison of temperature distribution; (a–e) the velocity is neglected (Crank-

Nikolson method), (f–j) the velocity is taken into heat transfer analysis (Taylor-Galerkin method) 
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6. CONCLUSION 
 

In the present paper, the thermo-dynamic analysis of large frictional deformation was 

presented based on the Taylor-Galerkin method. An approach was proposed in modeling the 

thermal contact friction considering the perfect/imperfect thermal contact and dissipation 

phenomenon. The thermo-mechanical contact constraints were enforced by an optimized 

version of augmented-Lagrange technique based on the thermal contact resistance (TCR) 

approach for enforcing the heat flux continuity at the contact surface. It was shown that the 

convection term is dominant in the thermo-dynamic simulation and cannot be neglected 

from the heat transfer analysis due to stability issues in the classical time dependent 

algorithm. As a result, the Taylor-Galerkin approach was utilized for the time domain 

discretization of convection dominant problems. Finally, the capability of proposed 

computational algorithm was illustrated in the thermo-dynamic analysis of large frictional 

deformations. It was shown that the proposed model is capable of modeling the thermo-

dynamic analysis of heat generation due to frictional dissipation, large frictional 

deformation, and contact-impact problems. 
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