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ABSTRACT 
 

Maybe it is reasonable that in optimization problems based on sensitivity analysis one could 

reach the vicinity of the optimum point with a minor number of analyzes. Besides, it is also 

fair to accept the fact that the optimum point activates at least one constraint in constrained 

optimization problems. Based on these concepts a new method is proposed in the present 

study. It utilizes four well-organized operators to reach the global optimum solution; ordered 

by first a Subspace Search (SS) operator that transforms the whole design space into a series 

of subspaces in order to rapidly reach the Feasible-Non-Feasible (FNF) margin at the early 

stages by doing a few number of analyzes. It is then followed by a Marginal Sensitivity 

Analysis (MSA) operator that determines the sensitivity degree of each design variable to 

constraints violation, near the margin of FNF region. Next, the Marginal Search (MS) 

operator is used to determine a local optimum point near the FNF border in the feasible 

region. Finally, the roulette wheel (RW) operator is employed to select, in a random manner, 

only one variable for updating in each iteration. The robustness and effectiveness of the 

proposed method is verified on several well-known benchmark truss examples. The results 

show that the proposed method not only speeds up the optimization procedure, but also it 

ensures the non-violated global optimum design point without a need for multiple runs. 

 

Keywords: Marginal; feasibility search; size optimization; truss structures. 

 

 

1. INTRODUCTION 
 

Over the lasts decades, a number of optimization methods have been developed for 

optimization of trusses. Genetic algorithms ([1-5]) and simulated annealing algorithms ([6, 

7]) are the most notable stochastic-based optimization techniques used for the optimum 

design of trusses.  

More recently, another branch of nature-inspired algorithms have attracted the attention 

of researchers in all optimization field including structural problems. Algorithms belonging 
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to this field imitate the collective behavior of a group of social insects like bees, cuckoo and 

ants (see e.g., [8-15]). In all of nature-inspired methods, a number of individuals called 

agents have a duty of finding better solution by means of time consuming step-by-step 

iterations; besides optimization procedure starts from fully random design points. However, 

the main problem arises while as the number of design variables increases, raising the 

number of agents is inevitable. 

The introduced method here exhibits a less time-consuming procedure comparing to 

those recent optimization methods. However, in most of problems, a method that could soon 

find the near global optimum point in early stages may be necessary. Details of the proposed 

sensitivity-based method may be summarized into the four following operators; first the SS 

operator is activated whereby the searching design space is remarkably confined in the early 

stages of the procedure; second the sensitivity values of constraints violation of each design 

variable near the margin of FNF region are determined by employing the MSA operator; 

third the MS operator that is used to search near the border-line of FNF to find better 

solutions and fourth, RW operator that includes random selective approach for the most 

decision-maker variables that finally causes a movement into the feasible region to first of 

all passing probably over at least a local optimum point and secondly gives more space to 

other variables to further modify their values for a better objective value.  

A serial exploitation of these four operators through successive iterations ensures the fact 

that 1. The founded global optimum point is feasible, 2. The searching space is confined at 

early stages, 3. The more sensitive and decisive variables are known at each iteration 

through optimization procedure and finally 4. It avoids a simultaneous alteration of all 

design variables, a fact that existed in other optimization procedures. These steps reason a 

major reduction on the computational time required through structural optimization 

procedure. 

 

 

2. SRUCTURAL DESIGN OPTIMIZATION 
 

2.1 General formulation 

Most engineering optimization problems may be expressed as minimizing (or maximizing) a 

function subject to inequality and equality constraints and can be stated as the general form 

 

Minimize/Maximize    𝑓(𝑿) 

subject to      𝑔𝑖(𝒙) ≤ 0        i=1,…,m 

and/or          ℎ𝑗(𝒙) = 0        j=1,…,l 

and/or          𝒙𝐿 ≤ 𝒙 ≤ 𝒙𝑈 

(1) 

 

where 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 is a column vector of n design variables. In Eq. (1) , 𝑓 is the 

objective or cost function, g’s are inequality constraints, and h’s are equality constraints. 𝒙𝐿 

and 𝒙𝑈 are allowable lower and uper bounds of 𝒙, respectively. A design 𝒙 that satisfies all 

inequality and equality constraints is feasible. 

 

2.2 Size optimization of trusses 
Size optimization of structural systems involves arriving at optimum values for member 
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cross-sectional areas A that minimize an objective function 𝑓, usually the structural weight 

W. This is expressed mathematically as 

 

Minimize      𝑓 = 𝑊(𝑨) = ∑ 𝐴𝑗

𝑛

𝑗=1

𝐿𝑗𝜌𝑗 (2) 

 

Where 𝐴𝑗,𝐿𝑗 and 𝜌𝑗 are the cross-sectional area, length and unit weight of 𝑗th member, 

respectively and 𝑛 is the total number of members. The vector 𝑨 is selected between lower 

𝐴𝑙 and upper 𝐴𝑢 bounds. Eq. (2) is subjected to the following normalized constraints ([16]). 

 

𝑠𝑚(𝑨) = max (0,
𝜎𝑚

𝜎𝑚,𝑎𝑙𝑙𝑜𝑤𝑒𝑑

− 1) ,     𝑚 = 1,2, … , 𝑁𝐸

𝑏𝑚(𝑨) = max (0,
𝜆𝑚

𝜆𝑚,𝑎𝑙𝑙𝑜𝑤𝑒𝑑

− 1) ,     𝑚 = 1,2, … , 𝑁𝐸

𝑑𝑘(𝑨) = max (0,
𝑢𝑘

𝑢𝑘,𝑎𝑙𝑙𝑜𝑤𝑒𝑑

− 1) ,     𝑘 = 1,2, … , 𝑁𝐷

 (3) 

 

Where 𝑁𝐸 and 𝑁𝐷 denotes the number of members and the number of degrees of 

freedom of structure, respectively; 𝑠𝑚, 𝑏𝑚, and 𝑑𝑘 are respectively, the member stress, 

member buckling and nodal displacement normalized constraint functions; 𝜎𝑚 and 𝜆𝑚 are 

the stress and the slenderness ratio of 𝑚th member; 𝜎𝑚,𝑎𝑙𝑙𝑜𝑤𝑒𝑑 and 𝜆𝑚,𝑎𝑙𝑙𝑜𝑤𝑒𝑑 are the 

allowable axial stress and allowable slenderness ration for 𝑚th member, respectively; 

𝑢𝑘,𝑎𝑙𝑙𝑜𝑤𝑒𝑑 and 𝑢𝑘 are the allowable displacement and nodal displacement of 𝑘th degrees of 

freedom, respectively. In Eq. (3), all the normalized constraint functions are activated when 

the violated constraints have values larger than zero. In this paper the Squared Normalized 

Degree of Constraints Violation (SNDCV) Z and penalty function 𝛾 are used, where 

 

𝑍(𝒙) = ( ∑ (𝑠𝑚 + 𝑏𝑚)

𝑁𝐸

𝑚=1

+ ∑ 𝑑𝑘

𝑁𝐷

𝑘=1

)

2

 (4) 

 

And; 

 

𝛾(𝒙) = (1 + 𝑍) (5) 

 

Then, the penalized objective function of the structure (in a minimization problem) is 

considered as Eq. (6) 

 

𝐹′(𝒙) = 𝑓(𝒙)𝛾(𝒙) (6) 
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3. AN EFFICIENT SUBSPACE SEARCH (SS) OPERATOR 
 

One of the most important tasks of the proposed method is to find a first local optimum 

point in early stages. To do so, concept of uniform random numbering is utilized. Stochastic-

based methods begin their search from random points, a number of which depends on the 

number of variables and complexity of the problem. For instance, in Genetic Algorithm 

(GA) Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) etc., the initial 

design points are spread randomly in all parts of searching space. In such methods, if 

number of these initial random points are not consistent with the number of variables or the 

complexity of the problem, it affects the convergence history through the optimization 

procedure and therefore affects the quality of the global optimum solution ([17 -19]). The 

major feature of the proposed subspace search is the independence of number of initial 

samples produced to the complexity and/or number of design variables of the problem. 

To detail the step, first the initial values for design variables are generated using an 

integer value powered to ten multiplied by a vector of uniformly random values. This 

technique could be very efficient in cases where limiting bounds for the design variables are 

not known and as well, one could determine the near global optimum solution in a least 

amount of analyses to be taken place. 

These initial random designs will be produced for the subspaces of positive powers of ten 

using Eq. (7) or for the subspaces of the negative powers of ten using Eq. (8) as follows 

 

𝒙𝑠 = 𝑟𝑎𝑛𝑑(𝑏𝐿
+, 𝑏𝑈

+)    for s≥0      (positive searching region) (7) 

𝒙𝑠 = 𝑟𝑎𝑛𝑑(𝑏𝐿
−, 𝑏𝑈

−)    for s<0       (negative searching region) (8) 

 

where the lower and upper bounds (𝑏𝐿
+, 𝑏𝐿

− 𝑎𝑛𝑑 𝑏𝑈
+, 𝑏𝑈

−) are determined using the 

following relations 

 

𝑏𝐿
+ = | < 𝑠 − 1 > −𝑠| × 10(𝑠−1)    for s≥0      (positive searching region) (9) 

𝑏𝐿
− = | < −𝑠 − 1 > +𝑠| × 10(𝑠)    for s<0       (negative searching region) (10) 

𝑏𝑈
+ = 10(𝑠)        for s≥0                                     (positive searching region) (11) 

𝑏𝑈
− = 10(𝑠−1)    for s<0                                    (negative searching region) (12) 

 

where s is an integer number and | | is the absolute operator. Angle brackets < > are used 

base on the following definitions 

 

< 𝑀 >= {
0,          𝑀 < 0

𝑀,          𝑀 ≥ 0   
 (13) 

 

This technique could be very efficient in cases where limiting bounds for the design 

variables are not known and as well one could determine the near global optimum solution 

in a least amount of analyses to be taken place. 
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4. MARGINAL SENSITIVITY ANALYSIS (MSA) OPERATOR 
 

In order to perform sensitivity analysis, finite difference method is employed. The sensitivity 

of Squared Normalized Degree of Constraints Violation 𝑍(𝒙) at the current design vector 𝒙 

using backward and forward difference method can be approximated as 

 

𝑆𝑖
± =

𝑍(𝒙 ± 𝛥𝒙(𝑖)) − 𝑍(𝒙)

𝛥𝒙(𝑖)
 (14) 

 

if 𝒙 is feasible, the above equation can be reformulate as  

 

𝑆𝑖
± =

𝑍(𝒙 ± 𝛥𝒙(𝑖))

𝛥𝒙(𝑖)
 (15) 

 

Choosing the positive or negative sign in Eqs. (14 and 15) is such that the search carries 

into the non-feasible region rather than more feasible. In the present study 𝛥𝒙(𝑖) is called 

self-adaptive dynamic perturbation value, given by Eq. (16) 

 

𝛥𝒙(𝑖) =
𝒙(𝑖)

𝛼
 (16) 

 

where 𝒙(𝑖) is the ith variable and 𝛼 is a fixed large number, called the sensitivity step 

length parameter. The Scaled Sensitivity Value 𝑆𝑆𝑉𝑖 for ith variable, is calculated using the 

following equation 

 

𝑆𝑆𝑉𝑖 =  
𝑆𝑖

∑ 𝑆𝑖
𝑛
1

 (17) 

 

where 𝑛 is the total number of design variables. The feature of Eq. (17) is that it shows 

the sensitivity rate of a variable to other variables. 

 

 

5. MARGINAL SEARCH (MS) OPERATOR 
 

By having the SSV for each design variable, Marginal Search (MS) operator is used to 

perform an efficient search near the borderline of FNF inside the feasible region until a local 

optimum is found. The variables with less sensitivity play the main role of allowing the 

searching procedure. The pseudo-code of the Fig. 1 clarifies the MS operator. 

 

In Fig. 1, 𝝀(𝑣𝑎𝑟) is called marginal search step-length which is determined by reducing 

value of the varth design variable 𝒙(𝑣𝑎𝑟) as given in Eq. (19) 

 

𝝀(𝑣𝑎𝑟) =
𝒙(𝑣𝑎𝑟)

𝑒
 (18) 
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where e parameter is related to adjusting accuracy to find a sequence of boundary point. 

That is, the greater e is, the smaller the step length 𝝀(𝑣𝑎𝑟) will be, because of which the 

border of a FNF region will be found causing a fast step towards the local optimum. 
The signs + or – in Fig. 1 are chosen such that the search is carried out from the feasible 

region closer to the vicinity of the border of FNF. 

 

Marginal Search (MS) operator  

Input: Design vector 𝒙, 𝒙𝑆𝑜𝑟𝑡𝑒𝑑 

Output: local optimum point 𝒙𝒍𝒐𝒄𝒂𝒍, 𝒙𝑏𝑒𝑠𝑡, fbest 

Start 

Set xbest=x, fbest=f(x) 

for var = 𝒙𝑆𝑜𝑟𝑡𝑒𝑑; do: 

 set 𝑗 = 0; define 𝝀= a column search vector with 𝑛 entries equal to zero 

while Z = 0 

𝑗 = 𝑗 + 1 

 𝝀(𝑣𝑎𝑟) =
𝒙(𝑣𝑎𝑟)

𝑒
        

𝒙′ = 𝒙 ± 𝑗𝝀      

  Determine the value of objective function fnew for 𝒙′. 

                             Compute the Degree of Constraint Violation Znew for 𝒙′. 

                              if fnew is better than fbest and Vnew=0 

                                         fbest = fnew 

                                         xbest=x 

                              end if 

                              if Znew = 0  

                                         𝒙(𝑣𝑎𝑟) = 𝒙(𝑣𝑎𝑟) ± 𝑗𝝀(𝑣𝑎𝑟) 

                              else  

                                        break 

                              end if 

  end while 

end for 

𝒙𝑙𝑜𝑐𝑎𝑙 = 𝒙 

return 𝒙𝑙𝑜𝑐𝑎𝑙, 𝒙𝑏𝑒𝑠𝑡, fbest 

End 

Figure 1. The pseudo-code of Marginal Search (MS) operator 

 

 

6. ROULETTE WHEEL (RW) OPERATOR 
 

The pseudo-code of Fig. 2 clarifies the RW operator. Based on the computed vector of 

Scaled Sensitivity Values (SSV) using MSA operator, RW operator finally selects the 

desired variable for updating. 
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Roulette Wheel (RW) operator 

Input: Design vector 𝒙, vector of the Scaled Sensitivity Values SSV 

Output: A desired variable 𝑥𝐷𝑉 for updating 

Start 

Tot=0; 

count=0; 

Produce uniform random number q in the range of 0 and 1. 

While Tot<q do: 

                  count= count+ 1; 

 Tot= Tot+SSV(count); 

end while 

return 𝑥𝐷𝑉= x(count) 

End 

Figure 2. The pseudo-code of Roulette Wheel (RW) operator 

 

 

 

7. DESCRIPTION OF THE PROPOSED MARGINAL FEASIBILITY SEARCH 

METHOD 
 

To describe the methodology of the algorithm, a flowchart is given as in Fig. 3. In the 

following, all the new formulations involved in the procedure will be introduced by using 

some steps towards finding the optimum solution 𝒙𝐺. 

Step 1. Initialization: Initialize optimization algorithm parameters such as maximum 

number of iterations (𝑀𝑎𝑥𝑖𝑡𝑒𝑟) and step-length parameters 𝛼 and 𝑒 to minimize objective 

function  𝑓(𝒙). Here, the structural analyzer package was developed in MATLAB toolbox 

by introducing a self-written code, based on FEM. 
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Figure 3. Flowchart of the proposed marginal feasibility search method 

 

Step 2. Find the first local optimum point 𝒙𝐿,0 

Sub-step 2.1: Generate the initial random design using the formulations of SS operator in 

order to find the first feasible subspace. The first feasible random design is considered as the 

starting point. 

Sub-step 2.2: Determine the Scaled Sensitivity Values SSVs of each variable at the 

starting point using Eqs. (15-17). Sort design variables by the values of SSV in ascending 

order. 

Start 

Initialization: initialize algorithm parameters such as 

maximum number of iterations and step length factors α 

and e; prepare a structural analyzer; define geometry of 

structure, loading conditions and material properties 

Compute the vector of Scaled 

Sensitivity Values (SSV) 

𝑡 > 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 

Save 𝑓∗ 

Save 𝒙𝐺 
Plot results 

 

 

Stop N Y 

Find the new local optimum 

design 𝒙𝐿,𝑡+1 

 

𝒙𝐺 = 𝒙𝐿,𝑡+1 

𝑓∗ = 𝑓(𝒙𝐿,𝑡+1) 

if 𝑓(𝒙𝐿,𝑡+1) < 𝑓∗: 

𝑡 = 𝑡 + 1 

Find the first local 

optimum (𝒙𝐿,0) 

Specify the desired variable 𝑥𝐷𝑉 using RW 

operator; 

Compute the feasibility search step-length τ; 

Evaluate the new feasible point position  𝒙𝐹,𝑡 

 

𝑡 = 1 

𝑓∗ = 𝑓(𝒙𝐿,0) 

𝒙𝐺=𝒙𝐿,0  

𝒙𝐿,𝑡=𝒙𝐿,0  

 

SS operator 

MSA operator 

RW operator 

MS operator 

MS operator 

MSA operator 
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Figure 4. Generating the initial random designs in different subspaces by employing SS operator 

 

Sub-step 2.3: determine the first local optimum point 𝒙𝐿,0 using the MS operator. 

Step 3. Main optimization procedure, find the global optimum solution 𝒙𝐺  

Sub-step 3.1: Initialize iteration counter 𝑡 = 1, set the current optimum solution 𝒙𝐿,𝑡=𝒙𝐿,0 

and 𝑓∗ = 𝑓(𝒙𝐿,0). 

Sub-step 3.2: Compute the Scaled Sensitivity Values SSVs at 𝒙𝐿,𝑡 for each variable using 

Eqs. (15-17). 

Sub-step 3.3: Employ RW operator to specify the desired variable (DV) 𝑥𝐷𝑉. The 

corresponding value of SSV for 𝑥𝐷𝑉 is called (DSSV). 

Sub-step 3.4: Consider the desired variable 𝑥𝐷𝑉 as the feasibility search direction. 

Compute the feasibility search step-length 𝜏 by the following equation 
 

𝜏 = 𝐷𝑆𝑆𝑉 𝑥𝐷𝑉 (19) 
 

Sub-step 3.5: Determine the new feasible design 𝒙𝐹,𝑡 by updating the desired variable 

using Eq. (20)  
 

𝑥𝑛𝑒𝑤
𝐷𝑉 = 𝑥𝐷𝑉 + 𝜏 = (1 + 𝐷𝑆𝑆𝑉)𝑥𝐷𝑉 (20) 

 

It must be noted that updating is done only to the value of desired variable and other 

variables are kept fixed. This effort is established by causing degradation of the expense of 

the desired variable and as a result allowing other design variables to increase their 

significance by reducing their quantitative value. This will create the possibility of reaching 

to another local or perhaps the global optimum. Thus, from here onwards the cyclic 

procedure of reducing values of variables by using the MS operator is carried out until the 

global optimum is reached. 

Sub-step 3.6: Evaluate the new local optimum design 𝒙𝐿,𝑡+1 from the feasible design 𝒙𝐹,𝑡 

using MS operator.  

Sub-step 3.7: If the new local optimum solution is better than the best solution 

𝑓(𝒙𝐿,𝑡+1) < 𝑓∗, then 𝑓∗ = 𝑓(𝒙𝐿,𝑡+1) and 𝒙𝐺 = 𝒙𝐿,𝑡+1. 

𝑥1 
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Sub-step 3.8: Set 𝑡 = 𝑡 + 1. 

Sub-step 3.9: If iteration counter 𝑡 is greater than Maxiter, go to next step; otherwise, go 

to substep 3.2. 

Sub-step 3.10: Stop the procedure, save the best solution 𝒙𝐺 and corresponding objective 

value 𝑓∗ and plot the convergence history of best objective value 𝑓∗. 

 

 

8. TEST EXAMPLES 
 

In this section, in order to just perform the robustness and efficiency of the proposed 

technique, a number of numerical benchmark examples of two and three-dimensional truss 

structures were attempted. They include a 10-bar planar truss subjected to a single load 

condition, a 25-bar and a 72- bar space trusses subjected to multiple load conditions. For all 

examples, the parameters α and e were set as a fixed value of 100. 

 

8.1 Ten-bar planar truss 
This problem was first addressed in Venkayya [20] and has since become a benchmark 

problem to test and verify the efficiency of optimization methods. The topology and nodal 

numbering of the 10-bar planar truss structure are shown in Fig. 5. The truss was previously 

studied by many researchers such as Camp et al. [21], Li et al. [22], Lee and Geem [23] and 

Sonmez [14]. The material has a modulus of elasticity of 107 psi (6.895 Gpa.) and a mass 

density of 0.1 lb./in3 (27200 N/m3). The constraints contain maximum displacement 

limitations of ±2 in. (5.08 cm) on any node in both x and y direction and the allowable axial 

stress of ±25 ksi (172.25 MPa) in any member. The truss is subjected to two loadings 

condition: Load case 1; in which the point load P1=100 kips (445 kN) and P2=0 and load 

case 2 consists of point loads P1=150 kips (667.5 kN) and P2=50 kips (222.5 kN).  

According to Fig. 6 at the start of phase 1 for both loading cases, the third initial design 

𝒙𝑠=3 that was generated randomly within (10-100 in2) bounds, offered a solution without 

penalization. It was therefore considered as the starting point. 
 

  

Figure 5. Ten-bar planar truss 

Figure 6. Selecting initial random designs by 

dividing the searching space into  subspaces; the 

10-bar truss example 
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The bar graphs of Figs. 7 and 8 show the results of MSA operator at 𝒙𝐿,0 for the two 

loading cases.  

 

  
Figure 7. First sensitivity analysis at 𝒙𝐿,0; 10-

bar truss, load case 1 

Figure 8. First sensitivity analysis at 𝒙𝐿,0; 10-

bar truss,  load case 2 

 

Tables 1 and 2 provide optimum results reported in the literature compared to that of the 

present work. As indicated, the proposed method leads to solutions with no constraints 

 
Table 1: Comparing optimal designs for the 10-bar planar truss, load case 1 

  Optimal cross sectional area (in.2) cross sectional area (in.2) 

Variable 

group 

Bar 

areas 

Camp et 

al.1 [21] 

Li et al.2 

[22] 

Lee and 

Geem3 [23] 

Sonmez4 

[14] 

Current work 

𝒙𝑠=3 𝒙𝐿,0 Optimal 𝒙𝐺 

1 𝐴1 28.92 30.704 30.150 30.548 80.824 12.087 31.1650 

2 𝐴2 0.1 0.100 0.102 0.100 70.280 0.1 0.1000 

3 𝐴3 24.07 23.167 22.710 23.180 35.144 16.814 23.1000 

4 𝐴4 13.96 15.183 15.270 15.218 81.304 30.242 14.7230 

5 𝐴5 0.1 0.100 0.102 0.100 52.374 9.168 0.1000 

6 𝐴6 0.56 0.551 0.544 0.551 36.692 0.1 0.4139 

7 𝐴7 7.69 7.460 7.541 7.463 42.877 36.330 7.5712 

8 𝐴8 21.95 20.978 21.560 21.058 57.974 56.010 21.1630 

9 𝐴9 18.7 21.508 21.450 21.501 93.570 93.570 21.4230 

10 𝐴10 0.1 0.100 0.100 0.100 103.590 3.431 0.1000 

Weight 

(lb.) 
 5076.31 5060.92 5057.88 5060.880 28011 12106 5064.4 

No. of 

analyses 
 NA 75,000 400,000 500,000 3 80 650 

Constraints 

Violation 
 3.4 ×10-2 3.1×10-4 8.23 ×10-3 None None None None 

Note: 1 in.2=6.452 cm2; 1 lb. =4.45 N. 

1- Ant colony optimization 

2- Heuristic particle swarm optimization 

3- Harmony search algorithm 

4- Artificial bee colony 
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Table 2: Comparing optimal designs for the 10-bar planar truss, load case 2 

  Optimal cross sectional area (in.2) cross sectional area (in.2) 

Variable 

group 

Bar 

areas 

Rizzi1 

[24] 

Li et al.2 

[22] 

Lee and 

Geem3 [23] 

Sonmez4 

[14] 

Current work 

𝒙𝑠=3 𝒙𝐿,0 Optimal 𝒙𝐺 

1 𝐴1 24.29 23.353 23.250 23.4692 84.927 11.267 25.0000 

2 𝐴2 0.1 0.100 0.102 0.1005 20.092 0.1 0.1000 

3 𝐴3 23.35 25.502 25.730 25.2393 64.859 38.380 25.0000 

4 𝐴4 13.66 14.250 14.510 14.3540 96.899 70.420 14.4320 

5 𝐴5 0.1 0.100 0.100 0.1001 14.332 0.1 0.1000 

6 𝐴6 1.969 1.972 1.977 1.9701 74.368 8.8924 1.9876 

7 𝐴7 12.67 12.363 12.210 12.4128 25.497 12.017 12.4250 

8 𝐴8 12.54 12.894 12.610 12.8925 22.173 19.285 12.3590 

9 𝐴9 21.97 20.356 20.360 20.3343 22.642 22.642 19.9820 

10 𝐴10 0.1 0.101 0.100 0.1000 55.643 0.1 0.1000 

Weight 

(lb.) 
 4691.84 4677.29 4668.810 4677.077 19210 7401.3 4682.476 

No. of 

analyses 
 NA 75,000 400,000 500,000 3 98 1000 

Constraints 

Violation 
 1.9×10-4 6.17×10-4 6.38×10-2 None None None None 

Note: 1 in.2=6.452 cm2; 1 lb. =4.45 N. 

1- Optimality criteria 

2- Heuristic particle swarm optimization 

3- Harmony search algorithm 

4- Artificial bee colony 

 

violation and less computational efforts. For case 1, the 650 FEM analyses were needed 

with a minimum weight of 5064.4 lb. For case 2, after 1000 FEM analyses, a minimum truss 

weight of 4678.1 lb. was found.  

Figs. 9 and 10 show convergence histories on the weight minimization of the truss 

structure in different stages of the optimization procedure, together with the maximum 

number of iterations normally allowed. 

 

  
Figure 9. Convergence history of optimum 

weight; 10-bar planar truss, Load case 1 

Figure 10. Convergence history of optimum 

weight; 10-bar planar truss, Load case 2 
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8.2. Twenty-Five-bar space truss 

Fig. 11 shows a 25-bar transmitting tower space truss. This problem has been studied by 

many researchers including Li et al. [22], Lee and Geem [23], Sonmez [14] and Kaveh et al. 

[13]. The material density was 0.1 lb./in.3 (2767.990 kg/m3) and the modulus of elasticity 

was 10,000 ksi (68.950 GPa). This space truss was subjected to two loading conditions as 

shown in Table 3. 

 

 
Figure 11. 25-bar space truss 

 
Table 3: Loading conditions (kips) for 25-bar space truss 

Loading cases Node x y z 

1 
1 1.0 10.0 -5.0 

2 0 10.0 -5.0 
 3 0.5 0 0 

     

2 
5 0 20.0 -5.0 

6 0 -20.0 -5.0 

Note: 1 kips= 4.45 kN. 

 
Table 4: Allowable stresses (ksi) for the 25-bar space truss 

Design variables Members Compression Tension 

1 A1 35.092 40.000 

2 A2-5 11.590 40.000 

3 A6-9 17.305 40.000 

4 A10-11 35.092 40.000 

5 A12-13 35.092 40.000 

6 A14-17 6.759 40.000 

7 A18-21 6.959 40.000 

8 A22-25 11.082 40.000 

Note: 1 ksi= 6.89725 MPa. 
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Design constraints were set as the maximum allowable displacement of ±0.35 in. (±8.89 

mm) imposed to all nodes in every direction and the allowable stresses for all members are 

given as in Table 4. The minimum cross-sectional areas of all members were set equally as 

0.01 in2 (6.45 mm2). As for consistency with the literature, all members were classified into 

eight groups as given in Table 4. 

As the bar graph of Fig. 12 shows, the initial random designs were generated up to the 

second subspace (s=2), the second subspace offered solution without penalization. 

Therefore, the second random design 𝒙𝑠=2, having generated for the cross sectional areas, 

set between 1 and 101 in2, was selected as the starting design. 

 

  
Figure 12. Selecting initial random designs by 

dividing the searching space into  subspaces; 

the 25-bar truss example 

Figure 13. First sensitivity analysis at 𝒙𝐿,0; 

25-bar truss example 

 

Fig. 13 shows the primary sensitivity results at 𝒙𝐿,0. As illustrated in Table 5, the 

proposed method required 2340 analyses to find a minimum global weight of 545.14 lb. 

after 17 iterations. It was approved with the results recorded by other researches. 

 
Table 5: Comparing optimal designs for the 25-bar truss 

  Optimal cross sectional area (in.2) cross sectional area (in.2) 

Variable 

group 

Bar 

areas 

Li et al.1 

[22] 

Lee and 

Geem2 

[23] 

Sonmez3 

[14] 

Kaveh 

et al.4 

[13] 

Current work 

𝒙𝑠=2 𝒙𝐿,0 Optimal 𝒙𝐺 

1 A1 0.010 0.047 0.011 0.010 5.3881 0.01 0.0100 

2 A2-5 1.970 2.022 1.979 1.910 1.2902 0.742 1.8360 

3 A6-9 3.016 2.950 3.003 2.798 9.2069 8.988 3.1399 

4 A10-11 0.010 0.010 0.010 0.010 2.3264 0.01 0.0100 

5 A12-13 0.010 0.014 0.010 0.010 1.3801 0.01 0.0100 

6 A14-17 0.694 0.688 0.690 0.708 2.7384 0.7319 0.6809 

7 A18-21 1.681 1.657 1.679 1.836 5.0973 3.090 1.7539 

8 A22-25 2.643 2.663 2.652 2.645 1.7588 1.758 2.6068 

Weight (lb.)  545.190 545.380 545.193 545.09 1218.3 794 545.14 

No. of 

analyses*  N/A 15,000 300,000 17,500 2 240 2340 
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Constraints 

Violation 
 1.9×10-4 6.17×10-4 6.38×10-2 None None None None 

Note: 1 in.2=6.452 cm2; 1 lb. =4.45 N. 

1- Heuristic Particle Swarm Optimization 

2- Harmony Search algorithm 

3- Artificial Bee Colony 

4- Chaotic Swarming of Particles 

 

Fig. 14 shows the convergence history of the truss problem towards the global optimum 

weight. The idea here is to show how fast the proposed technique guides the pointer towards 

the global optimum in early stages. 

 

 
Figure 14. Convergence history of optimum weight; 25-bar truss 

 

8.3 Seventy-two-bar space truss 
Fig. 15 shows a 72-bar space truss with its node and element numbering schemes. This 

space truss, has been recently optimized by Perez et al. [25], Degertekin [26] and Kaveh et 

al. [13].The problem had a very complex and non-linear search space as it had 320 nonlinear 

constraints (72 tension, 72 compression, 8 positive displacements, 8 negative displacements 

for each loading case). The material density and modulus of elasticity were considered 0.1 

lb./in.3 (2767.990 kg/m3) and 10,000 ksi (68.950 GPa), respectively. The constraints 

contained the stress of ±25 ksi (±172.375 MPa) and displacement limitations of ±0.25 in. for 

uppermost nodes in all directions. This space truss was subjected to two loading conditions: 

Condition 1, in which PX=5.0 kips, PY =5.0 kips (22.25 kN), and PZ= -5.0 kips (22.25 kN) 

on node 17; and Condition 2, that PX= 0.0 kips, PY= 0.0 kips, and PZ =-5.0 kips (-22.25 kN) 

were acted on nodes 17, 18, 19, and 20. For design and manufacturing considerations truss 

members were classified into sixteen groups as shown in result Tables 6. For this problem, 

the value of lower bound limitation of design variables was 0.1 in.2. 
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Figure 15. 72-bar space truss 

 

Table 6: Optimal design comparison for the 72-bar space truss under multiple loading conditions 

  cross sectional area (in.
2
) 

Variable 

group 
Members 

Perez et 

al.
1 

[25] 

Degertekin
2 

[26] 

Kaveh et 

al.
3 

[13] 

Current work 

𝒙𝑠=2 𝒙𝐿,0 Optimal 𝒙𝐺 

1 1~4 1.743 1.860 1.94459 1.955 0.1 1.65344 

2 5~12 0.518 0.521 0.5026 9.579 3.590 0.50681 

3 13~16 0.100 0.100 0.10000 8.130 2.140 0.10000 

4 17~18 0.100 0.100 0.10000 6.786 0.1 0.10000 

5 19~22 1.308 1.271 1.26757 3.361 2.762 1.14299 

6 23~30 0.519 0.509 0.50990 2.877 2.278 0.57423 

7 31~34 0.100 0.100 0.10000 10.345 0.1 0.10000 

8 35~36 0.100 0.100 0.10000 2.306 0.1 0.10000 

9 37~40 0.514 0.485 0.50674 8.478 2.488 0.34987 

10 41~48 0.546 0.501 0.51651 8.913 5.319 0.52909 

11 49~52 0.100 0.100 0.10752 4.710 0.1 0.10000 

12 53,54 0.109 0.100 0.10000 4.816 0.1 0.10000 

13 55~58 0.161 0.168 0.15618 7.403 0.1 0.10000 

14 59~66 0.509 0.584 0.54022 5.314 1.720 0.67830 

15 67~70 0.497 0.433 0.42229 3.954 2.157 0.26164 

16 71,72 0.562 0.520 0.57941 6.897 3.304 0.52311 

Weight (lb.)  381.779 380.837 379.974 5381 1854.6 378.4304 

No. of analyses
* 

 N/A 13,742 10,500 2 246 6,890 

Constraints 

Violation 
 None 1.35×10

-2
 None None None None 

Note: 1 in.
2
=6.452 cm

2
; 1 lb.=4.45 N. 

* Two structural analysis is carried out for each design due to two loading conditions 

1- Particle Swarm Optimization 

2- Improved harmony search algorithms 

3- Chaotic Swarming of Particles 
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The convergence history of 72-bar truss weight is given in Fig. 18. In addition, Table 6 

contains the results for the same optimization task from different research efforts. As 

observed, first local optimum point 𝒙𝐿,0 with the corresponding truss weight 1854.6 lb. was 

obtained after 246 analyzes. The proposed method showed a good and fast solution 

convergence while after 6890 analyzes the best solution was found. The best weight 

obtained by the proposed method is 50 to 66 percent less than the optimum truss weight 

results by other researchers.  

 

  
Figure 16. Selecting initial random designs by 

dividing the searching space into subspaces; 

the 72-bar truss example 

Figure 17. First sensitivity analysis at 𝒙𝐿,0; 72-

bar truss example 

 

As in Table 6, results by Degertekin [26] explore certain amounts of penalty value; 

however, Perez et al. [25] and Kaveh et al. [13] offered a solution without penalization. 

 

 
Figure 18. Convergence History of best weight of 72-bar space truss 

 

 

9. CONCLUSIONS 
 

In this article, a new and relatively fast optimization method based on a marginal feasibility 

search method for size optimization of truss problems has been introduced. It hybridizes four 
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operators towards the optimum solution. First, it uses Subspace Search (SS) operator to 

reduce and confine the searching space by employing few arbitrary designs. Having found 

the target zone where the optimum point lies, it uses in order, a Marginal Sensitivity 

Analysis (MSA), Marginal Search (MS) and roulette wheel (RW) operators to find the 

global optimum solution. 

Having applied the method into some challenging size optimization of trusses, a major 

advancement of the technique was observed on the optimum solution in terms number of 

analyses required for optimization where a minor improvement on the accuracy of the 

results were also observed in some cases. Investigations on the convergence history and 

results obtained emphasize on the performance of the proposed method to offer the feasible 

global optimum design point without multiple runs. 
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