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ABSTRACT 
 

The main aim of this study is to propose an efficient computational strategy for optimization 

of steel structures subject to earthquake loading. To achieve the optimization task, two 

popular metaheuristics and the newly developed grey wolf algorithm (GWA) are employed. 

To reduce the computational burden of the process, radial basis function (RBF) and back 

propagation (BP) neural networks are used for evaluation the seismic responses of structures 

subject to three earthquakes. The numerical results show that GWA incorporating BP neural 

network provides the best results in comparison with the other ones. 

 

Keywords: Optimization; metaheuristic; earthquake; time history analysis; steel structure; 

moment-resisting frame. 

 

 

1. INTRODUCTION 
 

Optimal design of structures for earthquake loading is one of the popular problems in the 

field of structural engineering. To evaluate the time history responses of structures, seismic 

design codes, such as UBC [1], specify that the structures should be analyzed for at least 

three horizontal ground motions. Therefore, the structural optimization for the earthquake 

loading is a computationally intensive task and it requires prohibitively high computing 

times for obtaining results from finite element analyses. Unreasonably high computing times 

could also prevent designers from comprehensively exploring the design space, and could 

ultimately result in unsuitable structures [2]. Therefore, utilizing an efficient computational 

strategy possessing the global search ability and reasonable computational effort is vital for 

the design optimization process of the structures subject to earthquake loading. One of the 

main aims of this study is to reduce the computational effort of the optimal design process of 

steel moment resisting frames subject to earthquake loading by an efficient soft computing 

based strategy. 

During the last decade, structural optimization problems have been solved using gradient-
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based algorithms. As the mathematical programming based methods need gradient 

calculations, a considerable part of the optimization process is devoted to the sensitivity 

analysis and the computational work of these methods is usually high. Employing stochastic 

search techniques allows exploration of a larger fraction of the design space in comparison 

with gradient-based optimization methods. In order to improve the global search ability and 

to achieve the optimization task in a more easy and flexible way, a variety of metaheuristic 

optimization methods inspired by nature were developed. The metaheuristics demonstrate 

their efficiency in many of the structural optimization problems and this is why these 

methods have been extensively employed in the field of structural engineering. During the 

last years, genetic algorithm (GA) [3] and harmony search algorithm (HSA) [4] have been 

widely employed for solving many optimization problems in the field of civil and structural 

engineering. Recently, Mirjalili et. al. [5] proposed grey wolf algorithm (GWA) as a new 

metaheuristic. As the structural optimization for earthquake loading is an interesting and 

challenging problem area in structural engineering [6-12] in this study the computational 

performance of GWA is compared with that of GA and HSA for optimization of steel 

structures subject to earthquake loading. 

In order to reduce the computational time of the structural optimization for the 

earthquake loading, neural network techniques are the best candidate. They are particularly 

suitable for problems too complex to be modeled and solved by classical mathematics and 

traditional procedures. In recent years, neural networks have been widely used to solve 

complex problems in the fields of civil and structural engineering. In this work, back 

propagation (BP) and radial basis function (RBF) neural networks are trained to predict the 

demand-capacity ratio (DCR) of structural elements and the maximum inter-story drift of 

structures subject to three earthquake records during the optimization process.  

Two steel frame structures are optimized by the mentioned metaheuristics incorporating 

neural networks to predict the required structural responses during the optimization process. 

The numerical results indicate that the GWA possesses the best computational performance 

compared with that of the mentioned metaheuristics. 

 

 

2. PROBLEM FORMULATION 
 

For optimal design of a steel frame including ne members collected in ng design groups, the 

design variables of each design group are usually selected from a given standard profile list. In 

this case, the optimization problem may be formulated as follows: 

 

Minimize:  
 


ng

i

nm

j

jii LAXw
1 1

)(                                                 (1) 

Subject to: 0)( Xgk
, nck ,,2,1                                              (2) 

T

21 }...{ ngi x...xxxX                                                  (3) 

 

where ix  is an integer value expressing the sequence numbers of steel sections assigned to 

ith group; w represents the weight of the frame, ρi and Ai are weight of unit volume and 

cross-sectional area of the ith group section, respectively; nm is the number of elements 
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collected in the ith group; Lj is the length of the jth element in the ith group; )(Xgk
is the kth 

behavioral constraint.  

In such optimization problem, lateral inter-story drift constraint is usually taken as: 
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where 
l  is the inter-story drift; RI is the inter-story drift index permitted by the code of 

practice and ns is the total number of stories. 

The DCR constraints of structural elements subjected to axial and flexural stresses are 

computed as follows [13]: 
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where Pu is the required strength; Pn is the nominal axial strength (tension or compression); 

c  is the resistance factor; Mux and Muy are the required flexural strengths in the x and y 

directions; respectively; Mnx and Mny are the nominal flexural strengths in the x and y 

directions; and 
b =0.9 is the flexural resistance reduction factor. 

The effective length factor, K, for beam and bracing members is taken equal to unity. 

This parameter for columns is calculated from the approximate Eqs. (7) for unbraced frames, 

which are accurate to within about -1.0% and +2.0% of the exact results [14]: 
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where GA and GB refer to stiffness ratio or relative stiffness of a column at its two ends. 

In order to satisfy practical demands, geometric constraints should be considered in 

beam-column framing joints as follows for 2D frames: 
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where bfb and bfc are the flange width of beam and column, respectively; nj is the number of 

joints. 

In the present work, the exterior penalty function method (EPFM) [15] is employed to 

handle the design constraints. The EPFM transforms the basic constrained optimization 
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problem into the unconstrained formulation. In this case, the pseudo unconstrained objective 

function can be represented as follows: 
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where Ψ and r are the pseudo objective function and a penalty parameter, respectively. 

For minimizing the above mentioned pseudo objective function a number of popular 

metaheuristic algorithms are employed in the present study. The theoretical background of 

these metaheuristics is explained in the next section.  

 

 

3. METAHEURISTICS 
 

The main idea behind designing the metaheuristic algorithms is to tackle complex optimization 

problems where other optimization methods have failed to be effective [16]. Metaheuristics are 

applied to a very wide range of problems and they mimic natural metaphors to solve complex 

optimization problems [17]. In this study, GA and HSA as popular metaheuristics and GWA as 

a new metaheuristic are applied to find optimum design of steel frames subject to earthquake 

loading.  

 

3.1 Genetic algorithm 

GA tries to simulate biological evolution. It searches by simulating evolution, starting from an 

initial set of solutions and generating successive generations of solutions. A simple GA 

proceeds by randomly generating an initial population. The next generation is evolved from this 

population by performing reproduction, crossover, and mutation operations. Reproduction 

operator reproduces the next generation based on the statistics of current population. In this 

way, the weak designs are removed and the strong ones are transformed to the next generation. 

In the crossover operation, two members of the population are randomly selected, as parents, 

and two new offsprings are produced by exchanging a part of parents’ string at a randomly 

selected position with a specified probability of crossover. Finally, with a probability of 

mutation, certain digits of the chromosomes are altered. In this way, the population takes its 

final form in the current generation. After several generations, the best individual of the 

population is considered as the final solution of the algorithm. 

The stochastic nature of the method and using a population of design points in each 

generation usually give rise to the global optimum. However, if exploration and exploitation 

abilities are not properly balanced in the GA, a global optimum may not be guaranteed, 

although, near-optimal solutions are found easily. The stochastic nature of standard GA makes 

the convergence of the procedure slow. In general, the standard GA is not convenient to find 

the solution of large scaled and complex problems. Up to now GA and its improved versions 

have been extensively employed by researchers to efficiently tackle the complex problems in 

the area of structural engineering. 

 

3.2 Harmony search algorithm 
HSA is based on the musical performance process that achieves when a musician searches for a 
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better state of harmony. In the process of musical production a musician selects and brings 

together number of different notes from the whole notes and then plays these with a musical 

instrument to find out whether it gives a pleasing harmony. The musician then tunes some of 

these notes to achieve a better harmony.  

For implementation of HS, at first a harmony memory (HM), the harmony considering rate 

(HMCR), the pitch adjusting rate (PAR) and the maximum number of searches should be 

specified. To improvise new HM, a new harmony vector is generated. Thus the new value of 

the ith design variable can be chosen from the possible range of ith column of the HM with the 

probability of HMCR or from the entire possible range of values with the probability of 1-

HMCR as follows: 
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where iΔ is the set of the potential range of values for ith design variable. 

Pitch adjusting is performed only after a value has been chosen from the HM as follows: 
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If the pitch-adjustment decision for new
ix  is "Yes", then a neighbouring value with the 

probability of PAR%×HMCR is taken for it as follows: 
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where u(-1,+1) is a uniform distribution between -1 and +1; also bw is an arbitrary distance 

bandwidth for the continuous design variables. 

If new
ix is better than the worst vector in the HM, the existing worst harmony is replaced by 

the new harmony.  

 

3.3 Grey wolf algorithm 

GWA is a new metaheuristic and has been proposed by Mirjalili et. al. [5] based on the 

leadership hierarchy and hunting mechanism of grey wolves in nature. In the process of GWA, 

the leadership hierarchy and the hunting process are simulated.  

In the wolf’s pack the leaders are usually a male and a female, called alpha and their 

decisions are dictated to the pack. The second level in the hierarchy of grey wolves is beta. The 

betas are subordinate wolves that help the alpha in decision-making or other pack activities. 

The beta wolf is probably the best candidate to be the alpha in case one of the alpha wolves 

passes away or becomes very old. The lowest ranking grey wolf is omega. The omega plays the 

role of scapegoat. Omega wolves always have to submit to all the other dominant wolves. They 

are the last wolves that are allowed to eat. If a wolf is not an alpha, beta, or omega, he/she is 
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called subordinate (or delta in some references). Delta wolves have to submit to alphas and 

betas, but they dominate the omega [5].   

Hunting as another social behavior of grey wolfs comprises three main phases. The first 

phase includes tracking, chasing, and approaching the prey. In the second one the grey wolfs 

pursue, encircle, and harass the prey until it stops moving and in the last phase they attack 

towards the prey [5]. In [5] the mentioned hunting technique and the social hierarchy of grey 

wolves have been mathematically modeled to propose GWA. 

In designing GWA, the first, second and third best solutions are considered as α, β and δ 

wolves, respectively while the rest of the candidate solutions are considered as ω. In the 

framework of GWA, ω wolves follow α, β and δ wolves during the optimization process.  

The following equations are used to model the encircling behavior of grey wolves [5]: 
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where R1i and R2i are random vectors in [0,1]; 
iA is a vector that its components are linearly 

decreased from 2 to 0 during the optimization process;  Ai and Ci are coefficient vectors; t

pX is 

the prey in iteration t; t

iX is the ith grey wolf in iteration t. 

For simulation of the hunting behavior of grey wolves, it is supposed that the alpha, beta, 

and delta have better knowledge about the potential location of prey. Therefore, the first three 

best solutions obtained so far should be saved and the other wolves in the pack update their 

positions according to the position of the best ones (around the prey) as follows [5]:  
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The final step in hunting process of grey wolfs is attacking prey as soon as it stops moving. 

In GWA, decreasing the values of 
iA components from 2 to 0 during the optimization process 

simulates approaching the prey and provides the exploration ability of the algorithm. Also, the 

exploitation ability of the GWA comes from the random components of the C vector.      



OPTIMUM DESIGN OF STEEL STRUCTURES FOR EARTHQUAKE... 

 

 

669 

4. NEURAL NETWORKS 
 

Neural networks are robust computational tools that have the ability to extract the underlying 

complex dependencies from measured data. The most important point about a properly trained 

neural network is that it requires a trivial computational effort to produce an approximate 

solution. Such approximations appear to be valuable in situations where the actual response 

computations are intensive in terms of computing time and a quick estimation is required. In the 

present work, radial basis function (RBF) and back propagation (BP) neural networks are 

employed to predict the responses of structures subjected to earthquake time history loading. 

 

4.1 Radial basis function 
Radial basis function (RBF) neural networks are two layers feed forward networks. The hidden 

layer consists of RBF neurons with Gaussian activation functions. The outputs of RBF neurons 

have significant responses to the inputs only over a range of values of Y called the receptive 

field. The size of the receptive field is determined by the value of σ. Activation function of RBF 

neurons is as follows: 

))(50exp()( 2RBF

σ

y
.yf                                                  (24) 

 

where y is an input, and σ is radius of receptive field of RBF neuron. 

The value of σ allows the sensitivity of the RBF neurons to be adjusted. During the training, 

the σ value of RBF neurons is such determined as the neurons could cover the input space 

properly. To train the hidden layer of RBF networks no training is accomplished and the 

transpose of training input matrix is taken as the layer weight matrix [18].  
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where, RBF

1W and TY are input layer weight and training input matrices, respectively.   

In order to adjust output layer weights, a supervised training algorithm is employed. The 

output layer weight matrix is calculated from the following equation: 

 

TΔW RBF 1

2
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in which T is the target matrix, Δ  is the outputs of the hidden layer and RBFW2
 is the output layer 

weight matrix. 

In [12] RBF neural network has been used to predict the structural time history responses for 

earthquake loading. 

 

4.2 Back propagation 
Training of multi-layer perceptron, usually called back propagation (BP) neural network, is 

achieved by employing traditional gradient-based methods. The basic equation in training 

phase of BP is as follows: 
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where BP

kW  is current weights, 
kG is the current gradient, and 

kα is the learning rate. 

Activation function of BP neural networks is hyperbolic tangent sigmoid function and it 

is given as follows: 
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Levenberg–Marquardt (LM) [19] algorithm, which is usually applied to train BP neural 

network, uses the approximate Hessian matrix in the following Newton-like update: 
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where J is the Jacobian matrix that contains first derivatives of the network errors with 

respect to the weights; E is a vector of network errors; and μ is a correction factor. 

BP neural network has been employed to predict the structural time history responses for 

earthquake loading in [20]. 

 

 

5. METHODOLOGY 
 

In this study, optimum design of steel frames is achieved according to Iranian Code of Practice 

for Seismic Resistant Design of Buildings (ICPSRDB) [21] by neural network incorporated 

metaheuristics for earthquake loading. The ground motion records of three earthquakes of 

Kobe, Imperial Valley and Northridge, shown in Fig. 1, are selected.  

 

 
(a) 

 

 
(b) 
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(c) 

Figure 1. Earthquake records of (a) Kobeh, (b) Imperial Valley and (c) Northridge 

 

These records are then scaled based on the design spectrum of [21]. Here the elastic linear time 

history analysis is conducted to determine the seismic responses of the structures. 

Cross-sectional area assignments of the structural members are selected from the standard 

IPE profiles available in Table 1. 

 
Table 1: The available standard IPE profiles 

No. Profile No. Profile 

1 IPE 120 9 IPE 300 

2 IPE 140 10 IPE 330 

3 IPE 160 11 IPE 360 

4 IPE 180 12 IPE 400 

5 IPE 200 13 IPE 450 

6 IPE 220 14 IPE 500 

7 IPE 240 15 IPE 550 

8 IPE 270 16 IPE 600 

 

Neural network training is the first phase of the computational strategy of this study. To train 

RBF and BP neural networks, cross-sectional area assignments of a number of steel structures, 

satisfying the geometric constraints, are randomly selected. The selected structures are analyzed 

for the scaled three earthquake records by using OpenSees [22]. Then, their maximum inter-

story drift and maximum DCR of each element groups are evaluated. Considering the sequence 

numbers of steel sections assigned to element groups of the generated steel structures (X vector 

defined by Eq. (3)) as the input vector and their corresponding maximum inter-story drift and 

maximum DCR of each element groups as the components of the output vector, RBF and BP 

neural networks are trained using MATLAB [23]. The absolute percentage error (APE) 

between the actual response ( act ) and the approximate one ( app ) is calculated as follows: 
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To evaluate the prediction accuracy of the neural networks in testing mode, mean absolute 

percentage error (MAPE) and standard deviation (SD) of errors are computed as follows:  
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where nts is the number of testing samples. 

The second phase of the computational strategy of this study is optimization of the steel 

frames employing metaheuristics in which the time history analysis box is replaced by the 

properly trained neural networks and this results in substantially decrease of the computational 

burden of the optimization process.   

 

 

6. NUMERICA RESULTS 
 

In order to compare the computational performance of the mentioned metaheuristics for 

optimization of steel structures subject to earthquake loading, two numerical examples are 

presented. For the first and second examples a database, respectively, including 200 and 400 

samples is generated and from which 90% and 10% of samples are used for training and 

testing, respectively. Also, for the employed metaheuristics, population size and maximum 

number of iterations are 30 and 100, respectively. If the fundamental period of the structure 

is less than 0.7 sec. the permitted inter-story drift index is 2.5%, otherwise it is 2% [21]. For 

the numerical examples, Young's modulus, weight density and yield stress are 2.1×1010 

kg/m2, 7850 kg/m3 and 3.515×107 kg/m2, respectively.    

 

6.1 First example: 6-story 1-bay planar steel frame 

The 6-story 1-bay steel frame shown in Fig. 2 is the first example of this study. As shown in 

Fig. 2, there are 6 design variables in this example including 3 column sections and 3 beam 

sections related variables. The applied dead and live loads on the beams are 3600 kg/m and 

1200 kg/m, respectively.  

Since in this example there are six design variables, the input vector of the neural network 

models includes 6 components. Moreover, the maximum drift and maximum DCRs of six 

element groups are the components of the output vector. As for training RBF, with one hidden 

layer, 180 samples are used, its architecture is 6-180-7. For training BP two hidden layers are 

employed and the best results are obtained by using 10 and 15 neurons respectively in the first 

and second hidden layers, thus its architecture is 6-10-15-7.  

The performance generality of the neural networks in testing mode are compared in Table 2 

in terms of MAPE and SD. Average MAPE and SD for RBF are 3.39% and 3.85%, respectively 

while for BP are 3.01% and 2.32%, respectively. Furthermore, in training mode, average 

MAPE and SD for RBF are 0.47% and 0.45%, respectively while for BP are 0.42% and 0.28%, 

respectively. These results demonstrate the superiority of the BP over the RBF.     

In the present example, the time spent to train the neural networks including data generation 
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time is equal to 53.0 min.  

As the results demonstrate that BP possesses better computational performance in 

comparison with RBF, the BP neural network is incorporated in the optimization process to 

evaluate the required seismic responses.  

 

 

Figure 2. The 6-story steel frame 

 
Table 2: Comparison the testing results of RBF and BP for the 6-story steel frame 

Seismic Responses 
RBF BP 

MAPE (%) SD (%) MAPE (%) SD (%) 

θmax 3.92 2.94 6.11 4.54 

DCR1 3.57 4.25 2.26 1.48 

DCR2 3.01 3.05 2.32 1.74 

DCR3 3.64 4.62 3.25 2.89 

DCR4 3.63 4.30 2.51 2.01 

DCR5 3.54 4.37 1.71 1.44 

DCR6 2.41 3.42 2.86 2.15 

Average (%) 3.39 3.85 3.01 2.32 

 

Optimization process is implemented by GA, HSA and GWA incorporating the trained BP 

neural network and the results are compared in Table 3 with the engineering design achieved by 

SAP2000 [24] software.  

In addition, Fig. 3 depicts the optimization convergence histories of GA, HSA and GWA 

metaheuristics.  
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Table 3: Engineering and optimum designs of the 6-story steel frame 

Design Variable No. Engineering Design 
Optimum Design 

GA HSA GWA 

1 IPE 450 IPE 450 IPE 450 IPE 400 

2 IPE 360 IPE 360 IPE 360 IPE 360 

3 IPE 330 IPE 330 IPE 300 IPE 300 

4 IPE 360 IPE 360 IPE 360 IPE 360 

5 IPE 360 IPE 360 IPE 360 IPE 360 

6 IPE 330 IPE 300 IPE 300 IPE 300 

Weight (kg) 3838.02 3768.94 3686.05 3551.34 

Time (sec.) 30.0 36.9 34.8 32.5 

 

It can be observed from the presented results that among the employed metaheuristics, 

GWA is the best one. Furthermore, the weight of the optimum design found by GWA is 7.47% 

lighter than the weight of the engineering design.  

 

 

Figure 3. Convergence histories of metaheuristics for optimization of 6-story frame 

 

The optimum solution found by GWA incorporated BP is analyzed for the three earthquake 

records and the results are as follows: %.392act

max  and 750act

max .DCR  . In comparison with 

%.462app

max  and 780app

max .DCR  it can be concluded that the solution is feasible and the 

trained BP neural network provides proper approximation accuracy in the design space 

especially in the region containing the optimum solution. Furthermore, inter-story drifts (Ɵ) 

and maximum DCR of each element group for engineering design and optimal design found 

by GWA are compared in Fig. 4. 

It should be noted that, as the time spent for each time history analysis by OpenSees is 5.0 

sec., without employing neural networks to evaluate the necessary structural responses, the time 

spent to optimum design is about 750 min. and this emphasizes on the key role of neural 

networks for considerably shortening the optimization process of structures subjected to 

earthquake loading.  
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Figure 4. Ɵ and DCRmax for engineering design and GWA optimal design of 6-story frame 

 

6.2 Second example: 12-story 3-bay planar steel frame 
Fig. 5 depicts the geometry and element grouping details of 12-story 3-bay steel frame.  

 

 

Figure 5. The 12-story steel frame 
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There are 12 design variables in this example including 8 column sections and 4 beam 

sections related variables. The applied dead and live loads on the beams are 3000 kg/m and 

1000 kg/m, respectively. 

Table 4 reports the MAPE and SD for the trained RBF and BP neural networks in testing 

mode. The architecture of the RBF and BP neural networks are 12-360-13 and 12-15-15-13, 

respectively. In the present example, the time of training including data generation is about 

155.0 min.  
 

Table 4: Comparison the testing results of RBF and BP for the 12-story steel frame 

Seismic Responses 
RBF BP 

MAPE (%) SD (%) MAPE (%) SD (%) 

θmax 4.28 3.46 6.22 5.87 

DCR1 3.35 2.67 1.69 1.45 

DCR2 2.27 2.35 2.27 1.98 

DCR3 2.58 2.49 2.31 2.50 

DCR4 3.93 2.97 1.88 1.65 

DCR5 2.2 2.30 1.59 1.16 

DCR6 3.42 2.41 2.32 2.26 

DCR7 7.20 6.45 2.62 2.36 

DCR8 6.66 5.12 2.93 2.86 

DCR9 2.98 3.67 1.86 1.44 

DCR10 2.34 2.11 1.87 1.42 

DCR11 3.61 3.89 1.73 1.65 

DCR12 2.46 2.62 1.02 1.01 

Average (%) 3.64 3.27 2.33 2.14 

 

Table 5: Engineering and optimum designs of the 12-story steel frame 

Design Variable No. Engineering Design 
Optimum Design 

GA HSA GWA 

1 IPE 500 IPE450 IPE400 IPE450 

2 IPE 400 IPE400 IPE360 IPE360 

3 IPE 360 IPE360 IPE360 IPE330 

4 IPE 300 IPE300 IPE300 IPE300 

5 IPE 550 IPE600 IPE600 IPE600 

6 IPE 550 IPE500 IPE500 IPE500 

7 IPE 450 IPE450 IPE450 IPE400 

8 IPE 330 IPE330 IPE300 IPE300 

9 IPE 300 IPE300 IPE300 IPE270 

10 IPE 300 IPE300 IPE300 IPE270 

11 IPE 330 IPE300 IPE300 IPE270 

12 IPE 300 IPE300 IPE300 IPE300 

Weight (kg) 20390.53 19623.74 19130.61 17983.25 

Time (sec.) 56.0 68.0 73.0 59.0 
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The results of Table 4 indicate that the approximation accuracy of the BP is better than that 

of the RBF. Therefore, during the optimization process the BP is utilized to predict the required 

structural responses.  

Table 5 compares the optimum designs found by GA, HSA and GWA with the engineering 

design. Convergence histories of GA, HSA and GWA metaheuristics are shown in Fig. 6.  

 

 

Figure 6. Convergence histories of metaheuristics for optimization of 12-story frame 

 

It is evident from the results that GWA is the best metaheuristic among the all in terms of 

optimal weight and convergence rate. Moreover, GWA converges to an optimal solution 

which is 11.80% lighter than the engineering design. This optimum solution is analyzed for 

the three records and it is observed that %.971act

max  and act

maxDCR = 0.99. As %.941app

max  and 
app

maxDCR = 0.99, the feasibility of the solution is proven and this is due to the appropriate 

performance generality of the trained BP neural network in the design space. 
 

 

 
Figure 7. Ɵ and DCRmax for engineering design and GWA optimal design of 12-story frame 
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Fig. 7 compares inter-story drifts (Ɵ) and maximum DCR of element groups for engineering 

and GWA optimal designs. 

The time of each time history analysis of the 12-story steel frame by OpenSees is 7.5 sec. 

and therefore the time spent to optimum design of this structure without employing neural 

networks is about 1130 min. In this case, the overall time of optimization by using neural 

network (including data generation time) is about 86% reduced.   

 

 

7. CONCLUSIONS 
 

Computational performance of the newly developed GWA is investigated for optimization 

of steel frame structures subject to earthquake time history loading in comparison with 

popular mataheuristics such as GA and HSA. As the computational cost of structural 

optimization for earthquake time history loading is very expensive, neural network 

techniques are employed to reduce the computational burden. RBF and BP neural networks 

are trained to predict the structural seismic responses and due to better accuracy of the BP 

neural network it is utilized during the optimization process to evaluate the necessary 

responses. Two numerical examples, including a 6-story 1-bay planar steel frame and a 12-

story 3-bay planar steel frame are presented. The numerical results demonstrate the 

efficiency of the GWA compared to the other metaheuristics in terms of found optimal 

structural weight and convergence rate. In the case of first example, the optimal weight 

found by GWA is 5.77% and 3.65% less than those of the GA and HSA, respectively. In the 

case of second one, GWA converges to an optimal solution which is 8.36% and 6.00% 

lighter than the solutions found by GA and HSA, respectively. Moreover, comparison of 

optimal designs of GWA with engineering designs of two presented examples reveal that the 

optimal designs are respectively 7.47% and 11.80% lighter than the engineering designs. It 

can be finally concluded that the GWA is an efficient metaheuristic for optimal design of 

steel structures subject to earthquake time history loading. 
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