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ABSTRACT 
 

The idea of expansion has a long history in mathematics and structural mechanics. In 

mathematics, Whitehead [1] used an expansion process for the characterization of 

topological spaces. In structural mechanics, Müller Breslau and Henneberg [2,3] employed 

simple expansion for the classification of trusses. In this paper, the latter idea is generalized 

and applied to the calculation of degree of statical indeterminacy (DSI) and degree of 

kinematical indeterminacy (DKI) of different types of skeletal structures, such as rigid-

jointed planar and space frames, pin-jointed planar trusses and ball-jointed space trusses. 

Such a calculation not only simplifies the evaluation of DSI and DKI, but it also provides an 

insight to the problem of the formation of sparse statical and kinematical basis matrices 

required for efficient analysis of structures by the force method and displacement approach, 

respectively. 

 

Keywords: Expansion; union intersection theorem; graph theory; structures; degree of statical 

indeterminacy; degree of kinematical indeterminacy; force method; displacement method. 

 

 

1. INTRODUCTION 
 

In the analysis of skeletal structures, three different properties are encountered, which can be 

classified as topological, geometrical and material. Separate study of these properties results 

in a considerable simplification in the analysis and leads to a clear understanding of the 

structural behaviour. This paper is confined to partial study of the topological properties of 

skeletal structures, since both displacement and force methods require such a study at the 

beginning of the analysis. The number of equations to be solved in the two methods may 

differ widely for the same structure. This number depends on the size of flexibility and 

stiffness matrices, which are the same as the DSI and the DKI of a structure, respectively. 

Obviously, the method which leads to the required results with the least amount of effort, 
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should be used for the analysis of a given structure. Thus, the comparison of the numbers of 

DSI and DKI may be the main deciding criterion for selecting the method of analysis. 

For determining the DSI and DKI of structures, numerous formulae, depending on the 

kinds of member or types of joint, have been given, e.g. Refs. [4,5]. The use of these 

classical formulae, in general, requires counting the number of members and joints, which 

becomes a tedious process for multi-member and/or complex pattern structures. This 

counting process provides no additional information about their connectivity properties. 

Henderson and Bickley [6] related the DSI of a rigid-jointed frame to the first Betti 

number (cyclomatic number) of its graph model S. This was an important achievement, 

since a topological invariant of a graph was related to an essential mechanical property of 

the corresponding structure. Generalizing the Betti´s number to a linear function and using 

an expansion process, Kaveh developed a general method for determining the DSI and DKI 

of all types of skeletal structures [7]. Special methods have also been developed to transform 

the topological properties of space structures to those of their planar drawings to simplify the 

calculation of their DSI, Ref. [8-10]. 

In this paper, the latter idea is generalized and applied to the calculation of DSI and DKI 

of different types of structures, such as rigid-jointed planar and space frames, pin-jointed 

planar trusses and ball-jointed space trusses. Such a calculation not only simplifies the 

evaluation of DSI and DKI, but it also provides an insight to the problem of forming static 

and kinematic basis leading to highly sparse structural matrices. 

It should be noted that various methods for determining the degree of static 

indeterminacy of structures are a by-product of the general methods developed here. The 

method of expansion and its control at each step, using the intersection theorem of this 

paper, provides a powerful tool for further studies in the field of structural analysis. 

 

 

2. BASIC DEFINITIONS AND GRAPH MODELS OF STRUCTURES 
 

2.1 Basic definitions from graph theory 

A graph S consists of a set N(S) of elements called nodes (vertices or points) and a set M(S) 

of elements called members (edges or arcs) together with a relation of incidence which 

associated with each member a pair of nodes, called its ends. The connectivity properties of 

a skeletal structure can simply be transformed into that of a graph S; the joints and the 

members of the structure correspond to the nodes and the edges of S, respectively. 

Two or more members joining the same pair of nodes are known as multiple members, 

and a member joining a node to itself is called a loop. A graph with no loops and multiple 

members is called a simple graph. If N(S) and M(S) are countable sets, then the 

corresponding graph S is finite. A graph Si is a subgraph of S if N(Si)  N(S), M(Si)  

M(S), and each member of Si has the same end nodes as in S. A path of S is a finite 

sequence Pi = {n0, m1, n1, ..., mp, np} whose terms are alternately distinct nodes ni and 

distinct members mi of S for 1  i  p, and ni-1 and ni are the two ends of mi.  

Two nodes ni and ni are said to be connected in S if there exists a path between these 

nodes. A graph S is called connected if all pairs of its nodes are connected. A component of 

S is a maximal connected subgraph, i.e. it is not a subgraph of any other connected subgraph 

of S. A graph is 2-connected if it remains connected when one of its member is removed. A 
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cycle is a path (n0, m1, n1,..., mp, np) for which n0 = np and p  3. A tree T of S is a connected 

subgraph which contains no cycle. If a tree contains all the nodes of S it is called a spanning 

tree of S. 

 

2.2 Graph model of a structure 

The mathematical model S of a structure is considered to be a finite, connected graph. There 

is a one-to-one correspondence between the elements of the structure and the members of S. 

There is also a one-to-one correspondence between the joints and the nodes of S, except for 

the support joints. For frame structures, two different groups of modelling are considered. 

The first group is suitable for calculating the DSI and DKI of structures, and the second 

group is more appropriate for analysis. For a frame structure, all the support joints are 

identified as a datum (ground) node in the first group of model, and in the second group, all 

such joints are connected by an artificial tree. Truss structures are assumed to be supported 

in a statically determinate fashion, and the effect of additional supports can easily be 

included in calculating the DSI and DKI of the corresponding structures. 

 

 

3. EXPANSION PROCESS FOR DETERMINING DSI OF A STRUCTURE 
 

The degree of kinematic indeterminacy of a structure is the number of independent 

displacement components (translations and rotations) required for describing a general state 

of deformation of the structure. The degree of kinematic indeterminacy is also referred to as 

the total degrees of freedom of the structure. On the other hand, the degree of static 

indeterminacy (redundancy) of a structure is the number of independent force components 

(forces and moments) required for describing a general equilibrium state of the structure. 

The DSI of a structure can be obtained by subtracting the number of independent 

equilibrium equations from the number of its unknown forces. 

 

3.1 Classical formulae 

Formulae for calculating the DSI and DKI of various skeletal structures can be found in 

textbooks on structural mechanics, e.g. the DSI and DKI of a planar truss, denoted by (S) 

and (S), respectively, can be calculated from, 

 

(S) = M(S)  2N(S) + 3, (1) 

(S) = 2N(S)  3, (2) 

 

where S is supported in a statically determinate fashion (internal indeterminacy). For extra 

supports (external indeterminacy), (S) and (S) should be adjusted 

Similar formulae are available for space trusses as: 

 

(S) = M(S)  3N(S) + 6. (3) 

(S) = 3N(S)  6, (4) 

 

For planar and space frames, the classical formulae are given as: 
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(S) =  [M(S)  N(S) + 1], (5) 

(S) = [N(S)  1], (6) 

 

where all supports are modelled as a datum (ground) node, and  = 3 or 6 for planar and 

space frames, respectively. 

All these formulae require counting a great number of members and nodes, which makes 

their application impractical for multi-member and complex pattern structures. These 

numbers provide only a limited amount of information about the connectivity properties of 

structures. In order to obtain additional information, the methods developed in the following 

sections will be utilised: 

 

3.2 A unifying function 

All the existing formulae for determining the DKI and DSI have a common feature, which is 

their linearity with respect to M(S) and N(S). Therefore, a general unifying function can be 

considered as: 

 

ν(S) = aM(S) + bN(S) + cν0(S), (7) 

 

where M(S), N(S) and ν0(S) are the numbers of members, nodes and components of S, 

respectively. Here, ν0(S) is the same zero Betti number b0(S) of the graph model. The 

coefficients a, b and c are integer numbers depending on both the type of the corresponding 

structure and the property that the function is expected to represent. For example, ν(S) with 

appropriate values for a, b and c may describe the DKI or DSI of certain types of skeletal 

structures, Table 1. For a = 1, b = - 1 and c = 1, ν(S) becomes the first Betti number b1(S) of S. 

 
Table 1: The coefficients of classical formulae for different types of skeletal structures. 

Type of structure ν(S) a b c 

Plane frames 
DKI 

DSI 

0 

+3 

+3 

3 

3 

+3 

Space frames 
DKI 

DSI 

0 

+6 

+6 

6 

6 

+6 

Plane trusses 
DKI 

DSI 

0 

+1 

+2 

2 

3 

+3 

Space trusses 
DKI 

DSI 

0 

+1 

+3 

3 

6 

+6 

 

The above table can be extended by considering other skeletal structures and higher 

dimensional finite elements. The functions can also be representative of other properties of 

different non-structural models. 

 

3.3 An expansion process 

An expansion process, in its simplest form, has been used by Müller-Breslau [2] for re-

forming structural models, such as simple planar and space trusses. In his expansion 

process, the properties of typical subgraphs, selected in each step to be joined to the 
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previously expanded subgraph, guarantee the determinacy of the simple truss. These 

subgraphs consist of two and three concurrent bars for planar and space trusses, 

respectively. An interesting aspect of the expanded truss model is that if the joints add in 

k steps are considered in a reverse order of expansion, the bar forces can be found with 2 

equations with 2 unknowns at a time for planar trusses and 3 equations with 3 unknowns 

for space trusses. This ordering leads to equilibrium equations of special pattern. Though 

a general truss has normally additional members, however, identifying a submodel with 

this property may provide useful information about the remaining part of the model for a 

more efficient solution of the corresponding equations. Such information may also help 

in studying the geometric stability or performing topology optimization of truss 

structures. 

The idea can be extended to other types of structure, and more general subgraphs can 

be considered for addition at each step of the expansion process. 

 

,SS...SSSS )q321
1   (8) 

 

where i

k

1i

k S S

 . We define the intersection of Sk and Sk+1 as Ak+1 = SkSk+1. 

In the above expansion process Si can be selected as a repeated module of S, a cycle, a 

planar subgraph, and a subgraph with prescribed connectivity properties. 

 

3.4 An intersection theorem 

In a general expansion process, a subgraph Si may be joined to another subgraph Sj in an 

arbitrary manner. For example, ν(Si) or ν(Sj) may have any arbitrary value and the union 

SiSj may be a connected or a disjoint subgraph. The intersection SiSj may also be 

connected or disjoint. It is important to find the properties of S1S2 having the properties of 

S1, S2 and S1S2. This enables one to control the process of the considered expansion. 

The following theorem provides a correct calculation of the properties of SiSj. In order 

to have the formula in its general form, q subgraphs are considered in place of two 

subgraphs. 

Theorem (Kaveh [7]): Let S be the union of q subgraphs S1, S2, S3, ... ,Sq with the 

following functions being defined: 

 

ν(S) = aM(S) + bN(S) +c ν0(S), 

 

ν(Si) = aM(Si) + bN(Si) + cν0(Si)          i = 1,2,...,q, 

ν(Ai) = aM(Ai) + bN(Ai) + cν0(Ai)         i = 2,3,...,q, 

 

where Ai = Si-1  Si and Si = S1S2  ... Si. Then:  

 

[ν(S)  c ν0(S)] = 



q

1i
i0i )]S(c)S([ 




q

2i
i0i )]A(c)A([  (9) 
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For proof, the interested reader may refer to Kaveh [9,10]. 

Special Case: If S and each of its subgraphs considered for expansion (Si for i = 1,...,q) 

are non-disjoint (connected), then Eq. (9) can be simplified as: 

 

ν(S) = 



q

1i
i )S(  




q

2i
i )(A , (10) 

 

where )(Ai = aM(Ai) +bN(Ai) + c. 

For calculating the DSI of a multi-member structure, one normally selects a repeated 

unit of the structure and joins these units sequentially in a connected form. Therefore, 

Eq. (10) can be applied in place of Eq. (9) to obtain the overall property of the structure. 

 
3.5 A method for determining the DSI or DKI of structures 

Let S be the union of its repeated and/or simple pattern subgraphs Si (i=1,...,q). Calculate the 

DSI of each subgraph, using the appropriate coefficients from Table 1. Now perform the 

union-intersection method with the following steps: 

Step 1: Join S1 to S2 to form S2 = S1  S2, and calculate the DSI or DKI of their 

intersection A2 = S1  S2. The value of ν(S2) can be found using Eq. (9) or Eq. (10), as 

appropriate. 

Step 2: Join S3 to S2 to obtain S3 = S2  S3, and determine the DKI (degree of kinematical 

indeterminacy) or DSI of A3 = S2  S3. Similarly to Step 1, calculate (S3). 

Step k: Subsequently join Sk+1 to Sk, calculating the DSI of Ak+1 = Sk
  Sk+1 and 

evaluating the magnitude of ν(Sk+1). 

Repeat Step k until the entire structural model i

q

1i
S S


  has been reformed and its DSI 

determined. 

In the above expansion process, the value of q depends on the properties of the 

substructures (subgraphs) which are considered for reforming S. These subgraphs have 

either simple patterns for which (Si) can easily be calculated, or the DSIs of which are 

already known. 

In the process of expansion, if an intersection Ai itself has a complex pattern, further 

refinement is also possible; i.e. the intersection can be considered as the union of simpler 

subgraphs. 

Example: Let S be the graph model of a space frame. This graph can be considered as 27 

subgraphs Si as shown in Fig. 1(a), connected to each other to form a graph i

27

1i
S S


 . The 

interfaces of Si (i=1,...,27) are shown in Fig. 1(b), in which some of the members are omitted 

for the sake of clarity. 
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(a) A subgraph Si of S.      (b) i

27

1i
S S


  without some of its members. 

Figure 1. A space structure S. 

 

The expansion process consists of joining 27 subgraphs Si one at a time. In this process, 

the selected subgraphs can have three different types of intersection, which are shown in Fig. 

2(a). In order to simplify the counting and the recognition of the types of interfaces, S is re-

formed storey by storey. For the first storey, a 33 table is used to show the types of 

intersections occurring in the process of expansion. The numbers on each box designate the 

type of intersection, Fig. 2(b). Similar boxes are used for the second storey and the third 

storey of S, Fig. 2(b). 

Thus, there exist 6 intersections of type 1
iA , 12 intersections of type 2

iA  and 8 

intersections of type 3
iA . 

 

 

Type 1- 1
iA                   Type 2- 2

iA                           Type 3- 3
iA  

(a) Three different types of intersections 

 

 
First floor                        Second floor                          Third floor 

(b) Types of intersection after the completion of each storey. 
Figure 2. Intersections and their types 
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Since each Si is a connected subgraph, and in the process of expansion, Si is kept 

connected, a simplified Eq. (9) can be employed: 

 

(S) = .)A( )S(
27

1i

27

2i
ii 

 

  

 

As previously shown: 

 

.)A( )A( )A()A(
27

20i

3
i

19

8i

2
i

7

2i

1
i

27

2i
i 



  

 

The intersections 2
iA  and 3

iA  can be decomposed as: 

 
2
iA  = 1

iA  
1
iA        and        3

iA  = 2
iA   

1
iA . 

 

The DSI of S can now be calculated as follows: 

 

(Si) = 6(12  8 + 1) = 6×5 = 30. 

 

Using Eq. (5), 

)A( 1
i  = 6(4  4 + 1) = 6, 

)A( 2
i  = 6 ×1 + 6×1  6×0 = 12, 

)A( 3
i = 6 ×2 + 6×1  6×0 = 18. 

Hence 

 

(S) = 27(30)  [6(6)+12(12)+8(18)] = 486. 

 

The expansion process becomes very efficient for structures with repeated patterns. 

Counting is reduced considerably by this method. As an example, the use of the classical 

formula for finding the DSI of S in the above example requires counting 144 members and 

64 nodes, which is a task involving possible errors. 

 

 

4. OTHER APPLICATIONS OF DIFFERENT EXPANSION PROCESSES IN 

MECHANICS 
 

Apart from finding the DSI of a structure, the expansion process provides a suitable tool for 

finding out the distribution of indeterminacy in the vicinity of the structural model. Such a 

distribution can be used in the formation of subgraphs on which S.E.Ss can be constructed. This 

also helps in designing more reliable structure. In fact a uniform distribution of indeterminacy 

make the structure more secure in the sense that if part of the structure is collapsed under an 

unexpected event, the remaining part of the model can redistribute the applied loads.  
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Expansion can also be utilized in topology optimization of truss structures where a 

preliminary structure with small number of members can simplify the optimization process. 

Such a structure can be a suitable substitute for the ground structure (originally defined as a 

clique graph) utilized in topology optimization which may contain many elements. This 

preliminary structure does not need to be statically determinate, and different criteria may be 

employed for its selection to achieve a suitable substitute for the ground structure. As an 

example, spanning all the nodes may be one criterion, or an even distribution for the degrees 

of the nodes can be another objective. 

Expansion has also been used in matrix analysis of structures or finite element methods. 

In these methods an element by element expansion is used and the overall property of the 

structure is obtained by planting the stiffness matrix of each element in time (assembling 

process). Similarly in substructuring the expansion process is carried out substructure by 

substructure. Or in finite element method the expansion is performed hyper element by 

hyper element. 

Ordering can also be considered as an expansion process during which nodal or element 

numbers are reorganised to provide a special patter for the model to simplify the solution of 

the corresponding equations (well-structured) [11-13]. 

Graph product is also an expansion process where a subgraph expanded using some rules. 

These products have found many application in structural mechanics [14-17]. This 

expansion can be multi-stage expansion when higher dimension are also considered. 

The new swift approaches expand first the regular part of the model and then add the 

remaining irregular parts. This method uses closed form solution for the regular part 

followed by a substructuring approach for completion of the remaining part of the model. 

In some applications the properties of the intersection may be unimportant. An example 

of this case is in configuration processing, where the identical connectivity of the submodels 

is sufficient for generating the configuration [18]. 

 

 

5. IDENTIFICATION METHOD 
 

This approach is also based on the union-intersection method and provides a simple means 

for finding the topological properties of a structural model S, after identifying two subgraphs 

of S. For example, consider a model as shown in Fig. 3(a). Identifying ab with cd, as in Fig. 

3(b), results in a cylindrical space graph S2. Identification of ac and bd, leads to a torus-like 

skeletal structure as depicted in Fig. 3(c). 

 

 
S1 in developed form                              S1= S1 

a b

c d
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S2                                                                 S
1
 ∩ S2 

(a) S1, S2 and S1
 ∩ S2. 

 
S2 in developed form                                S2 

 
S2                                    S3            S

2 ∩ S3 

(b) S2, S3 and S2 ∩ S3. 

 
(c) A torus-like structure S3 = S. 

Figure 3. Identifications in a structure. 

 

The following equation can be employed in such an approach, which is similar to Eq. 

(9) of the previous section. 

 

ν(S
i
   Sj) = ν (S

i
) + ν (Sj)   (S

i
 ∩ Sj). (11) 

 
In this relation, however, Sj is a subgraph of Si through which the identification has been 

made. Obviously Si ∩ Sj consists of two disjoint Sj. 

Identification transforms a regular model into a circulant model. Eigensolution of 

circulant models is much easier than those of the regular ones. Such transformations 

simplify the modal and dynamic analysis of regular structures [19]. 

 

a b

a b
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6. CONCLUDING REMARKS 
 

In this paper, the process of expansion is demonstrated by means of calculating the DSI and 

DKI of skeletal structures. However, the main objective is by no means confined to finding 

these numbers, since there are enough formulae for this purpose. The manner in which these 

calculations are performed provides us with efficient approaches for optimal analysis of 

structures. The expansion process can easily be applied to configuration processing in which 

only repeated subgraphs are generated using functions such as translation, rotation, 

reflection and projection functions [14]. Considering subgraphs as cycles (γ-cycles) and 

imposing a suitable admissibility function on the intersection provides us with a powerful 

algorithm for the formation of suboptimal cycle bases (generalized cycle bases) for optimal 

force method of structural analysis [20-23]. This process can also be applied to finite 

element analysis by pure force method, where the formation of localized null bases, lead to 

highly sparse flexibility matrices [24]. 
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