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5BABSTRACT 
 
In this paper, an analytical approach is presented for free vibration analysis of tall structures 
with various lateral resisting systems and variable properties along the height. Primarily, 
according to replacement beam theory, the tall structure is modeled by a non-prismatic 
Timoshenko beam with shear and global bending stiffness which is supported laterally by a 
beam with local bending stiffness. The vibration frequencies of shear beam, bending beam 
and as well as Timoshenko beam are calculated and the vibration frequencies of tall 
structure are obtained by combination of the obtained vibration frequencies. Presented 
analytical approach is also used to calculate the mode shape functions and internal forces of 
the tall structure. The efficiency and accuracy of the current approach are confirmed through 
comparison of the numerical results to those obtained using available finite-element 
software and other references. 
 
Keywords:Tall structure; vibration frequency; Timoshenko beam; shear beam; bending 
beam; weak form integral equation. 

 
 

6B1. INTRODUCTION 
 

According to the structural dynamics theory, the tall structure can be approximately modeled 
by a non-prismatic cantilever beam. The approximate stiffness is considered for this 
cantilever beam. Therefore, the analysis is carried out on the replacement cantilever beam 
instead of original structure. After this modeling, the governing differential equations that 
describe the vibration behavior of tall structure should be solved. Kind of the governing 
differential equation, such as pure bending vibration, shear vibration or shear-bending 
vibration, depends on kind of the lateral load-resisting system of tall structure. Timoshenko 
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beam equation governs on the vibration behavior of structures that have lateral load-resisting 
system with shear-bending stiffness (e.g. wall-frame structures). Timoshenko beam equation 
considers the bending and shear deformations along with the rotational inertia effects. For 
tall structures that have lateral load-resisting system with bending stiffness only (e.g. 
structures with shear-walls system), Bernoulli beam equation governs on their vibration 
behavior and for tall structures that have lateral load-resisting system with shear stiffness 
only, shear beam equation has best description for their vibration behavior. 

Kazaz and Gülkan [1] developed a modified theory on the premise that a frame-wall 
system, deforming in shear and flexural modes, can be separated into two substructures that 
lie above and below the point of counter-flexure in the base story columns. Park et al. [2] 
proposed an analytical model for the dynamic analysis of tall buildings with a shear wall–
frame structural system. They showed that the deformed shape of the shear wall–frame 
structural system is the combination of flexural mode and shear mode. Rahgozar et al. [3] 
presented a dynamic analysis of combined system of framed tube and shear walls by 
Galerkin method using B-spline functions.Kamgar and Saadatpour [4] determined the first 
natural frequency of tall buildings with a combined system of framed tube, shear core, belt 
truss and outrigger system with multiple jumped discontinuities in the cross section of 
framed tube and shear core under axial force.Malekinejad and Rahgozar [5] developed an 
analytical approach based on energy principles for computation of natural frequencies and 
mode shapes of multistory buildings constructed using framed tube, shear core and double 
belt trusses systems. Malekinejad and Rahgozar [6] presented the approximate formulas for 
dynamic response of tubular tall building structures. Zalka [7] presented the closed-form 
formulae for the torsional analysis of asymmetrical multi-storey buildings braced by 
moment-resisting frames, shear walls and cores. Mohammadnejad et al. [8] and Saffari et al. 
[9] presented an analytical approach for determination of the vibration frequencies of non-
prismatic Bernoulli and Timoshenko beams by converting the governing differential 
equation to its weak-form integral equations. Lee [10] developed an approximate solution 
procedure for free vibration analysis of tube-in-tube tall buildings using the power-series 
solution method. Many researchers calculated the vibration frequencies of tall structures 
using various approaches [11-19]. 

In this paper an analytical approach is proposed for determination of the vibration 
frequencies of tall structures with variable properties along the height. According to 
“Replacement Beam” theory, the tall structure with various lateral load-resisting systems, 
such as bending frames, braced frames, shear walls, coupled shear walls and combination of 
them, is modeled by a non-prismatic Timoshenko beam with shear and global bending 
stiffnesses which is supported laterally by a beam with local bending stiffness.Using an 
analytical approach, the governing differential equations for free vibration of shear beam, 
bending beam and as well as Timoshenko beam are solved and corresponding vibration 
frequencies are calculated. The vibration frequencies of original structure are calculated by 
combination of the obtained vibration frequencies. Presented analytical approach is used to 
calculate the mode shape functions and internal forces of tall structure.  
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2. METHOD OF ANALYSIS 
 

Based on the replacement beam theory, a tall structure with various lateral resisting systems 
including shear-wall, coupled shear wall, moment frames and braced frames can be modeled 
by a cantilever sandwich beam with variable properties along the height. The sandwich 
beam characterizes three kinds of stiffness: the global bending stiffness ( 0D ), the local 
bending stiffness ( 1D ) and shear stiffness ( S ). Every sandwich beam is equivalent to a 
Timoshenko beam (with global bending and shear stiffness) which is connected to a beam 
with local bending stiffness by axially rigid connections (Fig. 1). These three types of 
stiffness correspond to three types of deformation included to structure. The deformation of 
structure is obtained using a combination of these three deformations [11,12,13].  
 

 
Figure 1. (a) Replacement beam of the frame; (b) the sandwich beam is equivalent to the 

Timoshenko beamSupported by a beam with bending deformation only 
 
The tall structureis modeled by the replacement beam; therefore, the global and local 

bending stiffness as well as shear stiffness of lateral resisting systems of original structure 
are calculated at each story. Using approximate relations, these stiffnesses are combined in 
order to reach the global and local bending stiffness as well as shear stiffness of the 
replacement beam. Interpolated functions which optionally define the variation of stiffness 
in height of the structure are applied in the course of calculation. Furthermore, these 
functions are used for calculation of structural frequencies when the governing equations are 
transformed into solvable equations. Therefore, we obtain the vibration frequencies of shear 
beam, bending beam and Timoshenko beam and combine them to calculate the vibration 
frequencies of original structure. 

 
 

3. VIBRATION FREQUENCY OF SHEAR BEAM S
mω  

 
It has been recognized that the lateral deflection of most buildings is not purely flexural, but 
there is a considerable contribution from shear deflections in most cases. If shear 
deformation is dominated in the total deformation of buildings in their horizontal vibrations, 
such structures are usually called shear-type buildings [20]. Therefore, shear beam equation 
has best description for vibration behavior such structures.The governing differential 
equation for free vibration of a non-prismatic shear beam and shear force acting on section 
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of the beam is givenas follows [20]: 
 

2

2( ) ( , ) ( ) ( , ) 0
(1)

( , ) ( ) ( , )

S

S

K x x t m x x t
x x t

V x t K x x t
x

ϑ ϑ

ϑ

 ∂ ∂ ∂  − =  ∂ ∂ ∂ 
∂ = ∂  

 
In which ( ) ,SK x ( )m x , ( , )x tϑ and ( , )V x t  are shear stiffness function, the mass per unit 

length, transverse displacement and shear force acting on section of the beam, respectively. 
A harmonic vibration is assumed which defines the lateral displacement of the beam as 

( )( , ) ( )
S
mi t

x t x e
ω

ϑ φ= . ( )xφ and S
mω are themode shape function and vibration frequency of shear 

beam with mass per unit length. Substitution of this relationship into relations (1) leads to a 
single-variable equation in terms of location, as follows: 
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In the above relation, it is assumed that x
L

ξ =  and ( )2 2S
m Lλ ω=  in which L is the beam 

length. Eq. (2) is, in fact, the free vibration equation of a non-prismatic shear beam based on 
the non-dimensional variableξ . In order to convert Eq. (2) to its weak form, we integrate 
from both sides of Eq. (2) twice with respect to ξ within the range 0 toξ . The result is the 
integral equations as follows: 

 

1
0

1 2
0

( ) ( ) ( ) ( ) (4)

( ) ( ) ( ) ( ) ( ) ( ) (5)

S

S S

dK m s s ds C
d
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ξ

ξ
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ξ

λ ξ φ ξ φ ξ ξ

+ =

′− − + = +  

∫

∫
 

 
In Eq. (5) 1C and 2C  are the integration constants which are determined through boundary 

conditions of both ends of the beam. Eq. (5) is the integral equation of the weak form for 
free vibration of a non-prismatic shear beam. Eqs. (4-5) are applicable for determination of 
the integration constants. Further, substitution of the resulting integration constants into Eq. 
(5) yields an integral equation in ( )φ ξ . The tall building is modeled by a cantilever beam. 
Therefore, considering Eq. (3), the following relations are defined for boundary conditions 
in a shear cantilever beam: 
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1

0 0

( ) (6)1 0 ( ) 0SK dV
L d ξ

ξ φ

ξ
ξ φ ξ

ξ =

= =


  = = → =   

 

 
By applying the above boundary conditions to Eqs. (4-5), the integration constants are 

determined.  
Substitution of the integration constants obtained into Eq. (5) yields an integral equation 

as follows: 
 

1

1 2
0 0

( ) ( ) ( , ) ( ) ( , ) ( ) 0 (7)SK f s s ds f s s ds
ξ

ξ φ ξ ξ φ ξ φ+ + =∫ ∫  

 
In Eq. (7) the functions 1( , )f sξ and 2 ( , )f sξ  are expressed by the following relations: 
 

1

2

( , ) ( ) ( ) ( )
(8)

( , ) ( )
Sf s s m s K s

f s m s
ξ λ ξ
ξ λξ

′= − −
 = −

 

 
 

4. VIBRATION FREQUENCY OF SHEAR BEAM WITH A LUMPED MASS AT 
FREE END S

Mmω  
 

In this section, it is assumed that there is a lumped mass at free end of the cantilever shear 
beam. The rotational inertia effects and weight of lumped mass have been neglected. The 
analysis method is exactly the same as what was stated in section 3. The difference, 
however, is that the shear force is of non-zero value at the free end of the beam (Fig. 2). 
Other boundary conditions are assumed unchanged. In this case, the boundary conditions are 
stated as follows [21]:  
 

 
Figure 2. shear force acting on the end mass of the cantilever shear beam 
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In which Μ is the lumped mass at free end of the beam and S
Mmω is vibration frequency 

of the shear beam with mass per unit length ( )m ξ and lumped mass at free end. By applying 
the above boundary conditions to Eqs.(4-5) the integration constants are determined. 
Substitution of the integration constants obtained into Eq. (5) yields an integral equation as 
follows: 

 
1

1 2
0 0

( ) ( ) ( , ) ( ) ( , ) ( ) 0 (10)SK f s s ds f s s ds
ξ

ξ φ ξ ξ φ ξ φ+ + =∫ ∫  

 
In Eq. (10) the functions 1( , )f sξ and 2 ( , )f sξ  are expressed by the following relations: 
 

[ ]
1

2

( , ) ( ) ( ) ( )
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( , ) ( ) 1 ( )
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S
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f s m s s K s
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 ′= − +

 

 

In which
( )

( )

2

2
(1)

S
Mm

S
Mm S

LM

LM K

ω
β

ω
=

−
 is applied.  

 
The functions (11) are used to calculatethevibration frequencies S

Mmω but, the first 
vibration frequency of shear beam with mass per unit length and lumped mass at free end

1

S
Mmω can be also calculated by combination of the vibration frequencies

1

S
mω  and 

1 M
Sω

according to Dunkerley’s theorem. Dunkerley’s theorem is presented in section 11. 
1

S
mω  is 

the first vibration frequency of shear beam with mass per unit length (section 3) and
1 M
Sω  is 

the first vibration frequency of shear beam with lumped mass when mass per unit length of 
the beam is neglected.By setting ( ) 0m s = in relations (11)we obtain the relations which can 
be used to calculate M

Sω . It should be noted that a shear beam with lumped mass at free end 
and without mass per unit length vibrates as a single-degree of freedom system; therefore it 
only has one vibration frequency. 

 
 

5. VIBRATION FREQUENCY OF BENDING BEAM B
mω  

 
Neglecting damping terms, the governing differential equation for free vibration of a non-
prismatic bending beam (Bernoulli beam) is given by [21]:  
 

2 2 2

2 2 2( ) ( , ) ( ) ( , ) 0 (12)BK x x t m x x t
x x t

ϑ ϑ
 ∂ ∂ ∂

+ = 
∂ ∂ ∂  

 

 
In which ( ) ( )BK x EI x=  is bending stiffness function which depends on both young’s 
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modulus E and the inertial moment of cross-sectional area ( )I x . ( )m x and ( , )x tϑ  are the mass 
per unit length and transverse displacement, respectively. Saffari et al. [9] have solved the 
governing differential equation for free vibration of cantilever bending beam under variable 
axial forces. Here we neglect the effects of axial forces. Therefore, ( ) 0N ξ = ( ( )N ξ is axial 
force function) is substituted into the obtained relations. This results in an integral equation 
as follows: 

 
1

1 2
0 0

( ) ( ) ( , ) ( )d ( , ) ( )d 0 (13)BK f s s s f s s s
ξ

ξ φ ξ ξ φ ξ φ+ + =∫ ∫  

 
In equation (11), functions 1( , )f sξ and 2 ( , )f sξ  are expressed by the following relations: 
 

3
1

3 2
2

( , ) ( ) ( ) 2 ( ) ( ) ( )
6 (14)

( , ) ( ) ( )
6 2

B Bf s s K s K s s m s

f s m s sm s

λξ ξ ξ

λ λξ ξ ξ

 ′′ ′= − − − −

 = −


 

 
In which 2 4( )B

m Lλ ω= and B
mω is the vibration frequency of bending beam with mass per 

unitlength ( )m ξ . 
 
 

6. VIBRATION FREQUENCY OF BENDING BEAM WITH A LUMPED MASS 
AT FREE END B

Mmω  
 

In this section, it is assumed that there is a lumped mass at free end of the cantilever bending 
beam. The rotational inertia effects and weight of lumped mass have been neglected. Saffari 
et al. [9] have solved the governing differential equation of bending beam with lumped mass 
at free end. By setting ( ) 0N ξ =  in the obtained relations, the following integral equation is 
obtained: 
 

1

1 2
0 0

( ) ( ) ( , ) ( )d ( , ) ( )d 0 (15)BK f s s s f s s s
ξ

ξ φ ξ ξ φ ξ φ+ + =∫ ∫  

 
In which the functions 1( , )f sξ and 2 ( , )f sξ  can be stated as follows: 
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Where: 
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In which 2 4( )B

Mm Lλ ω= and B
Mmω is the vibration frequency of bending beam with lumped 

mass and M is the lumped mass at free end of the beam. The relations (16) can be used to 
calculate the vibration frequencies B

Mmω but, the first vibration frequency of the bending 
beam with mass per unit length and lumped mass at free end

1

B
Mmω can be calculated by 

another method. We can combine the vibration frequencies
1

B
mω  and 

1 M
Bω according to 

Dunkerley’s theoremand calculate 
1

B
Mmω . Dunkerley’s theorem is presented in section 11. 

1

B
mω  is the first vibration frequency ofbending beam with mass per unit length (section 5) 

and
1 M
Bω  is the first vibration frequency of the bending beam with lumped mass when mass 

per unit length of the beam is neglected. By setting ( ) 0m ξ = in relations (16-18) we obtain 
the relations which can be used to calculate M

Bω . It should be noted that a bending beam with 
lumped mass at free end and without mass per unit length vibrates as a single-degree of 
freedom system; therefore it only has one vibration frequency. 

 
 

7. TRANSFORMATION OF THE INTEGRAL EQUATIONS OBTAINED INTO 
THE SYSTEM OF LINEAR ALGEBRAIC EQUATIONS 

 
In the preceding sections, for shear and bending beams, we have converted the governing 
partial differential equations to the corresponding integral equations of the weak form. For 
integral equations (7-10-13-15), many existing techniques may be employed to determine 
the numerical solution or the approximate solution. In this paper, it is sufficient to determine 
characteristic values of the resulting integral equation, which is related to natural frequencies 
of free vibration of beam. Here we expand ( )φ ξ as following power series: 
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0

( ) (19)
R

r
r

r

cφ ξ ξ
=

=∑  

 
Where rc  are unknown coefficients and R is a given positive integer, which is adopted 

such that the accuracy of the results is sustained. Introducing Eq. (19) into integral equations 
obtained before leads to: 

 
1

1 2
0 0 0

( ) ( , ) d ( , ) d 0 (20)
R

r r r
S r

r

K f s s s f s s s c
ξ

ξ ξ ξ ξ
=

 
 + + =
  

∑ ∫ ∫  

 
The function ( )BK ξ  replaces ( )SK ξ when shear vibration is investigated. Both sides of 

(20) are multiplied by mξ and integrated subsequently with respect to ξ between 0  and1. This 
results in a system of linear algebraic equations in rc : 

 

[ ]1 2
0

( , ) ( , ) ( , ) 0 0,1,2,..., (21)
R

r
r

G m r F m r F m r c m R
=

+ + = =∑  

 
In which functions ( , )G m r , 1( , )F m r and 2 ( , )F m r are expressed as follows: 
 

1

0
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1 1
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ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ
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∫

∫ ∫

∫ ∫

 

 
The system of linear algebraic Eq. (21) may be expressed in matrix notations as follows: 
 

[ ] [ ] [ ]( 1) ( 1) ( 1) 1 ( 1) 10 (23)R R R RA C
+ × + + × + ×

=  

 
In which [ ]A and [ ]Tc are coefficients matrix and unknowns vector transpose, respectively. 

In order to obtain the circular natural frequencies of the beam, functions 1( , )f sξ  and 2 ( , )f sξ
are first obtained. Introducing these functions into (22), the functions ( , )G m r , 1( , )F m r and 

2 ( , )F m r  associated with the coefficients of matrix [A] are obtained next. The unknown 
parameter in the coefficients matrix [A] is therefore the circular natural frequency of the 
beam. [ ] 0c =  is a trivial solution for the resulting system of equations introduced in (21).The 
natural frequencies are determined through calculation of a non-trivial solution for resulting 
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system of equations. To achieve this, the determinant of the coefficients matrix of the system 
has to be vanished. Accordingly, a frequency equation in ω  (which is a polynomial function 
of the order 2( 1)R + ) is introduced. Given the fact that the mode shape function is 
approximated by the power series (19), the results’ accuracy are improved if more number 
of the series sentences are taken into account.  

 
 

8. VIBRATION FREQUENCY OF TIMOSHENKO BEAM T
mω  

 
Timoshenko beam equation governs on the vibration behavior of structures that have lateral 
load-resisting system with shear-bending stiffness (e.g. wall-frame structures). Timoshenko 
beam equation considers the bending and shear deformations along with the rotational 
inertia effects. Taking the effect of shear deformation and rotational inertia into account, the 
governing differential equations for free vibration of non-prismatic Timoshenko beams are 
introduced as follows [21]: 
 

2

2

2
2

2

( ) ( , ) ( , ) ( ) ( , ) 0 (24 )

( ) ( , ) ( ) ( , ) ( , ) ( ) ( ) ( , ) 0 (24 )

kA x G x t x t m x x t a
x x t

D x x t kA x G x t x t m x r x x t b
x x x t

θ ϑ ϑ

θ θ ϑ θ

  ∂ ∂ ∂ − + = −   ∂ ∂ ∂   

∂ ∂ ∂ ∂    − − − = −   ∂ ∂ ∂ ∂   

 

 
In which ( ), ( ), ( ), ( ), ( , ), ( , ),A x r x D x m x x t x t Gϑ α and k  are the cross sectional area, the radius 

of gyration ( )2 ( )
( )

I x
r x

A x
= , the bending stiffness ( ) ( )x EI xD = , the mass per unit length, the 

transverse displacement ofthe beam, the rigid rotation ofthe beam section, the modulus of 
elasticity in shear and the shear correction factor.Mohammadnejad et al [8] have solved 
equations (24). We here use their obtained results to calculate T

mω . The functions 1( , , )f s rξ
and 2 ( , , )f s rξ have been calculated as follows: 

 
1

'
1

'
'' '

2 2
2 1

2 2( , , ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )
2 2

( ) 2( ) ( )( ) ( )( ) 2 ( ) (25)
2

( , , ) ( , ) ( ) ( )
2

r

s

r

r r

L Lf s r s R s G s s LD s G s s LD s G s m z z dz

R s s D s s R s s D s s

Af s r h s r B m s s C m s s

λξ ξ ξ ξ

ξ ξ ξ

ξ ξ ξ ξ

   = − + − − − +   

   + − − + − + − − 

   

 = − + +



∫

 
The vibration frequencies of Timoshenko beam with mass per unit length and lumped 

mass at free end T
Mmω are calculated by combination of the vibration frequencies B

Mmω  and 
S
Mmω according to Foppl theory. Foppl theory is presented in section 11. 
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9. MODE SHAPE FUNCTIONS 
 

After calculation of the vibration frequencies according to presented approach, we can 
calculate the mode shape functions of the vibration. Given the fact that the mode shape 
function is approximated by the following power series: 
 

2
0 1 2

0

( ) ..... (26)
R

r R
r R

r

c c c c cφ ξ ξ ξ ξ ξ
=

= = + + + +∑  

 
The mode shape function of thi mode ( )iφ ξ corresponding to vibration frequency of thi

mode iω is obtained as follows:  
 

( ) ( ) ( ) ( ) ( )2
0 1 2

0

( ) .... (27)
R

r R
i r Ri i i ii

r

c c c c cφ ξ ξ ξ ξ ξ
=

= = + + + +∑  

 
In which ( )r iC  (r=0,1,…R) are the unknown coefficients of the power series 

corresponding to thi mode. To calculate the mode shape function ( )iφ ξ , the unknown 
coefficients of power series ( )r iC should be calculated independently. System of linear 
algebraic equations (23) has the matrix form ( 1, 1) ( 1,1)[ ] [ ] 0R R r RA C+ + + = . The vibration frequency 
ω  is the unknown parameter in the coefficients matrix ( 1, 1)[ ] R RA + + . By substitution of the 
vibration frequency of thi mode iω into the coefficients matrix ( 1, 1)[ ] R RA + + , the system of 
linear algebraic equations (23) takes the following form: 

 
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )

( 1, 1)

1,1 1,2 1,R 1 0

12,1 2,2 2, 1
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1,1 1,2 1,R 1

A A .......... A

A A ........... A
[A ] [ ] 0 (28)

A A ........... A

0
iR R

ii i i

R ii i i

i r R

R iR R Ri i i

C

C

C or

C

+ +

+

+

+

+ + + +

   
   
   
   

=    
   
   
   
    

=   
   

 
In which ( 1, 1)[A ] R Ri + + and ( 1,1)[ ]

ir RC + are the coefficients matrix and unknowns vector 
corresponding to thi mode, respectively. In order to solve the system of linear algebraic 
equations (28) and calculate the unknowns vector ( 1,1)[ ]

ir RC + , we adopt ( )0 1iC =  and substitute 
it into the system of linear algebraic equations (28). The result is as follows:  

 
( 1, ) ( 1,1)( ,1)

[ ] [ ] [ ] (29)
iR Ri r i RR

A C B+ +=  

 
In which: 
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( )
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1
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2
( 1,1)( ,1)
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A
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A

i

i

i
i

i
r i iRR
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i

C

C
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C

+

+

 −
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The coefficientsmatrix

( 1, )[ ] R RiA +
can be calculated by elimination of the first column of 

coefficients matrix ( 1, 1)[ ] R RiA + + as: 
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( 1, )

1,2 1,3 1,R 1

2,2 2,3 2, 1

1,2 1,3 1,R 1

A A .......... A

A A ........... A
[ ] (31)

A A ........... A

R R

i i i

Ri i i

i

R R Ri i i

A +

+

+

+ + + +

 
 
 
 

= 
 
 
 
  

   

   

 

 
Solving the system of linear algebraic equations (29) results the unknown coefficients of 

power series ( )r iC  (r=1,…R). By substitution of the coefficients ( )r iC into the power series 

(27), the mode shape function corresponding to thi mode is calculated.  
 
 

10. INTERNAL FORCES 
 

In the response modal analysis of buildings subjected to earthquakes an equivalent load is 
determined in each mode of vibration (Fig. 3). For in-plane vibration, when the ground 
motion is in the plane of the vibration, the horizontal force of thi mode is [22]: 
 

1

0 0
1

2 2

0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) (32)

( ) ( ) ( ) ( )
i i

H

i i

i i Ai i i AiH

m x x dx m d

f x m x x S or f m S

m x x dx m d

φ ξ φ ξ ξ

φ ξ ξ φ ξ

φ ξ φ ξ ξ

= =
∫ ∫

∫ ∫
 

 
Where AiS is the spectral acceleration of thi mode (which depends on the period of 

vibration, damping and the ground peak acceleration), and H  is the height of structure. The 
shear force acting on the cross section of the structure in thi mode is obtained by integrating 
Eq. (32) between x and H (or ξ and1) (Fig. 3). Integration of Eq. (42) gives: 
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1

( ) ( ) ( ) ( ) (33)
H

i i i i
x

V x f x dx or V H f d
ξ

ξ ξ ξ= =∫ ∫  

 
The total horizontal load, which is identical to the base shear force iV , is obtained by 

setting 0x = in Eq. (33).The base overturning moment can be calculated from the horizontal 
load Eq. (32) as follows (Fig. 3): 

 
1

2

0 0

( ) ( ) (34)
H

i i i iM xf x dx or M H f dξ ξ ξ= =∫ ∫  

 

 
Figure 3. Equivalent lateral load ( )if x  , shear force acting on the cross section of the structure

( )iV x , base shear force iV and base overturning moment iM  
 
 

11. COMBINATION OF THE VIBRATION FREQUENCIES 
 

11.1 Foppl and Southwell theories 
According to replacement beam theory, the global and local bending stiffness as well as 
shear stiffness of original structure are calculated and then are substituted into relations 
developed in preceding sections. The result is the frequencies of global and local bending 
beams, shear beam and Timoshenko beam. These frequencies can be combined according to 
“Foppl” and “Southwell” theories [11,12]. “Foppl” theory is as follows: 
 

( ) ( ) ( )0
2 2 2

1 1 1 (35)
T B S
m mmω ωω

= +  

 
Therefore, if the original structure has only global bending and shear stiffness, it vibrates 

as an equivalent Timoshenko beam and its vibration frequencies can be calculated using 
“Foppl” theory or Timoshenko beam equation (section 8). Furthermore, if the original 
structure has local bending stiffness also,its vibration frequencies (ω ), can be calculated by 
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combination of the vibration frequencies of Timoshenko beam ( )T
mω and vibration 

frequencies of the beam with local bending stiffness ( 1B
mω ) using“Southwell” theory: 

 

( ) ( )1
2 22 (36)BT

m mω ω ω= +  
 

11.2 Dunkerley’s theorem 
When there is a lumped mass at free end of the beam, we can use obtained relations in 
sections 4 and 6 to calculate the vibration frequencies of the beam. But, first vibration 
frequency of such beam can also be calculated by Dunkerley’s theorem. Dunkerley’s 
theorem is expressed as [12]: 
 

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

1 1 1

(37)
1 1 1

M M

M M

B B B
m m

S S S
m m

ω

ω

ω

ω

ω

ω

 = +


 = +



 

 
S
mω , S

Mω , B
mω  and B

Mω  can be calculated by relations presented in sections 3, 4, 5 and 6, 
respectively. We can also use “Foppl” theory, to calculate vibration frequency of 
Timoshenko beam with lumped mass at free end T

Mmω  by combination of 0B
Mmω and S

Mmω as 
follows: 

 

( ) ( ) ( )0
2 2 2

1 1 1 (38)
T B S
Mm MmMmω ωω

= +  

 
Table. 1summarizes all various vibration frequencies which can be calculated using 

presented relations in this paper. 
 

Table 1: all various vibration frequencies which can be calculated using presented relations in 
this paper 

S
mω  Section 3 T

mω  Section 8 
S S
Mm Mandω ω  Section 4 B

Mmω  Section 11 
B
mω  Section 5 T

Mmω  Section 11 
B B
Mm Mandω ω  Section 6 S

Mmω  Section 11 
 
 

12.REPLACEMENT BEAM STIFFNESS 
 

We consider n lateral load resisting subsystems for original structure. The thk  element has 
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stiffnesses 0kD , kS  and 1kD . The stiffnesses of the replacement beam which replaces the n  
lateral load-resisting subsystems are denoted by 0D , S and 1D . These parameters are 
calculated as follows: 
 

0

3 2
2

0 122

2 2 3

1, , (39)B BS D D A
C CC C
B l B

π= = = −
−

 

 
In which: 
 

22 2
0 0 0 0 0

12 2 32 201 1 10 02 2 20 0 0

, ,
1 1 1

(40)
n n n

k k k k k
k

k kkk k kk k
k k k

D D D D D
A D B C

S SD D D
l S l S l S

π π
π π π= = =

 
 

  = + = × = ×          + + +             

∑ ∑ ∑

 
Please seePotzta and Kollar [13] for details of calculations of 0kD , kS  and 

1 1, 2, ... )(k k nD =  
 
 

13. NUMERICAL EXAMPLES 
 

Three numerical examples are presented in this section to show applicability, efficiency, and 
accuracy of the presented method. In the presented examples, the vibration frequencies of 
tall structures with various lateral load-resisting systems are calculated. 
 
13.1 Tall structure with wall-frame lateral load-resisting system 
In this example, the first three vibration frequencies of a 30-story building with wall-frame 
lateral load-resisting system are calculated (Fig. 4). The building is assumed to have variable 
properties along the height. The results are compared to those obtained using available finite 
elementsoftware. Elastic modulus ( E ), shear modulus(G ), story height( h ), building height(
L ) and mass per unit length ( ( )m ξ ) are given as: 
 

7
22.5 10 , 0.4 , 3 , 30 3 90 , ( ) 300 (41)KN ton

m m mm
E G E h L m ξ= × = = = × = =

 
The properties of lateral load-resisting system of building are proposed in Table 2. The 

global bending stiffness( 0D ), local bending stiffness( 1D ) and shear stiffness( S ) of 
replacement beam for first three modes are proposed in Table 3.  
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Figure 4. symmetrical plan of the example 13.1 

 
Table 2: The lateral load-resisting system properties of building 

Story Number 1 5−  5 10−  10 15−  15 25−  25 30−  Unit  
Inertial moment of frame fI  5.208  3.417  2.133 1.251 0.675  3 410 m−×  

Cross sectional area of frame fA  0.25  0.2025 0.16  0.1225 0.09  2m  
Shear walls width wB  0.4  0.35  0.3  0.25  0.2  m  

 
Table 3: Replacement stiffnesses of tall structure 

Unit 3i =  2i =  1i =  mode 
 1ξ =  0ξ =  1ξ =  0ξ =  1ξ =  0ξ =  ξ  

8
10

2
KN m

×

−
 1.1516  9.9274  4.2681 25.741 10.785  30.044  0D  

7
10

2
KN m

×

−
 7.0552  14.857  9.3266  18.73  10.498  21.001 1D  

5
10 KN×  4.876  15.236  1.6749  10.646  1.2746  9.805  S  

 
Stiffness functions of the building are assumed as: 
 

4 2
( )0 0 0

4 2
( )1 1 1

2
( )2 2

( ) ( )

( ) ( ) (42)

( ) ( )

KN m

KN m

KN

D
D
S

ξ α β ξ

ξ α β ξ

ξ α β ξ

−

−

 = +


= +
 = +

 

 
In which iα and iβ  ( 0,1, 2i = ) are unknown constants parameters which are determined 

through values presented in Table 3. The rotational inertia of replacement beam is calculated 
as follows: 
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( ) ( )( ) (43)
( ) ( )

I kG Dr
A E S
ξ ξξ
ξ ξ

= = ×  

 
In which k is the correction factor of shear force. In this example 1k =  is adopted. This 

building has shear-bending stiffness, therefore it vibrates as a non-prismatic Timoshenko 
beam with shear and global bending stiffness which is supported laterally by a beam with 
local bending stiffness. The vibration frequencies of equivalent Timoshenko beam are 
calculated by two methods: 1. Solving the governing differential equation for vibration of 
Timoshenko beam, 2. Solving the governing differential equations for vibration of bending 
and shear beams and combination of their vibration frequencies using “Foppl” theory. By 
substituting functions 0 ( )D ξ and ( )S ξ into relations obtained for Timoshenko beam, the first 
three vibration frequencies of Timoshenko beam T

mω  are calculated. The results are 
presented in Table 4. Similarly, the first three vibration frequencies of bending beam and 
shear beam 0 ,B S

m mω ω  are calculated by substituting functions 0 ( )D ξ and ( )S ξ  intorelations 
obtained for them. According to “Foppl” theory, the first three vibration frequencies of 
equivalent Timoshenko beam are calculated by combination of vibration frequencies of 
bending and shear beams. These results are also proposed in Table 4. 

 
Table 4: the first three vibration frequencies of equivalent Timoshenko beam by two methods 

3i =  2i =  1i =  mode  
5.282 2.3587 0.585 solving Timoshenko beam equation 

T
mω ( )sec

rad  4.1759 1.9565 0.6493 combination of bending and shear 
vibration frequencies 

 
By substitution of 1( )D ξ into relations obtained for bending beam, the first three vibration 

frequencies corresponding to local bending stiffness are determined ( 1B
mω ). The results are 

proposed in Table 5. Finally, we use “Southwell” theory to combine T
mω  and 1B

mω . The result 
is the vibration frequencies of original structureω .The results are proposed in Table 6 and 
compared with those obtained using 2000SAP − software.  

 
Table 5: The first three vibration frequencies of bending beam with local bending stiffness. 

3i =  2i =  1i =  mode 

4.524 1.8709 0.3399  1B
mω ( sec

rad ) 

 
Table 6: The first three vibration frequencies of original structure 

3i =  2i =  1i =  mode  

6.9546  3.011 0.6766  Combination of T
mω (Timoshenko bam equation) and 1B

mω  
ω ( )sec

rad  6.1567  2.7071 0.7329  Combination of 0B
mω , S

mω and 1B
mω  

6.1773 2.6424 0.6979  SAP-2000 
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The presented approach can be used to determine the vibration frequencies of tall buildings 
with constant properties along the height. To achieve this, the properties of the replacement 
beam such as stiffness and mass per unit length are assumed to be constant along the height. 
We have calculated the first vibration frequency of bending and shear beams of the 
replacement beam presented in this example while it is assumed that the beam has constant 
stiffness that is identical to stiffness at 0ξ = . The results are proposed in Table 7. 

 
Table 7: the first vibration frequency of bending and shear beams having constant properties 

along the height 
 0B

mω  1B
mω  S

mω  
Presented approach 1.3736  0.3631  0.997793  

Tarjan and Kollar[12] 1.3752  0.3635  0.997793  
ETABS 1.3736  0.3635  0.9951  

 
13.2 Tall structure with frame and coupled shear walls systems 
The numerical example proposed by Kaviani et. al [11] is investigated and the vibration 
frequency of building is calculated using presented approach in this paper. A 30-story 
building with a symmetrical plan is considered (Fig. 5). The story height is 3.05h m= . The 
lateral load-resisting systems of the building aretwo shear walls in the y-direction and a 
combination of a frame and two coupled shear walls in the z-direction. The vibration 
frequency of building in the z-direction is calculated in this example. 
 

 
Figure 5. Symmetrical plan of the example 13.2 

 
Elastic modulus ( E ), shear modulus (G ), building height ( L ) and mass per unit length 

are given as: 
 

7
2

2

1.95 10

0.4 (44)
3.058 10

30 3.05 91.5

KN

m

ton
m

m

E

G E

m

L

 = ×

 =

 = ×


= × =
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The stiffness functions of replacement beam for first mode are calculated as: 
 

4 2
( )0

4 2
( )1

2
( )

( ) 2220.27( 14.347)

( ) 62.079( 33.64) (45)

( ) 699.71( 7.41)

KN m

KN m

KN

D
D
S

ξ ξ

ξ ξ

ξ ξ

−

−

 = −


= −
 = −

 

 
The first vibration frequency of equivalent Timoshenko beam is calculated and proposed 

in Table 8. The first vibration frequency of original structure is calculated and compared to 
the one given by ETABS and Kaviani et al.[11]. The results are proposed in Table 9. 

 
Table 8: The first vibration frequency of equivalent Timoshenko beam 

combination of bending and shear vibration 
frequencies 

solving Timoshenko beam 
equation  

0.1430  0.1674 ( )
sec
radT

mω  

 
Table 9: The first vibration frequency of original structure 

ETABS  Kaviani et 
al. [11] 

Combination of ,S
mω 0B

mω  

and 1B
mω  

Combination of T
mω (Timoshenko 

beam equation) and 1B
mω  

mode 

0.2719  0.2630  0.2554  0.2698 ( )
sec
radω  

 
4B13.3 Tall structure with lumped mass at free end 
The vibration frequencies of a tall structure with lumped mass at free end are calculated in 
this example. Height of the building and lumped mass at its free end are 50 m and 10000 
Ton, respectively. The distribution of the global bending stiffness 0D ,shear stiffness S and 
mass per unit length m along the height of the structure are as follows: 

 

29 4
0

6 2

2

0 1

, 0 1

0 1

( ) 175 10 (2 ) ,

( ) 6730 10 (2 ) (46)

( ) 2039.42(2 ) ,

KN m

KN

D
S

Tonm
m

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

− 〈 〈

〈 〈

〈 〈


= × −


= × −


 = −


 

 
The structure has global bending and shear stiffness only, therefore it can be modeled by 

an equivalent Timoshenko beam with a lumped mass at free end. The first five vibration 
frequencies for bending and shear beams with lumped mass at free end 0 ,B S

MmMmω ω are 
calculated and proposed in Table 10. By combination of these frequencies according to 

“Foppl” theory, the vibration frequencies of equivalent Timoshenko beam
T
Mmω  are 

calculated. The results are presented in Table 11 and compared to results obtained from 
SAP-2000.  
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Table 10: The first five vibration frequencies of bending and shear beams with lumped mass at 
free end 

 Mode number 1 2  3  4  5  

0B
Mmω  

Presented 
approach 29.746  125.495  318.873  615.27  1016.94  

SAP-2000 results 29.745  125.48  318.82  615.52  1016.7  
 Mode number 1 2  3  4  5  

S
Mmω  

Presented 
approach 68.99  163.397  266.211 372.713  481.481 

SAP-2000 results 68.99  163.37  266.14  372.53  481.09  
 

Table 11: The first five vibration frequencies of equivalent Timoshenko beam with lumped mass 
at free end 

 Mode number 1 2  3  4  5  
T
Mmω  

Presented approach 27.315  99.5  204  318  435  
SAP-2000 results 27.47  94.35  193  305  422  

 
According to Dunkerley’s Theorem, we combine 0

1
B
mω and 0

1
B
Mω to calculate 0

1
B
Mmω . Also, using 

this theory, we combine 1
S
mω and 1

S
Mω to calculate 1

S
Mmω . Lastly, using “Foppl” theory, we 

combine 0
1

B
Mmω and 1

S
Mmω to calculate 1

T
Mmω . The results are presented in Tables 12 and 13. 

 
Table 12: The first vibration frequency of bending and shear beams 

0
1
B
mω  

Presented approach 34.275  
0

1
B
Mω  

Presented approach 57.962  
SAP-2000 result 34.272  SAP-2000 result 57.966  

1
S
mω  

Presented approach 73.712  
1
S
Mω  

Presented approach 164.083  

SAP-2000 result 73.708  SAP-2000 result 164.08  
 

Table 13: The first vibration frequency of bendingand shear beams with lumped mass calculated 
using Dunkerley’s Theorem and the first vibration frequency of equivalent Timoshenko beam 

with lumped mass 

0
1
B
Mmω  

Presented approach 29.502  

1
T
Mmω  

Presented 
approach 27.015  

SAP-2000 result 29.745  

1
S
Mmω  

Presented approach 67.238  
SAP-2000 result 27.47  

SAP-2000 result 68.99  
 
For first five modes of the bending vibration with lumped mass at free end, the mode 

shapes, the distribution of horizontal loadsand shear forces are illustrated in Figs. 6-8, 
respectively. The maximum of the shear force arises at the bottom of the cantilever, but in 
the second mode there is another local maximum. This local maximum is calculated by 
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evaluating the shear force at 0.83x H= . Tarjan andKollar [12] found location of this local 
maximum to be between 0.6H  and 0.9H . 

 

 
Figure 6. The first five mode shapes of the bending vibration with lumped mass 

 

 
Figure 7. Equivalent lateral loads for first five modes of the bending vibration 

 

 
Figure 8. Shear forces acting on the cross section of the beam for first five modes 
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14. CONCLUSION 
 

The vibration frequencies of tall structures with variable properties and lumped mass at free 
end are analytically and numerically investigated. According to replacement beam theory, 
the tall structure with various lateral load-resisting systems is modeled by an equivalent 
cantilever Timoshenko beam with global bending and shear stiffness which is supported 
laterally by a beam with local bending stiffness. The governing differential equations for 
free vibration of non-prismatic bending and shear beams as well as Timoshenko beam are 
solved and corresponding vibration frequencies are calculated. The vibration frequencies of 
original structure are calculated by combination of the obtained vibration frequencies. After 
calculation of the vibration frequencies, the presented analytical method is used to calculate 
the mode shapes, equivalent horizontal forces, shear forces and base overturning moment of 
the structure. “Foppl”, “Southwell” and “Dunkerley” theories are used to combine the 
vibration frequencies. The accuracy of the presented approach is verified by three numerical 
examples and compared to other references. 
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